CC Genotype of GNAS c.393C>T (rs7121) Polymorphism Has a Protective Effect against Development of BK Viremia and BKV-Associated Nephropathy after Renal Transplant
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. HLA Typing of Recipients and Donors
2.3. HLA Antibody Detection and Specification
2.4. GNAS Genotyping
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics of the Study Population
3.2. Recipients with GNAS CC Genotype Are at Lower Risk of BK Viremia
3.3. GNAS C393T CC Genotype Is a Protective Factor against BKV-Associated Nephropathy
3.4. High-Dose BK Viremia Is the Main Risk Factor for the Progression to BKV-Associated Nephropathy and Graft Loss among Recipients with BK Viremia
3.5. No Significant Association between GNAS Genotypes and Rejection Events or Formation of De Novo Anti-HLA DSAs after Renal Transplant
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABMR | antibody-mediated rejection |
Anti-HLA | anti-human leukocyte antigen |
ATG | anti-thymocyte globulin |
BKV | BK virus |
cAMP | cyclic adenosine monophosphate |
CDC | complement-dependent cytotoxicity |
CI | confidence interval |
CKD-EPI | Chronic Kidney Disease Epidemiology Collaboration |
CMV | cytomegalovirus |
D | donor |
DNA | Deoxyribonucleic Acid |
DSA | donor-specific antibody |
DTT | dithiothreitol |
EBV | Epstein–Barr virus |
ECG | electrocardiogram |
EDTA | ethylenediaminetetraacetic acid |
eGFR | estimated glomerular filtration rate |
ESRD | end-stage renal disease |
GNAS | guanine nucleotide-binding protein, alpha stimulating |
Gαs | alpha-subunit of the stimulatory G-protein |
HEV | hepatitis E virus |
HLA | human leukocyte antigen |
HSV | herpes-simplex virus |
HUS | hemolytic uremic syndrome |
HWE | Hardy–Weinberg equilibrium |
IgG | immunoglobulin G |
IL-2 | interleukin-2 |
KDIGO | Kidney Disease Improving Global Outcomes |
MFI | mean fluorescence intensity |
MM | mismatch |
MMF | mycophenolate mofetil |
MPA | mycophenolic acid |
mTOR | mammalian target of rapamycin |
OR | odds ratio |
PCR | polymerase chain reaction |
PRA | panel-reactive antibodies |
R | recipient |
RFLP | restriction fragment length polymorphism |
SAB | single antigen bead |
TCMR | T cell-mediated rejection |
Tx | transplantation |
VZV | Varicella-zoster virus |
References
- Zerbino, D.R.; Achuthan, P.; Akanni, W.; Amode, M.R.; Barrell, D.; Bhai, J.; Billis, K.; Cummins, C.; Gall, A.; Girón, C.G.; et al. Ensembl 2018. Nucleic Acids Res. 2018, 46, D754–D761. [Google Scholar] [CrossRef] [PubMed]
- Turan, S.; Bastepe, M. GNAS spectrum of disorders. Curr. Osteoporos. Rep. 2015, 13, 146–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weinstein, L.S.; Liu, J.; Sakamoto, A.; Xie, T.; Chen, M. Minireview: GNAS: Normal and Abnormal Functions. Endocrinology 2004, 145, 5459–5464. [Google Scholar] [CrossRef] [PubMed]
- Klenke, S.; Siffert, W. SNPs in genes encoding G proteins in pharmacogenetics. Pharmacogenomics 2011, 12, 633–654. [Google Scholar] [CrossRef] [PubMed]
- Kozasa, T.; Itoh, H.; Tsukamoto, T.; Kaziro, Y. Isolation and characterization of the human Gs alpha gene. Proc. Natl. Acad. Sci. USA 1988, 85, 2081–2085. [Google Scholar] [CrossRef] [Green Version]
