Decreased MIP-3α Production from Antigen-Activated PBMCs in Symptomatic HIV-Infected Subjects
Abstract
:1. Introduction
2. Results
2.1. Antigen Stimulation-Induced Expression of MIP-3α Is Elevated in PBMCs
2.2. Kinetics of Release of MIP-3α
2.3. MIP-3α Release as a Function of Time from Vaccination
2.4. Antigen-Induced CCR6 Ligand Release in Cryopreserved Samples
2.5. Antigen-Induced MIP-3α Production in PBMCs of HIV-Infected and AIDS Patients
3. Discussion
4. Materials and Methods
4.1. Study Subjects
- (a)
- A study of antigen stimulation on PBMCs from healthy donors. PBMCs from 16 healthy (by self-assessment), HIV-negative donors were obtained by venipuncture and Histopaque isolation as described [59]. Of these, 4 donors reported not having been vaccinated against tetanus for more than 10 years, while the other subjects had been vaccinated within the previous 10 years. All subjects signed informed consent forms approved by the Institutional Review Board.
- (b)
- Studies on subjects from an HIV cohort. Subjects were obtained from the Baltimore–Washington DC center of the Multicenter AIDS Cohort Study (MACS), a longitudinal study of the natural history of HIV-1 infection in men who have sex with men [4]. Briefly, 1253 men were recruited in 1984–85 and in 1987–90 and followed at 6-month intervals with clinical and laboratory testing as well as storage of repository specimens. For this study, blood was obtained from 58 HIV-1 seropositive men at visit 27 (April–October 1997). HIV-positive subjects were categorized into two groups: 10 with AIDS and 48 who were asymptomatic and did not have AIDS according to the 1993 definition by the Centers for Disease Control and Prevention. Thirteen control, non-MACS HIV-seronegative subjects with no history of exposure to HIV were recruited from the laboratory staff at the Institute of Human Virology.
4.2. Cells and Laboratory Studies
- (a)
- HIV-seronegative subjects. PBMCs were incubated with 3–20 µg/mL Fragment C of tetanus toxin (TTC–Calbiochem, La Jolla, CA, USA), 10 µg/mL Candida albicans (Greer Laboratories, Lenoir, NC, USA), or 2.5 µg/mL phytohemoagglutinin (PHA; Sigma-Aldrich, St Louis, MO, USA). Supernatants from cells incubated with media alone were used as controls. Supernatants were collected on days 3, 6, and 9 after activation and frozen at −80 °C. Supernatants had been stored for about 4 years prior to testing for MIP-3α.
- (b)
- PBMC obtained from HIV-1 seropositive subjects in the MACS were collected in CPT tubes (Falcon-BD, Franklin Lakes, NJ, USA), following the instructions of the manufacturer. Fresh PBMCs were cultured in round-bottom 96-well plates (Falcon-BD) in RPMI medium (GIBCO-Invitrogen, Carlsbad, CA, USA) supplemented with 10% human AB serum and antibiotics (100 U/mL penicillin, 100 U/mL streptomycin) (GIBCO-Invitrogen) at a density of 2 × 105 cells/100 µL. Cells were incubated for 3 days with 10 µg/mL gp120-depleted, inactivated HIV-1, 10 µg/mL purified p24 antigen (see below), 10 µg/mL C. albicans, or 2.5 µg/mL PHA, or with media alone as a control. Supernatants were collected on day 3 (for PHA) or day 6 (for antigen stimulation) and frozen at −80 °C [4]. HIV-1 HZ321 immunogen was obtained by concentration and purification from the supernatant fluid of HZ321-infected HUT-78 cells. In the preparation of the immunogen, envelope gp120 was depleted during freezing and thawing and during the purification process [75].
