Licensing Natural Killers for Antiviral Immunity
Abstract
:1. Introduction
2. Linking Self-Tolerance to NK Cell Functionality
3. Self-KIR IR and HLA Class I Associations with Human Viral Diseases
4. Bridging Education, Natural Killing, and Antiviral Immunity
5. Selective Activation of Licensed NK Cells during Viral Infection
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vivier, E.; Raulet, D.H.; Moretta, A.; Caligiuri, M.A.; Zitvogel, L.; Lanier, L.L.; Yokoyama, W.M.; Ugolini, S. Innate or Adaptive Immunity? The Example of Natural Killer Cells. Science 2011, 331, 44–49. [Google Scholar] [CrossRef] [Green Version]
- Marcus, A.; Gowen, B.G.; Thompson, T.W.; Iannello, A.; Ardolino, M.; Deng, W.; Wang, L.; Shifrin, N.; Raulet, D.H. Recognition of Tumors by the Innate Immune System and Natural Killer Cells. Adv. Immunol. 2014, 122, 91–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orange, J.S. Natural Killer Cell Deficiency. J. Allergy Clin. Immun. 2013, 132, 515–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mace, E.M.; Orange, J.S. Emerging Insights into Human Health and NK Cell Biology from the Study of NK Cell Deficiencies. Immunol. Rev. 2019, 287, 202–225. [Google Scholar] [CrossRef] [PubMed]
- Weizman, O.-E.; Adams, N.M.; Schuster, I.S.; Krishna, C.; Pritykin, Y.; Lau, C.; Degli-Esposti, M.A.; Leslie, C.S.; Sun, J.C.; O’Sullivan, T.E. ILC1 Confer Early Host Protection at Initial Sites of Viral Infection. Cell 2017, 171, 795–808.e12. [Google Scholar] [CrossRef]
- Seillet, C.; Brossay, L.; Vivier, E. Natural Killers or ILC1s? That Is the Question. Curr. Opin. Immunol. 2021, 68, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Vivier, E.; Tomasello, E.; Baratin, M.; Walzer, T.; Ugolini, S. Functions of Natural Killer Cells. Nat. Immunol. 2008, 9, ni1582. [Google Scholar] [CrossRef]
- Yokoyama, W.M.; Plougastel, B.F.M. Immune Functions Encoded by the Natural Killer Gene Complex. Nat. Rev. Immunol. 2003, 3, nri1055. [Google Scholar] [CrossRef]
- Barten, R.; Torkar, M.; Haude, A.; Trowsdale, J.; Wilson, M.J. Divergent and Convergent Evolution of NK-Cell Receptors. Trends Immunol. 2001, 22, 52–57. [Google Scholar] [CrossRef]
- Lanier, L.L. NK CELL RECOGNITION. Annu. Rev. Immunol. 2005, 23, 225–274. [Google Scholar] [CrossRef]
- Long, E.O.; Kim, H.S.; Liu, D.; Peterson, M.E.; Rajagopalan, S. Controlling Natural Killer Cell Responses: Integration of Signals for Activation and Inhibition. Immunology 2013, 31, 227–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stebbins, C.C.; Watzl, C.; Billadeau, D.D.; Leibson, P.J.; Burshtyn, D.N.; Long, E.O. Vav1 Dephosphorylation by the Tyrosine Phosphatase SHP-1 as a Mechanism for Inhibition of Cellular Cytotoxicity. Mol. Cell. Biol. 2003, 23, 6291–6299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Binstadt, B.A.; Billadeau, D.D.; Jevremović, D.; Williams, B.L.; Fang, N.; Yi, T.; Koretzky, G.A.; Abraham, R.T.; Leibson, P.J. SLP-76 Is a Direct Substrate of SHP-1 Recruited to Killer Cell Inhibitory Receptors. J. Biol. Chem. 1998, 273, 27518–27523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matalon, O.; Fried, S.; Ben-Shmuel, A.; Pauker, M.H.; Joseph, N.; Keizer, D.; Piterburg, M.; Barda-Saad, M. Dephosphorylation of the Adaptor LAT and Phospholipase C–γ by SHP-1 Inhibits Natural Killer Cell Cytotoxicity. Sci. Signal. 2016, 9, ra54. [Google Scholar] [CrossRef] [PubMed]
- Peterson, M.E.; Long, E.O. Inhibitory Receptor Signaling via Tyrosine Phosphorylation of the Adaptor Crk. Immunity 2008, 29, 578–588. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Peterson, M.E.; Long, E.O. The Adaptor Protein Crk Controls Activation and Inhibition of Natural Killer Cells. Immunity 2012, 36, 600–611. [Google Scholar] [CrossRef] [Green Version]
- Nash, W.T.; Teoh, J.; Wei, H.; Gamache, A.; Brown, M.G. Know Thyself: NK-Cell Inhibitory Receptors Prompt Self-Tolerance, Education, and Viral Control. Front. Immunol. 2014, 5, 175. [Google Scholar] [CrossRef] [Green Version]