- Frey, U.H.; Alakus, H.; Wohlschlaeger, J.; Schmitz, K.J.; Winde, G.; van Calker, H.G.; Jöckel, K.-H.; Siffert, W.; Schmid, K.W. GNAS1 T393C Polymorphism and Survival in Patients with Sporadic Colorectal Cancer. Clin. Cancer Res. 2005, 11, 5071–5077. [Google Scholar] [CrossRef] [Green Version]
- Frey, U.H.; Eisenhardt, A.; Lümmen, G.; Rübben, H.; Jöckel, K.-H.; Schmid, K.W.; Siffert, W. The T393C polymorphism of the G alpha s gene (GNAS1) is a novel prognostic marker in bladder cancer. Cancer Epidemiol. Biomark. Prev. 2005, 14, 871–877. [Google Scholar] [CrossRef] [Green Version]
- Möhlendick, B.; Schmid, K.W.; Siffert, W. The GNAS SNP c.393C>T (rs7121) as a marker for disease progression and survival in cancer. Pharmacogenomics 2019, 20, 553–562. [Google Scholar] [CrossRef]
- Alakus, H.; Mönig, S.P.; Warnecke-Eberz, U.; Alakus, G.; Winde, G.; Drebber, U.; Schmitz, K.J.; Schmid, K.W.; Riemann, K.; Siffert, W.; et al. Association of the GNAS1 T393C polymorphism with tumorstage and survival in gastric cancer. World J. Gastroenterol. 2009, 15, 6061–6067. [Google Scholar] [CrossRef] [Green Version]
- Hong, W.; Lin, B.; Zhang, B.; Mao, W.; Zhang, Y. Association between GNAS1 T393C polymorphism and therapeutic efficacy of tyrosine kinase inhibitor in pretreated advanced non-small cell lung cancer with unknown EGFR mutation status. Zhongguo Fei Ai Za Zhi 2014, 17, 321–326. [Google Scholar]
- Gong, H.-Y.; Hu, W.-G.; Wang, X.-L.; Zhu, F.; Song, Q.-B. TT genotype of GNAS1 T393C polymorphism predicts better outcome of advanced non-small cell lung cancer patients. World J. Gastrointest. Oncol. 2014, 6, 444–449. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, K.J.; Lang, H.; Frey, U.H.; Sotiropoulos, G.C.; Wohlschlaeger, J.; Reis, H.; Takeda, A.; Siffert, W.; Schmid, K.W.; Baba, H.A. GNAS1 T393C Polymorphism Is Associated with Clinical Course in Patients with Intrahepatic Cholangiocarcinoma. Neoplasia 2007, 9, 159–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otterbach, F.; Callies, R.; Frey, U.H.; Schmitz, K.J.; Wreczycki, C.; Kimmig, R.; Siffert, W.; Schmid, K.W. The T393C polymorphism in the gene GNAS1 of G protein is associated with survival of patients with invasive breast carcinoma. Breast Cancer Res. Treat. 2006, 105, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Alakus, H.; Warnecke-Eberz, U.; Bollschweiler, E.; Mönig, S.P.; Vallböhmer, D.; Brabender, J.; Drebber, U.E.; Baldus, S.; Riemann, K.; Siffert, W.; et al. GNAS1 T393C polymorphism is associated with histopathological response to neoadjuvant radiochemotherapy in esophageal cancer. Pharm. J. 2009, 9, 202–207. [Google Scholar] [CrossRef] [Green Version]
- Vashist, Y.K.; Kutup, A.; Musici, S.; Yekebas, E.F.; Mina, S.; Uzunoglu, G.; Zehler, O.; Koenig, A.; Cataldegirmen, G.; Bockhorn, M.; et al. The GNAS1 T393C single nucleotide polymorphism predicts the natural postoperative course of complete resected esophageal cancer. Cell Oncol. 2011, 34, 281–288. [Google Scholar] [CrossRef]
- Jia, H.; Hingorani, A.D.; Sharma, P.; Hopper, R.; Dickerson, C.; Trutwein, D.; Lloyd, D.D.; Brown, M.J. Association of the G(s)alpha gene with essential hypertension and response to beta-blockade. Hypertension 1999, 34, 8–14. [Google Scholar] [CrossRef] [Green Version]