4.3. MIP-3α Measurement
4.4. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Garzino-Demo, A.; DeVico, A.L.; Gallo, R.C. Chemokine Receptors and Chemokines in HIV Infection. J. Clin. Immunol. 1998, 18, 243–255. [Google Scholar] [CrossRef] [PubMed]
- Berger, E.A.; Murphy, P.M.; Farber, J.M. Chemokine Receptors as HIV-1 Coreceptors: Roles in Viral Entry, Tropism, and Disease. Annu. Rev. Immunol. 1999, 17, 657–700. [Google Scholar] [CrossRef]
- Cocchi, F.; DeVico, A.L.; Garzino-Demo, A.; Arya, S.K.; Gallo, R.C.; Lusso, P. Identification of RANTES, MIP-1 Alpha, and MIP-1 Beta as the Major HIV-Suppressive Factors Produced by CD8+ T Cells. Science 1995, 270, 1811–1815. [Google Scholar] [CrossRef] [Green Version]
- Garzino-Demo, A.; Moss, R.B.; Margolick, J.B.; Cleghorn, F.; Sill, A.; Blattner, W.A.; Cocchi, F.; Carlo, D.J.; DeVico, A.L.; Gallo, R.C. Spontaneous and Antigen-Induced Production of HIV-Inhibitory Beta-Chemokines Are Associated with AIDS-Free Status. Proc. Natl. Acad. Sci. USA 1999, 96, 11986–11991. [Google Scholar] [CrossRef] [Green Version]
- Cocchi, F.; DeVico, A.L.; Yarchoan, R.; Redfield, R.; Cleghorn, F.; Blattner, W.A.; Garzino-Demo, A.; Colombini-Hatch, S.; Margolis, D.; Gallo, R.C. Higher Macrophage Inflammatory Protein (MIP)-1alpha and MIP-1beta Levels from CD8+ T Cells Are Associated with Asymptomatic HIV-1 Infection. Proc. Natl. Acad. Sci. USA 2000, 97, 13812–13817. [Google Scholar] [CrossRef] [Green Version]
- Zagury, D.; Lachgar, A.; Chams, V.; Fall, L.S.; Bernard, J.; Zagury, J.F.; Bizzini, B.; Gringeri, A.; Santagostino, E.; Rappaport, J.; et al. C-C Chemokines, Pivotal in Protection against HIV type 1 Infection. Proc. Natl. Acad. Sci. USA 1998, 95, 3857–3861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ullum, H.; Lepri, A.C.; Victor, J.; Aladdin, H.; Phillips, A.N.; Gerstoft, J.; Skinhøj, P.; Pedersen, B.K. Production of Beta-Chemokines in Human Immunodeficiency Virus (HIV) Infection: Evidence that High Levels of Macrophage Inflammatory Protein-1beta Are Associated with a Decreased Risk of HIV Disease Progression. J. Infect. Dis. 1998, 177, 331–336. [Google Scholar] [CrossRef] [PubMed]
- Paxton, W.A.; Martin, S.R.; Tse, D.; O’Brien, T.R.; Skurnick, J.; VanDevanter, N.L.; Padian, N.; Braun, J.F.; Kotler, D.P.; Wolinsky, S.M.; et al. Relative Resistance to HIV-1 Infection of CD4 Lymphocytes from Persons Who Remain Uninfected Despite Multiple High-Risk Sexual Exposure. Nat. Med. 1996, 2, 412–417. [Google Scholar] [CrossRef]
- Paxton, W.A.; Liu, R.; Kang, S.; Wu, L.; Gingeras, T.R.; Landau, N.R.; Mackay, C.R.; Koup, R.A. Reduced HIV-1 Infectability of CD4+ Lymphocytes from Exposed-Uninfected Individuals: Association with Low Expression of CCR5 and High Production of Beta-Chemokines. Virology 1998, 244, 66–73. [Google Scholar] [CrossRef] [Green Version]
- Tartakovsky, B.; Turner, D.; Vardinon, N.; Burke, M.; Yust, I. Increased Intracellular Accumulation of Macrophage Inflammatory Protein 1beta and Its Decreased Secretion Correlate with Advanced HIV Disease. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 1999, 20, 420–422. [Google Scholar] [CrossRef]