- Berry, R.; Watson, G.M.; Jonjic, S.; Degli-Esposti, M.A.; Rossjohn, J. Modulation of Innate and Adaptive Immunity by Cytomegaloviruses. Nat. Rev. Immunol. 2020, 20, 113–127. [Google Scholar] [CrossRef]
- Kim, S.; Poursine-Laurent, J.; Truscott, S.M.; Lybarger, L.; Song, Y.-J.; Yang, L.; French, A.R.; Sunwoo, J.B.; Lemieux, S.; Hansen, T.H.; et al. Licensing of Natural Killer Cells by Host Major Histocompatibility Complex Class I Molecules. Nature 2005, 436, 709–713. [Google Scholar] [CrossRef]
- Anfossi, N.; André, P.; Guia, S.; Falk, C.S.; Roetynck, S.; Stewart, C.A.; Breso, V.; Frassati, C.; Reviron, D.; Middleton, D.; et al. Human NK Cell Education by Inhibitory Receptors for MHC Class I. Immunity 2006, 25, 331–342. [Google Scholar] [CrossRef]
- Fernandez, N.C.; Treiner, E.; Vance, R.E.; Jamieson, A.M.; Lemieux, S.; Raulet, D.H. A Subset of Natural Killer Cells Achieves Self-Tolerance without Expressing Inhibitory Receptors Specific for Self-MHC Molecules. Blood 2005, 105, 4416–4423. [Google Scholar] [CrossRef] [Green Version]
- Marçais, A.; Marotel, M.; Degouve, S.; Koenig, A.; Fauteux-Daniel, S.; Drouillard, A.; Schlums, H.; Viel, S.; Besson, L.; Allatif, O.; et al. High MTOR Activity Is a Hallmark of Reactive Natural Killer Cells and Amplifies Early Signaling through Activating Receptors. Elife 2017, 6, e26423. [Google Scholar] [CrossRef]
- Enqvist, M.; Ask, E.H.; Forslund, E.; Carlsten, M.; Abrahamsen, G.; Béziat, V.; Andersson, S.; Schaffer, M.; Spurkland, A.; Bryceson, Y.; et al. Coordinated Expression of DNAM-1 and LFA-1 in Educated NK Cells. J. Immunol. 2015, 194, 4518–4527. [Google Scholar] [CrossRef]
- Wagner, A.K.; Kadri, N.; Snäll, J.; Brodin, P.; Gilfillan, S.; Colonna, M.; Bernhardt, G.; Höglund, P.; Kärre, K.; Chambers, B.J. Expression of CD226 Is Associated to but Not Required for NK Cell Education. Nat. Commun. 2017, 8, 15627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, L.M.; Peterson, M.E.; Long, E.O. Cutting Edge: NK Cell Licensing Modulates Adhesion to Target Cells. J. Immunol. 2013, 191, 3981–3985. [Google Scholar] [CrossRef] [PubMed]
- Guia, S.; Jaeger, B.N.; Piatek, S.; Mailfert, S.; Trombik, T.; Fenis, A.; Chevrier, N.; Walzer, T.; Kerdiles, Y.M.; Marguet, D.; et al. Confinement of Activating Receptors at the Plasma Membrane Controls Natural Killer Cell Tolerance. Sci. Signal. 2011, 4, ra21. [Google Scholar] [CrossRef] [PubMed]
- Staaf, E.; Hedde, P.N.; Singh, S.B.; Piguet, J.; Gratton, E.; Johansson, S. Educated Natural Killer Cells Show Dynamic Movement of the Activating Receptor NKp46 and Confinement of the Inhibitory Receptor Ly49A. Sci. Signal. 2018, 11, eaai9200. [Google Scholar] [CrossRef] [Green Version]
- Schafer, J.R.; Salzillo, T.C.; Chakravarti, N.; Kararoudi, M.N.; Trikha, P.; Foltz, J.A.; Wang, R.; Li, S.; Lee, D.A. Education-Dependent Activation of Glycolysis Promotes the Cytolytic Potency of Licensed Human Natural Killer Cells. J. Allergy Clin. Immun. 2019, 143, 346–358.e6. [Google Scholar] [CrossRef]
- Goodridge, J.P.; Jacobs, B.; Saetersmoen, M.L.; Clement, D.; Hammer, Q.; Clancy, T.; Skarpen, E.; Brech, A.; Landskron, J.; Grimm, C.; et al. Remodeling of Secretory Lysosomes during Education Tunes Functional Potential in NK Cells. Nat. Commun. 2019, 10, 514. [Google Scholar] [CrossRef] [Green Version]
- Tai, L.-H.; Goulet, M.-L.; Belanger, S.; Toyama-Sorimachi, N.; Fodil-Cornu, N.; Vidal, S.M.; Troke, A.D.; McVicar, D.W.; Makrigiannis, A.P. Positive Regulation of Plasmacytoid Dendritic Cell Function via Ly49Q Recognition of Class I MHC. J. Exp. Med. 2008, 205, 3187–3199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sasawatari, S.; Karyu, H.; Tien, D.N.; Furuyama-Tanaka, K.; Toyama-Sorimachi, N. The Inhibitory NK Receptor Ly49Q Protects Plasmacytoid Dendritic Cells from Pyroptotic Cell Death. Mol. Immunol. 2021, 135, 217–225. [Google Scholar] [CrossRef]