- Wieneke, H.; Svendsen, J.H.; Lande, J.; Spencker, S.; Martinez, J.G.; Strohmer, B.; Toivonen, L.; Le Marec, H.; Garcia-Fernandez, F.J.; Corrado, D.; et al. Polymorphisms in the GNAS Gene as Predictors of Ventricular Tachyarrhythmias and Sudden Cardiac Death: Results From the DISCOVERY Trial and Oregon Sudden Unexpected Death Study. J. Am. Heart Assoc. 2016, 5, e003905. [Google Scholar] [CrossRef] [Green Version]
- Bogacz, A.; Wolek, M.; Sieńko, J.; Czerny, B.; Machaliński, B.; Olbromski, P.; Kotowski, M. Influence of TGFB1 and CTLA4 polymorphisms on calcineurin inhibitors dose and risk of acute rejection in renal transplantation. Sci. Rep. 2021, 11, 17531. [Google Scholar] [CrossRef]
- Neri, A.; Scalzotto, E.; Corradi, V.; Caprara, C.; Salin, A.; Cannone, M.; De Cal, M.; Romano, G.; Tulissi, P.; Cussigh, A.R.; et al. Acute rejection in kidney transplantation and the evaluation of associated polymorphisms (SNPs): The importance of sample size. Diagnosis 2019, 6, 287–295. [Google Scholar] [CrossRef]
- Li, W.; Zhou, T.; Lin, S.; Lin, W. Relationship between TGF-β1 + 869 T/C and + 915 G/C gene polymorphism and risk of acute rejection in renal transplantation recipients. BMC Med. Genet. 2019, 20, 113. [Google Scholar] [CrossRef]
- Cargnin, S.; Galli, U.; Lee, K.S.; Shin, J.I.; Terrazzino, S. Gene polymorphisms and risk of acute renal graft rejection: A field synopsis of meta-analyses and genome-wide association studies. Transplant. Rev. 2020, 34, 100548. [Google Scholar] [CrossRef] [PubMed]
- Farfel, Z.; Bourne, H.R.; Iiri, T. The Expanding Spectrum of G Protein Diseases. N. Engl. J. Med. 1999, 340, 1012–1020. [Google Scholar] [CrossRef] [PubMed]
- Frey, U.H.; Lieb, W.; Erdmann, J.; Savidou, D.; Heusch, G.; Leineweber, K.; Jakob, H.; Hense, H.-W.; Löwel, H.; Brockmeyer, N.H.; et al. Characterization of the GNAQ promoter and association of increased Gq expression with cardiac hypertrophy in humans. Eur. Heart J. 2008, 29, 888–897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dorsam, R.T.; Gutkind, J.S. G-protein-coupled receptors and cancer. Nat. Cancer 2007, 7, 79–94. [Google Scholar] [CrossRef] [PubMed]
- Landis, C.A.; Masters, S.B.; Spada, A.; Pace, A.M.; Bourne, H.R.; Vallar, L. GTPase inhibiting mutations activate the α chain of Gs and stimulate adenylyl cyclase in human pituitary tumours. Nature 1989, 340, 692–696. [Google Scholar] [CrossRef] [PubMed]
- Forbes, S.A.; Beare, D.; Boutselakis, H.; Bamford, S.; Bindal, N.; Tate, J.; Cole, C.G.; Ward, S.; Dawson, E.; Ponting, L.; et al. COSMIC: Somatic cancer genetics at high-resolution. Nucleic Acids Res. 2017, 45, D777–D783. [Google Scholar] [CrossRef]
- Roufosse, C.; Simmonds, N.; Groningen, M.C.-V.; Haas, M.; Henriksen, K.J.; Horsfield, C.; Loupy, A.; Mengel, M.; Perkowska-Ptasińska, A.; Rabant, M.; et al. A 2018 Reference Guide to the Banff Classification of Renal Allograft Pathology. Transplantation 2018, 102, 1795–1814. [Google Scholar] [CrossRef]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A New Equation to Estimate Glomerular Filtration Rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- Rennert, H.; Jenkins, S.G.; Azurin, C.; Sipley, J. Evaluation of a BK virus viral load assay using the QIAGEN Artus BK Virus RG PCR test. J. Clin. Virol. 2012, 54, 260–264. [Google Scholar] [CrossRef]
- Kidney Disease: Improving Global Outcomes (KDIGO) Transplant Work Group. KDIGO clinical practice guideline for the care of kidney transplant recipients. Am. J. Transplant. 2009, 9 (Suppl. 3), S1–S155. [Google Scholar] [CrossRef]