- Wasik, T.J.; Bratosiewicz, J.; Wierzbicki, A.; Whiteman, V.E.; Rutstein, R.R.; Starr, S.E.; Douglas, S.D.; Kaufman, D.; Sison, A.V.; Polansky, M.; et al. Protective Role of Beta-Chemokines Associated with HIV-Specific Th Responses against Perinatal HIV Transmission. J. Immunol. 1999, 162, 4355–4364. [Google Scholar] [PubMed]
- Furci, L.; Scarlatti, G.; Burastero, S.; Tambussi, G.; Colognesi, C.; Quillent, C.; Longhi, R.; Loverro, P.; Borgonovo, B.; Gaffi, D.; et al. Antigen-Driven C-C Chemokine-Mediated HIV-1 Suppression by CD4(+) T Cells from Exposed Uninfected Individuals Expressing the Wild-Type CCR-5 Allele. J. Exp. Med. 1997, 186, 455–460. [Google Scholar] [CrossRef] [PubMed]
- Ferbas, J.; Giorgi, J.V.; Amini, S.; Grovit-Ferbas, K.; Wiley, D.J.; Detels, R.; Plaeger, S. Antigen-Specific Production of RANTES, Macrophage Inflammatory Protein (MIP)-1alpha, and MIP-1beta in vitro Is a Correlate of Reduced Human Immunodeficiency Virus Burden in vivo. J. Infect. Dis. 2000, 182, 1247–1250. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, M.; Fahey, J.V.; Shen, Z.; Lahey, T.; Cu-Uvin, S.; Wu, Z.; Mayer, K.; Wright, P.F.; Kappes, J.C.; Ochsenbauer, C.; et al. Anti-HIV Activity in Cervical-Vaginal Secretions from HIV-Positive and-Negative Women Correlate with Innate Antimicrobial Levels and IgG Antibodies. PLoS ONE 2010, 5, e11366. [Google Scholar] [CrossRef]
- Choi, Y.K.; Fallert, B.A.; Murphey-Corb, M.A.; Reinhart, T.A. Simian Immunodeficiency Virus Dramatically Alters Expression of Homeostatic Chemokines and Dendritic cell Markers during Infection in vivo. Blood 2003, 101, 1684–1691. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.K.; Whelton, K.M.; Mlechick, B.; Murphey-Corb, M.A.; Reinhart, T.A. Productive Infection of Dendritic Cells by Simian Immunodeficiency Virus in Macaque Intestinal Tissues. J. Pathol. 2003, 201, 616–628. [Google Scholar] [CrossRef]
- Demberg, T.; Ettinger, A.C.; Aladi, S.; McKinnon, K.; Kuddo, T.; Venzon, D.; Patterson, L.J.; Phillips, T.M.; Robert-Guroff, M. Strong Viremia Control in Vaccinated Macaques Does Not Prevent Gradual Th17 Cell Loss from Central Memory. Vaccine 2011, 29, 6017–6028. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, P.; Gosselin, A.; Wacleche, V.S.; El-Far, M.; Said, E.A.; Kared, H.; Grandvaux, N.; Boulassel, M.R.; Routy, J.P.; Ancuta, P. Memory CCR6+ CD4+ T Cells Are Preferential Targets for Productive HIV Type 1 Infection Regardless of Their Expression of Integrin Beta7. J. Immunol. 2011, 186, 4618–4630. [Google Scholar] [CrossRef] [Green Version]
- Gosselin, A.; Monteiro, P.; Chomont, N.; Diaz-Griffero, F.; Said, E.A.; Fonseca, S.; Wacleche, V.; El-Far, M.; Boulassel, M.R.; Routy, J.P.; et al. Peripheral Blood CCR4+ CCR6+ and CXCR3+ CCR6+ CD4+ T Cells Are Highly Permissive to HIV-1 Infection. J. Immunol. 2010, 184, 1604–1616. [Google Scholar] [CrossRef] [Green Version]
- Lafferty, M.K.; Sun, L.; Christensen-Quick, A.; Lu, W.; Garzino-Demo, A. Human Beta Defensin 2 Selectively Inhibits HIV-1 in Highly Permissive CCR6(+)CD4(+) T Cells. Viruses 2017, 9, 111. [Google Scholar] [CrossRef] [Green Version]