- Nakamura, M.C.; Niemi, E.C.; Fisher, M.J.; Shultz, L.D.; Seaman, W.E.; Ryan, J.C. Mouse Ly-49A Interrupts Early Signaling Events in Natural Killer Cell Cytotoxicity and Functionally Associates with the SHP-1 Tyrosine Phosphatase. J. Exp. Med. 1997, 185, 673–684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bern, M.D.; Beckman, D.L.; Ebihara, T.; Taffner, S.M.; Poursine-Laurent, J.; White, J.M.; Yokoyama, W.M. Immunoreceptor Tyrosine-Based Inhibitory Motif–Dependent Functions of an MHC Class I-Specific NK Cell Receptor. Proc. Natl. Acad. Sci. USA 2017, 114, E8440–E8447. [Google Scholar] [CrossRef] [Green Version]
- Brodin, P.; Lakshmikanth, T.; Johansson, S.; Kärre, K.; Höglund, P. The Strength of Inhibitory Input during Education Quantitatively Tunes the Functional Responsiveness of Individual Natural Killer Cells. Blood 2009, 113, 2434–2441. [Google Scholar] [CrossRef] [Green Version]
- Joncker, N.T.; Shifrin, N.; Delebecque, F.; Raulet, D.H. Mature Natural Killer Cells Reset Their Responsiveness When Exposed to an Altered MHC Environment. J. Exp. Med. 2010, 207, 2065–2072. [Google Scholar] [CrossRef] [PubMed]
- Elliott, J.M.; Wahle, J.A.; Yokoyama, W.M. MHC Class I–Deficient Natural Killer Cells Acquire a Licensed Phenotype after Transfer into an MHC Class I–Sufficient Environment. J. Exp. Med. 2010, 207, 2073–2079. [Google Scholar] [CrossRef] [PubMed]
- Viant, C.; Fenis, A.; Chicanne, G.; Payrastre, B.; Ugolini, S.; Vivier, E. SHP-1-Mediated Inhibitory Signals Promote Responsiveness and Anti-Tumour Functions of Natural Killer Cells. Nat. Commun. 2014, 5, 5108. [Google Scholar] [CrossRef] [PubMed]
- Niogret, C.; Miah, S.M.S.; Rota, G.; Fonta, N.P.; Wang, H.; Held, W.; Birchmeier, W.; Sexl, V.; Yang, W.; Vivier, E.; et al. Shp-2 Is Critical for ERK and Metabolic Engagement Downstream of IL-15 Receptor in NK Cells. Nat. Commun. 2019, 10, 1444. [Google Scholar] [CrossRef]
- Burshtyn, D.N.; Scharenberg, A.M.; Wagtmann, N.; Rajagopalan, S.; Berrada, K.; Yi, T.; Kinet, J.-P.; Long, E.O. Recruitment of Tyrosine Phosphatase HCP by the Killer Cell Inhibitory Receptor. Immunity 1996, 4, 77–85. [Google Scholar] [CrossRef] [Green Version]
- Gupta, N.; Scharenberg, A.M.; Burshtyn, D.N.; Wagtmann, N.; Lioubin, M.N.; Rohrschneider, L.R.; Kinet, J.-P.; Long, E.O. Negative Signaling Pathways of the Killer Cell Inhibitory Receptor and FcγRIIb1 Require Distinct Phosphatases. J. Exp. Med. 1997, 186, 473–478. [Google Scholar] [CrossRef] [Green Version]
- Gumbleton, M.; Vivier, E.; Kerr, W.G. SHIP1 Intrinsically Regulates NK Cell Signaling and Education, Resulting in Tolerance of an MHC Class I–Mismatched Bone Marrow Graft in Mice. J. Immunol. 2015, 194, 2847–2854. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, P.R.; Barthen, C.; Williamson, D.J.; Pitkeathly, W.T.E.; Hazime, K.S.; Cumming, J.; Stacey, K.B.; Hilton, H.G.; Carrington, M.; Parham, P.; et al. Genetic Diversity Affects the Nanoscale Membrane Organization and Signaling of Natural Killer Cell Receptors. Sci. Signal. 2019, 12, eaaw9252. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Y.; Qiao, G.; Tang, J.; Tang, R.; Guo, H.; Warwar, S.; Langdon, W.Y.; Tao, L.; Zhang, J. Protein Tyrosine Phosphatase SHP-1 Modulates T Cell Responses by Controlling Cbl-b Degradation. J. Immunol. 2015, 195, 4218–4227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jamil, K.M.; Khakoo, S.I. KIR/HLA Interactions and Pathogen Immunity. J. Biomed. Biotechnol. 2011, 2011, 298348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulkarni, S.; Martin, M.P.; Carrington, M. The Yin and Yang of HLA and KIR in Human Disease. Semin. Immunol. 2008, 20, 343–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, G.B.; Gandhi, R.T.; Davis, D.M.; Mandelboim, O.; Chen, B.K.; Strominger, J.L.; Baltimore, D. The Selective Downregulation of Class I Major Histocompatibility Complex Proteins by HIV-1 Protects HIV-Infected Cells from NK Cells. Immunity 1999, 10, 661–671. [Google Scholar] [CrossRef]