- Christensen-Quick, A.; Lafferty, M.; Sun, L.; Marchionni, L.; DeVico, A.; Garzino-Demo, A. Human Th17 Cells Lack HIV-Inhibitory RNases and Are Highly Permissive to Productive HIV Infection. J. Virol. 2016, 90, 7833–7847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brenchley, J.M.; Paiardini, M.; Knox, K.S.; Asher, A.I.; Cervasi, B.; Asher, T.E.; Scheinberg, P.; Price, D.A.; Hage, C.A.; Kholi, L.M.; et al. Differential Th17 CD4 T-Cell Depletion in Pathogenic and Nonpathogenic Lentiviral Infections. Blood 2008, 112, 2826–2835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bharucha, J.P.; Sun, L.; Lu, W.; Gartner, S.; Garzino-Demo, A. Human Beta-Defensin 2 and 3 Inhibit HIV-1 Replication in Macrophages Frontiers in Cellular and Infection Microbiology. Front. Cell. Infect. Microbiol. 2021, 11, 535352. [Google Scholar] [CrossRef]
- Anderson, J.L.; Khoury, G.; Fromentin, R.; Solomon, A.; Chomont, N.; Sinclair, E.; Milush, J.M.; Hartogensis, W.; Bacchetti, P.; Roche, M.; et al. Human Immunodeficiency Virus (HIV)-Infected CCR6+ Rectal CD4+ T Cells and HIV Persistence On Antiretroviral Therapy. J. Infect. Dis. 2020, 221, 744–755. [Google Scholar] [CrossRef]
- Loiseau, C.; Requena, M.; Mavigner, M.; Cazabat, M.; Carrere, N.; Suc, B.; Barange, K.; Alric, L.; Marchou, B.; Massip, P.; et al. CCR6(−) Regulatory T Cells Blunt the Restoration of Gut Th17 Cells along the CCR6-CCL20 Axis in Treated HIV-1-Infected Individuals. Mucosal. Immunol. 2016, 9, 1137–1150. [Google Scholar] [CrossRef]
- Lafferty, M.K.; Sun, L.; DeMasi, L.; Lu, W.; Garzino-Demo, A. CCR6 Ligands Inhibit HIV by Inducing APOBEC3G. Blood 2010, 115, 1564–1571. [Google Scholar] [CrossRef] [Green Version]
- Power, C.A.; Church, D.J.; Meyer, A.; Alouani, S.; Proudfoot, A.E.; Clark-Lewis, I.; Sozzani, S.; Mantovani, A.; Wells, T.N. Cloning and Characterization of a Specific Receptor for the Novel CC Chemokine MIP-3alpha from Lung Dendritic Cells. J. Exp. Med. 1997, 186, 825–835. [Google Scholar] [CrossRef] [Green Version]
- Greaves, D.R.; Wang, W.; Dairaghi, D.J.; Dieu, M.C.; Saint-Vis, B.D.; Franz-Bacon, K.; Rossi, D.; Caux, C.; McClanahan, T.; Gordon, S.; et al. CCR6, a CC Chemokine Receptor that Interacts with Macrophage Inflammatory Protein 3alpha and Is Highly Expressed in Human Dendritic Cells. J. Exp. Med. 1997, 186, 837–844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varona, R.; Zaballos, A.; Gutiérrez, J.; Martín, P.; Roncal, F.; Albar, J.P.; Ardavín, C.; Márquez, G. Molecular Cloning, Functional Characterization and mRNA Expression Analysis of the Murine Chemokine Receptor CCR6 and Its Specific Ligand MIP-3alpha. FEBS Lett. 1998, 440, 188–194. [Google Scholar] [CrossRef] [Green Version]
- Dieu, M.C.; Vanbervliet, B.; Vicari, A.; Bridon, J.M.; Oldham, E.; Aït-Yahia, S.; Brière, F.; Zlotnik, A.; Lebecque, S.; Caux, C. Selective Recruitment of Immature and Mature Dendritic Cells by Distinct Chemokines Expressed in Different Anatomic Sites. J. Exp. Med. 1998, 188, 373–386. [Google Scholar] [CrossRef] [Green Version]
- Cook, D.N.; Pross, D.M.; Forster, R.; Zhang, J.; Kuklin, N.A.; Abbondanzo, S.J.; Niu, X.D.; Chen, S.C.; Manfra, D.J.; Wiekowski, M.T.; et al. CCR6 Mediates Dendritic Cell Localization, Lymphocyte Homeostasis, and Immune Responses in Mucosal Tissue. Immunity 2000, 12, 495–503. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.; Howard, O.Z.; Chen, Q.; Oppenheim, J.J. Cutting Edge: Immature Dendritic Cells Generated from Monocytes in the Presence of TGF-Beta 1 Express Functional C-C Chemokine Receptor 6. J. Immunol. 1999, 163, 1737–1741. [Google Scholar]
- Geijtenbeek, T.B.; van Kooyk, Y. DC-SIGN: A Novel HIV Receptor on DCs that Mediates HIV-1 Transmission. Curr. Top. Microbiol. Immunol. 2003, 276, 31–54. [Google Scholar]
- Steinman, R.M.; Granelli-Piperno, A.; Pope, M.; Trumpfheller, C.; Ignatius, R.; Arrode, G.; Racz, P.; Tenner-Racz, K. The Interaction of Immunodeficiency Viruses with Dendritic Cells. Dendritic Cells Virus Infect. 2003, 276, 1–30. [Google Scholar]
- Teleshova, N.; Frank, I.; Pope, M. Immunodeficiency Virus Exploitation of Dendritic Cells in the Early Steps of Infection. J. Leukoc. Biol. 2003, 74, 683–690. [Google Scholar] [CrossRef]
- Turville, S.; Wilkinson, J.; Cameron, P.; Dable, J.; Cunningham, A.L. The Role of Dendritic Cell C-Type Lectin Receptors in HIV Pathogenesis. J. Leukoc. Biol. 2003, 74, 710–718. [Google Scholar] [CrossRef]
- Hosokawa, Y.; Nakanishi, T.; Yamaguchi, D.; Takahashi, K.; Yumoto, H.; Ozaki, K.; Matsuo, T. Macrophage Inflammatory Protein 3alpha-CC Chemokine Receptor 6 Interactions Play an Important Role in CD4+ T-Cell Accumulation in Periodontal Diseased Tissue. Clin. Exp. Immunol. 2002, 128, 548–554. [Google Scholar] [CrossRef]
- El Hed, A.; Khaitan, A.; Kozhaya, L.; Manel, N.; Daskalakis, D.; Borkowsky, W.; Valentine, F.; Littman, D.R.; Unutmaz, D. Susceptibility of Human Th17 Cells to Human Immunodeficiency Virus and Their Perturbation during Infection. J. Infect. Dis. 2010, 201, 843–854. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, Y.; Tuen, M.; Nàdas, A.; Hioe, C.E. In Vitro Restoration of Th17 Response During HIV Infection with an Antiretroviral Drug and Th17 Differentiation Cytokines. AIDS Res. Hum. Retrovir. 2011, 28, 823–834. [Google Scholar] [CrossRef] [Green Version]
- Kader, M.; Wang, X.; Piatak, M.; Lifson, J.; Roederer, M.; Veazey, R. Alpha4(+)beta7(hi)CD4(+) Memory T Cells Harbor Most Th-17 Cells and Are Preferentially Infected during Acute SIV Infection. Mucosal. Immunol. 2009, 2, 439–449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guillot-Delost, M.; Le Gouvello, S.; Mesel-Lemoine, M.; Cheraï, M.; Baillou, C.; Simon, A.; Levy, Y.; Weiss, L.; Louafi, S.; Chaput, N.; et al. Human CD90 Identifies Th17/Tc17 T Cell Subsets That Are Depleted in HIV-Infected Patients. J. Immunol. 2012, 188, 981–991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, L.; Finnegan, C.M.; Kish-Catalone, T.; Blumenthal, R.; Garzino-Demo, P.; La Terra Maggiore, G.M.; Berrone, S.; Kleinman, C.; Wu, Z.; Abdelwahab, S.; et al. Human Beta-Defensins Suppress Human Immunodeficiency Virus Infection: Potential Role in Mucosal Protection. J. Virol. 2005, 79, 14318–14329. [Google Scholar] [CrossRef] [Green Version]
- Unutmaz, D.; Xiang, W.; Sunshine, M.J.; Campbell, J.; Butcher, E.; Littman, D.R. The Primate Lentiviral Receptor Bonzo/STRL33 Is Coordinately Regulated with CCR5 and Its Expression Pattern Is Conserved between Human and Mouse. J. Immunol. 2000, 165, 3284–3292. [Google Scholar] [CrossRef] [Green Version]