- Bonaparte, M.I.; Barker, E. Killing of Human Immunodeficiency Virus-Infected Primary T-Cell Blasts by Autologous Natural Killer Cells Is Dependent on the Ability of the Virus to Alter the Expression of Major Histocompatibility Complex Class I Molecules. Blood 2004, 104, 2087–2094. [Google Scholar] [CrossRef]
- Martin, M.P.; Qi, Y.; Gao, X.; Yamada, E.; Martin, J.N.; Pereyra, F.; Colombo, S.; Brown, E.E.; Shupert, W.L.; Phair, J.; et al. Innate Partnership of HLA-B and KIR3DL1 Subtypes against HIV-1. Nat. Genet. 2007, 39, 733–740. [Google Scholar] [CrossRef]
- Boudreau, J.E.; Mulrooney, T.J.; Luduec, J.-B.L.; Barker, E.; Hsu, K.C. KIR3DL1 and HLA-B Density and Binding Calibrate NK Education and Response to HIV. J. Immunol. 2016, 196, 3398–3410. [Google Scholar] [CrossRef]
- Saunders, P.M.; Pymm, P.; Pietra, G.; Hughes, V.A.; Hitchen, C.; O’Connor, G.M.; Loiacono, F.; Widjaja, J.; Price, D.A.; Falco, M.; et al. Killer Cell Immunoglobulin-like Receptor 3DL1 Polymorphism Defines Distinct Hierarchies of HLA Class I Recognition. J. Exp. Med. 2016, 213, 791–807. [Google Scholar] [CrossRef] [Green Version]
- Martin, M.P.; Naranbhai, V.; Shea, P.R.; Qi, Y.; Ramsuran, V.; Vince, N.; Gao, X.; Thomas, R.; Brumme, Z.L.; Carlson, J.M.; et al. Killer Cell Immunoglobulin-like Receptor 3DL1 Variation Modifies HLA-B*57 Protection against HIV-1. J. Clin. Investig. 2018. [Google Scholar] [CrossRef] [Green Version]
- Deeks, S.G.; Walker, B.D. Human Immunodeficiency Virus Controllers: Mechanisms of Durable Virus Control in the Absence of Antiretroviral Therapy. Immunity 2007, 27, 406–416. [Google Scholar] [CrossRef] [Green Version]
- Apps, R.; Del Prete, G.Q.; Chatterjee, P.; Lara, A.; Brumme, Z.L.; Brockman, M.A.; Neil, S.; Pickering, S.; Schneider, D.K.; Piechocka-Trocha, A.; et al. HIV-1 Vpu Mediates HLA-C Downregulation. Cell Host Microbe 2016, 19, 686–695. [Google Scholar] [CrossRef] [Green Version]
- Körner, C.; Simoneau, C.R.; Schommers, P.; Granoff, M.; Ziegler, M.; Hölzemer, A.; Lunemann, S.; Chukwukelu, J.; Corleis, B.; Naranbhai, V.; et al. HIV-1-Mediated Downmodulation of HLA-C Impacts Target Cell Recognition and Antiviral Activity of NK Cells. Cell Host Microbe 2017, 22, 111–119.e4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khakoo, S.I.; Thio, C.L.; Martin, M.P.; Brooks, C.R.; Gao, X.; Astemborski, J.; Cheng, J.; Goedert, J.J.; Vlahov, D.; Hilgartner, M.; et al. HLA and NK Cell Inhibitory Receptor Genes in Resolving Hepatitis C Virus Infection. Science 2004, 305, 872–874. [Google Scholar] [CrossRef] [PubMed]
- Thöns, C.; Senff, T.; Hydes, T.J.; Manser, A.R.; Heinemann, F.M.; Heinold, A.; Heilmann, M.; Kim, A.Y.; Uhrberg, M.; Scherbaum, N.; et al. HLA-Bw4 80(T) and Multiple HLA-Bw4 Copies Combined with KIR3DL1 Associate with Spontaneous Clearance of HCV Infection in People Who Inject Drugs. J. Hepatol. 2017, 67, 462–470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malnati, M.; Peruzzi, M.; Parker, K.; Biddison, W.; Ciccone, E.; Moretta, A.; Long, E. Peptide Specificity in the Recognition of MHC Class I by Natural Killer Cell Clones. Science 1995, 267, 1016–1018. [Google Scholar] [CrossRef] [PubMed]
- Fadda, L.; Borhis, G.; Ahmed, P.; Cheent, K.; Pageon, S.V.; Cazaly, A.; Stathopoulos, S.; Middleton, D.; Mulder, A.; Claas, F.H.J.; et al. Peptide Antagonism as a Mechanism for NK Cell Activation. Proc. Natl. Acad. Sci. USA 2010, 107, 10160–10165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lunemann, S.; Martrus, G.; Hölzemer, A.; Chapel, A.; Ziegler, M.; Körner, C.; Beltran, W.G.; Carrington, M.; Wedemeyer, H.; Altfeld, M. Sequence Variations in HCV Core-Derived Epitopes Alter Binding of KIR2DL3 to HLA-C∗03:04 and Modulate NK Cell Function. J. Hepatol. 2016, 65, 252–258. [Google Scholar] [CrossRef] [Green Version]
- Brown, M.G.; Gamache, A.; Nash, W.T.; Cronk, J. Natural Selection for Killer Receptors and Their MHC Class I Ligands: In Pursuit of Gene Pairs That Fit Well in Tandem. J. Leukoc. Biol. 2019, 105, 489–495. [Google Scholar] [CrossRef]
- van de Weijer, M.L.; Luteijn, R.D.; Wiertz, E.J.H.J. Viral Immune Evasion: Lessons in MHC Class I Antigen Presentation. Semin. Immunol. 2015, 27, 125–137. [Google Scholar] [CrossRef]
- Béziat, V.; Liu, L.L.; Malmberg, J.-A.; Ivarsson, M.A.; Sohlberg, E.; Björklund, A.T.; Retière, C.; Sverremark-Ekström, E.; Traherne, J.; Ljungman, P.; et al. NK Cell Responses to Cytomegalovirus Infection Lead to Stable Imprints in the Human KIR Repertoire and Involve Activating KIRs. Blood 2013, 121, 2678–2688. [Google Scholar] [CrossRef] [PubMed]
- Kuijpers, T.W.; Baars, P.A.; Dantin, C.; van den Burg, M.; van Lier, R.A.W.; Roosnek, E. Human NK Cells Can Control CMV Infection in the Absence of T Cells. Blood 2008, 112, 914–915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foley, B.; Cooley, S.; Verneris, M.R.; Pitt, M.; Curtsinger, J.; Luo, X.; Lopez-Vergès, S.; Lanier, L.L.; Weisdorf, D.; Miller, J.S. Cytomegalovirus Reactivation after Allogeneic Transplantation Promotes a Lasting Increase in Educated NKG2C+ Natural Killer Cells with Potent Function. Blood 2012, 119, 2665–2674. [Google Scholar] [CrossRef] [PubMed]
- van Duin, D.; Avery, R.K.; Hemachandra, S.; Yen-Lieberman, B.; Zhang, A.; Jain, A.; Butler, R.S.; Barnard, J.; Schold, J.D.; Fung, J.; et al. KIR and HLA Interactions Are Associated With Control of Primary CMV Infection in Solid Organ Transplant Recipients. Am. J. Transplant. 2014, 14, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, Y.; Li, Y.; Huang, F.; Luo, B.; Yuan, Y.; Xia, B.; Ma, X.; Yang, T.; Yu, F.; et al. The ORF8 Protein of SARS-CoV-2 Mediates Immune Evasion through down-Regulating MHC-Ι. Proc. Natl. Acad. Sci. USA 2021, 118, e2024202118. [Google Scholar] [CrossRef]
- Xie, X.; Stadnisky, M.D.; Brown, M.G. MHC Class I Dk Locus and Ly49G2+ NK Cells Confer H-2k Resistance to Murine Cytomegalovirus. J. Immunol. 2009, 182, 7163–7171. [Google Scholar] [CrossRef] [Green Version]
- Prince, J.; Lundgren, A.; Stadnisky, M.D.; Nash, W.T.; Beeber, A.; Turner, S.D.; Brown, M.G. Multiparametric Analysis of Host Response to Murine Cytomegalovirus in MHC Class I–Disparate Mice Reveals Primacy of Dk-Licensed Ly49G2+ NK Cells in Viral Control. J. Immunol. 2013, 191, 4709–4719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gillespie, A.L.; Teoh, J.; Lee, H.; Prince, J.; Stadnisky, M.D.; Anderson, M.; Nash, W.; Rival, C.; Wei, H.; Gamache, A.; et al. Genomic Modifiers of Natural Killer Cells, Immune Responsiveness and Lymphoid Tissue Remodeling Together Increase Host Resistance to Viral Infection. PLoS Pathog. 2016, 12, e1005419. [Google Scholar] [CrossRef] [Green Version]
- Wei, H.; Nash, W.T.; Makrigiannis, A.P.; Brown, M.G. Impaired NK-cell Education Diminishes Resistance to Murine CMV Infection. Eur. J. Immunol. 2014, 44, 3273–3282. [Google Scholar] [CrossRef] [Green Version]
- Gamache, A.; Cronk, J.M.; Nash, W.T.; Puchalski, P.; Gillespie, A.; Wei, H.; Gray, L.; Hammarskjold, M.-L.; Xu, W.; Brown, M.G. Ly49R Activation Receptor Drives Self-MHC–Educated NK Cell Immunity against Cytomegalovirus Infection. Proc. Natl. Acad. Sci. USA 2019, 116, 201913064. [Google Scholar] [CrossRef]
- Silver, E.T.; Lavender, K.J.; Gong, D.-E.; Hazes, B.; Kane, K.P. Allelic Variation in the Ectodomain of the Inhibitory Ly-49G2 Receptor Alters Its Specificity for Allogeneic and Xenogeneic Ligands. J. Immunol. 2002, 169, 4752–4760. [Google Scholar] [CrossRef]