- Ebert, L.M.; McColl, S.R. Up-Regulation of CCR5 and CCR6 on Distinct Subpopulations of Antigen-Activated CD4+ T Lymphocytes. J. Immunol. 2002, 168, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Lecureuil, C.; Combadière, B.; Mazoyer, E.; Bonduelle, O.; Samri, A.; Autran, B.; Debré, P.; Combadière, C. Trapping and Apoptosis of Novel Subsets of Memory T Lymphocytes Expressing CCR6 in the Spleen of HIV-Infected Patients. Blood 2007, 109, 3649–3657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Q.; Estes, J.D.; Schlievert, P.M.; Duan, L.; Brosnahan, A.J.; Southern, P.J.; Reilly, C.S.; Peterson, M.L.; Schultz-Darken, N.; Brunner, K.G.; et al. Glycerol Monolaurate Prevents Mucosal SIV Transmission. Nature 2009, 458, 1034–1038. [Google Scholar] [CrossRef]
- Cosmi, L.; De Palma, R.; Santarlasci, V.; Maggi, L.; Capone, M.; Frosali, F.; Rodolico, G.; Querci, V.; Abbate, G.; Angeli, R.; et al. Human Interleukin 17-Producing Cells Originate from a CD161+ CD4+ T Cell Precursor. J. Exp. Med. 2008, 205, 1903–1916. [Google Scholar] [CrossRef]
- Acosta-Rodriguez, E.V.; Rivino, L.; Geginat, J.; Jarrossay, D.; Gattorno, M.; Lanzavecchia, A.; Sallusto, F.; Napolitani, G. Surface Phenotype and Antigenic Specificity of Human Interleukin 17-Producing T Helper Memory Cells. Nat. Immunol. 2007, 8, 639–646. [Google Scholar] [CrossRef]
- Singh, S.P.; Zhang, H.H.; Foley, J.F.; Hedrick, M.N.; Farber, J.M. Human T Cells That Are Able to Produce IL-17 Express the Chemokine Receptor CCR6. J. Immunol. 2008, 180, 214–221. [Google Scholar] [CrossRef]
- Cecchinato, V.; Trindade, C.J.; Laurence, A.; Heraud, J.M.; Brenchley, J.M.; Ferrari, M.G.; Zaffiri, L.; Tryniszewska, E.; Tsai, W.P.; Vaccari, M.; et al. Altered Balance between Th17 and Th1 Cells at Mucosal Sites Predicts AIDS Progression in Simian Immunodeficiency Virus-Infected Macaques. Mucosal. Immunol. 2008, 1, 279–288. [Google Scholar] [CrossRef]
- Macal, M.; Sankaran, S.; Chun, T.W.; Reay, E.; Flamm, J.; Prindiville, T.J.; Dandekar, S. Effective CD4+ T-Cell Restoration in Gut-Associated Lymphoid Tissue of HIV-Infected Patients Is Associated with Enhanced Th17 Cells And Polyfunctional HIV-Specific T-Cell Responses. Mucosal. Immunol. 2008, 1, 475–488. [Google Scholar] [CrossRef]
- Hartigan-O’Connor, D.J.; Abel, K.; Van Rompay, K.K.; Kanwar, B.; McCune, J.M. SIV Replication in the Infected Rhesus Macaque Is Limited by the Size of the Preexisting TH17 Cell Compartment. Sci. Transl. Med. 2012, 4, 136ra69. [Google Scholar] [CrossRef] [Green Version]
- Ndhlovu, L.C.; Chapman, J.M.; Jha, A.R.; Snyder-Cappione, J.E.; Pagán, M.; Leal, F.E.; Boland, B.S.; Norris, P.J.; Rosenberg, M.G.; Nixon, D.F. Suppression of HIV-1 Plasma Viral Load below Detection Preserves IL-17 Producing T Cells in HIV-1 Infection. Aids 2008, 22, 990–992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salgado, M.; Rallón, N.I.; Rodés, B.; López, M.; Soriano, V.; Benito, J.M. Long-Term Non-Progressors Display a Greater Number of Th17 Cells Than HIV-Infected Typical Progressors. Clin. Immunol. 2011, 139, 110–114. [Google Scholar] [CrossRef]
- Ciccone, E.J.; Greenwald, J.H.; Lee, P.I.; Biancotto, A.; Read, S.W.; Yao, M.A.; Hodge, J.N.; Thompson, W.L.; Kovacs, S.B.; Chairez, C.L.; et al. CD4+ T Cells, Including Th17 and Cycling Subsets, Are Intact in the Gut Mucosa of HIV-1-Infected Long-Term Nonprogressors. J. Virol. 2011, 85, 5880–5888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brandt, L.; Benfield, T.; Mens, H.; Clausen, L.N.; Katzenstein, T.L.; Fomsgaard, A.; Karlsson, I. Low Level of Regulatory T Cells and Maintenance of Balance between Regulatory T Cells and TH17 Cells in HIV-1-Infected Elite Controllers. J. Acquir. Immune Defic. Syndr. 2011, 57, 101–108. [Google Scholar] [CrossRef]