- Xie, X.; Stadnisky, M.D.; Coats, E.R.; Rahim, M.M.A.; Lundgren, A.; Xu, W.; Makrigiannis, A.P.; Brown, M.G. MHC Class I Dk Expression in Hematopoietic and Nonhematopoietic Cells Confers Natural Killer Cell Resistance to Murine Cytomegalovirus. Proc. Natl. Acad. Sci. USA 2010, 107, 8754–8759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parikh, B.A.; Bern, M.D.; Piersma, S.J.; Yang, L.; Beckman, D.L.; Poursine-Laurent, J.; Plougastel-Douglas, B.; Yokoyama, W.M. Control of Viral Infection by Natural Killer Cell Inhibitory Receptors. Cell Rep. 2020, 32, 107969. [Google Scholar] [CrossRef]
- Johansson, M.H.; Höglund, E.; Nakamura, M.C.; Ryan, J.C.; Höglund, P. A1 / A2 Domains of H-2Dd, but Not H-2Ld, Induce “Missing Self” Reactivity in Vivo – No Effect of H-2Ld on Protection against NK Cells Expressing the Inhibitory Receptor Ly49G2. Eur. J. Immunol. 1998, 28, 4198–4206. [Google Scholar] [CrossRef]
- Hanke, T.; Takizawa, H.; McMahon, C.W.; Busch, D.H.; Pamer, E.G.; Miller, J.D.; Altman, J.D.; Liu, Y.; Cado, D.; Lemonnier, F.A.; et al. Direct Assessment of MHC Class I Binding by Seven Ly49 Inhibitory NK Cell Receptors. Immunity 1999, 11, 67–77. [Google Scholar] [CrossRef] [Green Version]
- Makrigiannis, A.P.; Pau, A.T.; Saleh, A.; Winkler-Pickett, R.; Ortaldo, J.R.; Anderson, S.K. Class I MHC-Binding Characteristics of the 129/J Ly49 Repertoire. J. Immunol. 2001, 166, 5034–5043. [Google Scholar] [CrossRef]
- Zhang, X.; Feng, J.; Chen, S.; Yang, H.; Dong, Z. Synergized Regulation of NK Cell Education by NKG2A and Specific Ly49 Family Members. Nat. Commun. 2019, 10, 5010. [Google Scholar] [CrossRef]
- Orr, M.T.; Murphy, W.J.; Lanier, L.L. “Unlicensed” Natural Killer Cells Dominate the Response to Cytomegalovirus Infection. Nat. Immunol. 2010, 11, 321–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arase, H.; Mocarski, E.S.; Campbell, A.E.; Hill, A.B.; Lanier, L.L. Direct Recognition of Cytomegalovirus by Activating and Inhibitory NK Cell Receptors. Science 2002, 296, 1323–1326. [Google Scholar] [CrossRef] [PubMed]
- Campbell, A.E.; Slater, J.S. Down-Regulation of Major Histocompatibility Complex Class I Synthesis by Murine Cytomegalovirus Early Gene Expression. J. Virol. 1994, 68, 1805–1811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, X.; Dighe, A.; Clark, P.; Sabastian, P.; Buss, S.; Brown, M.G. Deficient Major Histocompatibility Complex-Linked Innate Murine Cytomegalovirus Immunity in MA/My.L-H2b Mice and Viral Downregulation of H-2k Class I Proteins. J. Virol. 2007, 81, 229–236. [Google Scholar] [CrossRef] [Green Version]
- Deng, L.; Cho, S.; Malchiodi, E.L.; Kerzic, M.C.; Dam, J.; Mariuzza, R.A. Molecular Architecture of the Major Histocompatibility Complex Class I-Binding Site of Ly49 Natural Killer Cell Receptors. J. Biol. Chem. 2008, 283, 16840–16849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babić, M.; Pyzik, M.; Zafirova, B.; Mitrović, M.; Butorac, V.; Lanier, L.L.; Krmpotić, A.; Vidal, S.M.; Jonjić, S. Cytomegalovirus Immunoevasin Reveals the Physiological Role of “Missing Self” Recognition in Natural Killer Cell Dependent Virus Control in Vivo. J. Exp. Med. 2010, 207, 2663–2673. [Google Scholar] [CrossRef]
- Degli-Esposti, M.A.; Hill, G.R. Immune Control of Cytomegalovirus Reactivation in Stem Cell Transplantation. Blood 2021. [Google Scholar] [CrossRef]
- Shifrin, N.T.; Kissiov, D.U.; Ardolino, M.; Joncker, N.T.; Raulet, D.H. Differential Role of Hematopoietic and Nonhematopoietic Cell Types in the Regulation of NK Cell Tolerance and Responsiveness. J. Immunol. 2016, 197, 4127–4136. [Google Scholar] [CrossRef] [Green Version]
- Sungur, C.M.; Tang-Feldman, Y.J.; Ames, E.; Alvarez, M.; Chen, M.; Longo, D.L.; Pomeroy, C.; Murphy, W.J. Murine Natural Killer Cell Licensing and Regulation by T Regulatory Cells in Viral Responses. Proc. Natl. Acad. Sci. USA 2013, 110, 7401–7406. [Google Scholar] [CrossRef] [Green Version]
- Sungur, C.M.; Tang-Feldman, Y.J.; Zamora, A.E.; Alvarez, M.; Pomeroy, C.; Murphy, W.J. Murine NK-Cell Licensing Is Reflective of Donor MHC-I Following Allogeneic Hematopoietic Stem Cell Transplantation in Murine Cytomegalovirus Responses. Blood 2013, 122, 1518–1521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franksson, L.; Sundbäck, J.; Achour, A.; Bernlind, J.; Glas, R.; Kärre, K. Peptide Dependency and Selectivity of the NK Cell Inhibitory Receptor Ly-49C. Eur. J. Immunol. 1999, 29, 2748–2758. [Google Scholar] [CrossRef]
- Naiyer, M.M.; Cassidy, S.A.; Magri, A.; Cowton, V.; Chen, K.; Mansour, S.; Kranidioti, H.; Mbirbindi, B.; Rettman, P.; Harris, S.; et al. KIR2DS2 Recognizes Conserved Peptides Derived from Viral Helicases in the Context of HLA-C. Sci. Immunol. 2017, 2, eaal5296. [Google Scholar] [CrossRef] [Green Version]
- Sim, M.J.W.; Rajagopalan, S.; Altmann, D.M.; Boyton, R.J.; Sun, P.D.; Long, E.O. Human NK Cell Receptor KIR2DS4 Detects a Conserved Bacterial Epitope Presented by HLA-C. Proc. Natl. Acad. Sci. USA 2019, 116, 12964–12973. [Google Scholar] [CrossRef] [Green Version]
- Narzi, D.; Becker, C.M.; Fiorillo, M.T.; Uchanska-Ziegler, B.; Ziegler, A.; Böckmann, R.A. Dynamical Characterization of Two Differentially Disease Associated MHC Class I Proteins in Complex with Viral and Self-Peptides. J. Mol. Biol. 2012, 415, 429–442. [Google Scholar] [CrossRef]
- Yanaka, S.; Ueno, T.; Shi, Y.; Qi, J.; Gao, G.F.; Tsumoto, K.; Sugase, K. Peptide-Dependent Conformational Fluctuation Determines the Stability of the Human Leukocyte Antigen Class I Complex. J. Biol. Chem. 2014, 289, 24680–24690. [Google Scholar] [CrossRef] [Green Version]
- Wieczorek, M.; Abualrous, E.T.; Sticht, J.; Álvaro-Benito, M.; Stolzenberg, S.; Noé, F.; Freund, C. Major Histocompatibility Complex (MHC) Class I and MHC Class II Proteins: Conformational Plasticity in Antigen Presentation. Front. Immunol. 2017, 8, 292. [Google Scholar] [CrossRef] [Green Version]
- Held, W.; Mariuzza, R.A. Cis–Trans Interactions of Cell Surface Receptors: Biological Roles and Structural Basis. Cell Mol. Life Sci. 2011, 68, 3469. [Google Scholar] [CrossRef] [Green Version]
- Back, J.; Chalifour, A.; Scarpellino, L.; Held, W. Stable Masking by H-2Dd Cis Ligand Limits Ly49A Relocalization to the Site of NK Cell/Target Cell Contact. Proc. Natl. Acad. Sci. USA 2007, 104, 3978–3983. [Google Scholar] [CrossRef] [Green Version]
- Doucey, M.-A.; Scarpellino, L.; Zimmer, J.; Guillaume, P.; Luescher, I.F.; Bron, C.; Held, W. Cis Association of Ly49A with MHC Class I Restricts Natural Killer Cell Inhibition. Nat. Immunol. 2004, 5, 328–336. [Google Scholar] [CrossRef] [PubMed]
- Chalifour, A.; Scarpellino, L.; Back, J.; Brodin, P.; Devèvre, E.; Gros, F.; Lévy, F.; Leclercq, G.; Höglund, P.; Beermann, F.; et al. A Role for Cis Interaction between the Inhibitory Ly49A Receptor and MHC Class I for Natural Killer Cell Education. Immunity 2009, 30, 337–347. [Google Scholar] [CrossRef] [Green Version]
- Desrosiers, M.-P.; Kielczewska, A.; Loredo-Osti, J.-C.; Adam, S.G.; Makrigiannis, A.P.; Lemieux, S.; Pham, T.; Lodoen, M.B.; Morgan, K.; Lanier, L.L.; et al. Epistasis between Mouse Klra and Major Histocompatibility Complex Class I Loci Is Associated with a New Mechanism of Natural Killer Cell–Mediated Innate Resistance to Cytomegalovirus Infection. Nat. Genet. 2005, 37, ng1564. [Google Scholar] [CrossRef]
- Kielczewska, A.; Pyzik, M.; Sun, T.; Krmpotic, A.; Lodoen, M.B.; Munks, M.W.; Babic, M.; Hill, A.B.; Koszinowski, U.H.; Jonjic, S.; et al. Ly49P Recognition of Cytomegalovirus-Infected Cells Expressing H2-Dk and CMV-Encoded M04 Correlates with the NK Cell Antiviral Response. J. Exp. Med. 2009, 206, 515–523. [Google Scholar] [CrossRef]