- Li, D.; Chen, J.; Jia, M.; Hong, K.; Ruan, Y.; Liang, H.; Liu, S.; Zhang, X.; Zhao, H.; Peng, H.; et al. Loss of Balance between T Helper Type 17 and Regulatory T Cells in Chronic Human Immunodeficiency Virus Infection. Clin. Exp. Immunol. 2011, 165, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Abdelwahab, S.F.; Lewis, G.K.; Garzino-Demo, A. Recall Antigen Activation Induces Prompt Release of CCR5 Ligands from PBMC: Implication in Memory Responses and Immunization. Int. Immunol. 2004, 16, 1623–1631. [Google Scholar] [CrossRef]
- Liao, F.; Rabin, R.L.; Smith, C.S.; Sharma, G.; Nutman, T.B.; Farber, J.M. CC-Chemokine Receptor 6 Is Expressed on Diverse Memory Subsets of T Cells and Determines Responsiveness to Macrophage Inflammatory Protein 3 Alpha. J. Immunol. 1999, 162, 186–194. [Google Scholar] [PubMed]
- Liao, F.; Alderson, R.; Su, J.; Ullrich, S.J.; Kreider, B.L.; Farber, J.M. STRL22 Is a Receptor for the CC Chemokine MIP-3alpha. Biochem. Biophys. Res. Commun. 1997, 236, 212–217. [Google Scholar] [CrossRef] [Green Version]
- Baba, M.; Imai, T.; Nishimura, M.; Kakizaki, M.; Takagi, S.; Hieshima, K.; Nomiyama, H.; Yoshie, O. Identification of CCR6, the specific receptor for a novel lymphocyte-directed CC chemokine LARC. J. Biol. Chem. 1997, 272, 14893–14898. [Google Scholar] [CrossRef] [Green Version]
- Krzysiek, R.; Lefevre, E.A.; Bernard, J.; Foussat, A.; Galanaud, P.; Louache, F.; Richard, Y. Regulation of CCR6 Chemokine Receptor Expression and Responsiveness to Macrophage Inflammatory Protein-3alpha/CCL20 in Human B Cells. Blood 2000, 96, 2338–2345. [Google Scholar] [CrossRef] [PubMed]
- Fitzhugh, D.J.; Naik, S.; Caughman, S.W.; Hwang, S.T. Cutting Edge: C-C Chemokine Receptor 6 Is Essential for Arrest of a Subset of Memory T Cells on Activated Dermal Microvascular Endothelial Cells under Physiologic Flow Conditions in vitro. J. Immunol. 2000, 165, 6677–6681. [Google Scholar] [CrossRef] [Green Version]
- Kleinewietfeld, M.; Puentes, F.; Borsellino, G.; Battistini, L.; Rötzschke, O.; Falk, K. CCR6 Expression Defines Regulatory Effector/Memory-like Cells within the CD25(+) CD4+ T-Cell Subset. Blood 2005, 105, 2877–2886. [Google Scholar] [CrossRef]
- Salazar-Gonzalez, R.M.; Niess, J.H.; Zammit, D.J.; Ravindran, R.; Srinivasan, A.; Maxwell, J.R.; Stoklasek, T.; Yadav, R.; Williams, I.R.; Gu, X.; et al. CCR6-Mediated Dendritic Cell Activation of Pathogen-Specific T Cells in Peyer’s Patches. Immunity 2006, 24, 623–632. [Google Scholar] [CrossRef] [Green Version]
- Le Borgne, M.; Etchart, N.; Goubier, A.; Lira, S.A.; Sirard, J.C.; Van Rooijen, N.; Caux, C.; Aït-Yahia, S.; Vicari, A.; Kaiserlian, D.; et al. Dendritic Cells Rapidly Recruited into Epithelial Tissues Via CCR6/CCL20 Are Responsible for CD8+ T Cell Crosspriming in vivo. Immunity 2006, 24, 191–201. [Google Scholar] [CrossRef]
- Liao, F.; Shirakawa, A.K.; Foley, J.F.; Rabin, R.L.; Farber, J.M. Human B Cells Become Highly Responsive to Macrophage-Inflammatory Protein-3 Alpha/CC Chemokine Ligand-20 after Cellular Activation without Changes in CCR6 Expression or Ligand Binding. J. Immunol. 2002, 168, 4871–4880. [Google Scholar] [CrossRef] [Green Version]