- Pyzik, M.; Charbonneau, B.; Gendron-Pontbriand, E.-M.; Babić, M.; Krmpotić, A.; Jonjić, S.; Vidal, S.M. Distinct MHC Class I–Dependent NK Cell–Activating Receptors Control Cytomegalovirus Infection in Different Mouse Strains. J. Exp. Med. 2011, 208, 1105–1117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rölle, A.; Pollmann, J.; Ewen, E.-M.; Le, V.T.K.; Halenius, A.; Hengel, H.; Cerwenka, A. IL-12–Producing Monocytes and HLA-E Control HCMV-Driven NKG2C+ NK Cell Expansion. J. Clin. Investig. 2014, 124, 5305–5316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gumá, M.; Budt, M.; Sáez, A.; Brckalo, T.; Hengel, H.; Angulo, A.; López-Botet, M. Expansion of CD94/NKG2C+ NK Cells in Response to Human Cytomegalovirus-Infected Fibroblasts. Blood 2006, 107, 3624–3631. [Google Scholar] [CrossRef] [Green Version]
- Hammer, Q.; Rückert, T.; Borst, E.M.; Dunst, J.; Haubner, A.; Durek, P.; Heinrich, F.; Gasparoni, G.; Babic, M.; Tomic, A.; et al. Peptide-Specific Recognition of Human Cytomegalovirus Strains Controls Adaptive Natural Killer Cells. Nat. Immunol. 2018, 19, 453–463. [Google Scholar] [CrossRef]
- Chiesa, M.D.; Falco, M.; Bertaina, A.; Muccio, L.; Alicata, C.; Frassoni, F.; Locatelli, F.; Moretta, L.; Moretta, A. Human Cytomegalovirus Infection Promotes Rapid Maturation of NK Cells Expressing Activating Killer Ig–like Receptor in Patients Transplanted with NKG2C−/− Umbilical Cord Blood. J. Immunol. 2014, 192, 1471–1479. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.L.; Landskron, J.; Ask, E.H.; Enqvist, M.; Sohlberg, E.; Traherne, J.A.; Hammer, Q.; Goodridge, J.P.; Larsson, S.; Jayaraman, J.; et al. Critical Role of CD2 Co-Stimulation in Adaptive Natural Killer Cell Responses Revealed in NKG2C-Deficient Humans. Cell Rep. 2016, 15, 1088–1099. [Google Scholar] [CrossRef] [Green Version]
- Bryceson, Y.T.; March, M.E.; Ljunggren, H.-G.; Long, E.O. Synergy among Receptors on Resting NK Cells for the Activation of Natural Cytotoxicity and Cytokine Secretion. Blood 2006, 107, 159–166. [Google Scholar] [CrossRef] [Green Version]
- Parikh, B.A.; Piersma, S.J.; Pak-Wittel, M.A.; Yang, L.; Schreiber, R.D.; Yokoyama, W.M. Dual Requirement of Cytokine and Activation Receptor Triggering for Cytotoxic Control of Murine Cytomegalovirus by NK Cells. PLoS Pathog. 2015, 11, e1005323. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.S.; Das, A.; Gross, C.C.; Bryceson, Y.T.; Long, E.O. Synergistic Signals for Natural Cytotoxicity Are Required to Overcome Inhibition by C-Cbl Ubiquitin Ligase. Immunity 2010, 32, 175–186. [Google Scholar] [CrossRef] [Green Version]
- Magri, G.; Muntasell, A.; Romo, N.; Sáez-Borderías, A.; Pende, D.; Geraghty, D.E.; Hengel, H.; Angulo, A.; Moretta, A.; López-Botet, M. NKp46 and DNAM-1 NK-Cell Receptors Drive the Response to Human Cytomegalovirus-Infected Myeloid Dendritic Cells Overcoming Viral Immune Evasion Strategies. Blood 2011, 117, 848–856. [Google Scholar] [CrossRef] [Green Version]
- Matusali, G.; Potestà, M.; Santoni, A.; Cerboni, C.; Doria, M. The Human Immunodeficiency Virus Type 1 Nef and Vpu Proteins Downregulate the Natural Killer Cell-Activating Ligand PVR. J. Virol. 2012, 86, 4496–4504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nabekura, T.; Kanaya, M.; Shibuya, A.; Fu, G.; Gascoigne, N.R.J.; Lanier, L.L. Costimulatory Molecule DNAM-1 Is Essential for Optimal Differentiation of Memory Natural Killer Cells during Mouse Cytomegalovirus Infection. Immunity 2014, 40, 225–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cronk, J.M.; Fafoutis, E.; Brown, M.G. Licensing Natural Killers for Antiviral Immunity. Pathogens 2021, 10, 908. https://doi.org/10.3390/pathogens10070908
Cronk JM, Fafoutis E, Brown MG. Licensing Natural Killers for Antiviral Immunity. Pathogens. 2021; 10(7):908. https://doi.org/10.3390/pathogens10070908
Chicago/Turabian StyleCronk, John M., Eleni Fafoutis, and Michael G. Brown. 2021. "Licensing Natural Killers for Antiviral Immunity" Pathogens 10, no. 7: 908. https://doi.org/10.3390/pathogens10070908
APA StyleCronk, J. M., Fafoutis, E., & Brown, M. G. (2021). Licensing Natural Killers for Antiviral Immunity. Pathogens, 10(7), 908. https://doi.org/10.3390/pathogens10070908