- Kohler, R.E.; Caon, A.C.; Willenborg, D.O.; Clark-Lewis, I.; McColl, S.R. A Role for Macrophage Inflammatory Protein-3 Alpha/CC Chemokine Ligand 20 in Immune Priming during T Cell-Mediated Inflammation of the Central Nervous System. J. Immunol. 2003, 170, 6298–6306. [Google Scholar] [CrossRef] [Green Version]
- Walker, B.; McMichael, A. The T Cell Response to HIV. Cold Spring Harb. Perspect. Med. 2012, 2, a007054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aziz, N.; Detels, R.; Chang, L.C.; Butch, A.W. Macrophage Inflammatory Protein-3 Alpha (MIP-3alpha)/CCL20 in HIV-1-Infected Individuals. J. AIDS Clin. Res. 2016, 7, 587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fontaine, J.; Poudrier, J.; Roger, M. Short Communication: Persistence of High Blood Levels of the Chemokines CCL2, CCL19, and CCL20 during the Course of HIV Infection. AIDS Res. Hum. Retrovir. 2011, 27, 655–657. [Google Scholar] [CrossRef] [PubMed]
- Caruso, M.P.; Falivene, J.; Holgado, M.P.; Zurita, D.H.; Laufer, N.; Castro, C.; Nico, Á.; Maeto, C.; Salido, J.; Pérez, H.; et al. Impact of HIV-ART on the Restoration of Th17 and Treg Cells in Blood and Female Genital Mucosa. Sci. Rep. 2019, 9, 1978. [Google Scholar] [CrossRef]
- Fernandes, S.M.; Pires, A.R.; Matoso, P.; Ferreira, C.; Nunes-Cabaco, H.; Correia, L.; Valadas, E.; Poças, J.; Pacheco, P.; Veiga-Fernandes, H.; et al. HIV-2 Infection Is Associated with Preserved GALT Homeostasis and Epithelial Integrity Despite Ongoing Mucosal Viral Replication. Mucosal. Immunol. 2018, 11, 236–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Douek, D.C.; Brenchley, J.M.; Betts, M.R.; Ambrozak, D.R.; Hill, B.J.; Okamoto, Y.; Casazza, J.P.; Kuruppu, J.; Kunstman, K.; Wolinsky, S.; et al. HIV Preferentially Infects HIV-Specific CD4+ T Cells. Nature 2002, 417, 95–98. [Google Scholar] [CrossRef] [PubMed]
- Richieri, S.P.; Bartholomew, R.; Aloia, R.C.; Savary, J.; Gore, R.; Holt, J.; Ferre, F.; Musil, R.; Tian, H.R.; Trauger, R.; et al. Characterization of Highly Purified, Inactivated HIV-1 Particles Isolated by Anion Exchange Chromatography. Vaccine 1998, 16, 119–129. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, F.; Sun, L.; Lafferty, M.K.; Margolick, J.B.; Garzino-Demo, A. Decreased MIP-3α Production from Antigen-Activated PBMCs in Symptomatic HIV-Infected Subjects. Pathogens 2022, 11, 7. https://doi.org/10.3390/pathogens11010007
Zhang F, Sun L, Lafferty MK, Margolick JB, Garzino-Demo A. Decreased MIP-3α Production from Antigen-Activated PBMCs in Symptomatic HIV-Infected Subjects. Pathogens. 2022; 11(1):7. https://doi.org/10.3390/pathogens11010007
Chicago/Turabian StyleZhang, Fuchun, Lingling Sun, Mark K. Lafferty, Joseph B. Margolick, and Alfredo Garzino-Demo. 2022. "Decreased MIP-3α Production from Antigen-Activated PBMCs in Symptomatic HIV-Infected Subjects" Pathogens 11, no. 1: 7. https://doi.org/10.3390/pathogens11010007
APA StyleZhang, F., Sun, L., Lafferty, M. K., Margolick, J. B., & Garzino-Demo, A. (2022). Decreased MIP-3α Production from Antigen-Activated PBMCs in Symptomatic HIV-Infected Subjects. Pathogens, 11(1), 7. https://doi.org/10.3390/pathogens11010007