- Hirsch, H.H.; Brennan, D.C.; Drachenberg, C.B.; Ginevri, F.; Gordon, J.; Limaye, A.P.; Mihatsch, M.J.; Nickeleit, V.; Ramos, E.; Randhawa, P.; et al. Polyomavirus-Associated Nephropathy in Renal Transplantation: Interdisciplinary Analyses and Recommendations. Transplantation 2005, 79, 1277–1286. [Google Scholar] [CrossRef] [PubMed]
- Drachenberg, C.B.; Papadimitriou, J.C.; Hirsch, H.H.; Wali, R.; Crowder, C.; Nogueira, J.; Cangro, C.B.; Mendley, S.; Mian, A.; Ramos, E. Histological Patterns of Polyomavirus Nephropathy: Correlation with Graft Outcome and Viral Load. Am. J. Transplant. 2004, 4, 2082–2092. [Google Scholar] [CrossRef] [PubMed]
- Heinemann, F.M. HLA Genotyping and Antibody Characterization using the LuminexTM Multiplex Technology. Transfus. Med. Hemotherapy 2009, 36, 273–278. [Google Scholar] [CrossRef] [Green Version]
- Histocompatibility Testing. Eurotransplant Manual 2020, Version 4.6. Chapter 10. Available online: www.eurotransplant.org/patients/eurotransplant-manual. (accessed on 16 August 2022).
- Ziemann, M.; Heßler, N.; König, I.; Lachmann, N.; Dick, A.; Ditt, V.; Budde, K.; Reinke, P.; Eisenberger, U.; Suwelack, B.; et al. Unacceptable human leucocyte antigens for organ offers in the era of organ shortage: Influence on waiting time before kidney transplantation. Nephrol. Dial. Transplant. 2017, 32, 880–889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tait, B.D.; Süsal, C.; Gebel, H.M.; Nickerson, P.W.; Zachary, A.A.; Claas, F.H.; Reed, E.F.; Bray, R.A.; Campbell, P.; Chapman, J.R.; et al. Consensus Guidelines on the Testing and Clinical Management Issues Associated With HLA and Non-HLA Antibodies in Transplantation. Transplantation 2013, 95, 19–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mattera, R.; Codina, J.; Crozat, A.; Kidd, V.; Woo, S.L.; Birnbaumer, L. Identification by molecular cloning of two forms of the α-subunit of the human liver stimulatory (Gs) regulatory component of adenylyl cyclase. FEBS Lett. 1986, 206, 36–42. [Google Scholar] [CrossRef] [Green Version]
- Purighalla, R.; Shapiro, R.; McCauley, J.; Randhawa, P. BK virus infection in a kidney allograft diagnosed by needle biopsy. Am. J. Kidney Dis. 1995, 26, 671–673. [Google Scholar] [CrossRef]
- Funahashi, Y. BK Virus-Associated Nephropathy after Renal Transplantation. Pathogens 2021, 10, 150. [Google Scholar] [CrossRef]
- Scadden, J.R.; Sharif, A.; Skordilis, K.; Borrows, R. Polyoma virus nephropathy in kidney transplantation. World J. Transplant 2017, 7, 329–338. [Google Scholar] [CrossRef]
- Chong, S.; Antoni, M.; Macdonald, A.; Reeves, M.; Harber, M.; Magee, C.N. BK virus: Current understanding of pathogenicity and clinical disease in transplantation. Rev. Med. Virol. 2019, 29, e2044. [Google Scholar] [CrossRef]
- Drachenberg, C.B.; Hirsch, H.H.; Papadimitriou, J.C.; Gosert, R.; Wali, R.K.; Munivenkatappa, R.; Nogueira, J.; Cangro, C.B.; Haririan, A.; Mendley, S.; et al. Polyomavirus BK Versus JC Replication and Nephropathy in Renal Transplant Recipients: A Prospective Evaluation. Transplantation 2007, 84, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Elfadawy, N.; Flechner, S.M.; Schold, J.D.; Srinivas, T.R.; Poggio, E.; Fatica, R.; Avery, R.; Mossad, S.B. Transient versus Persistent BK Viremia and Long-Term Outcomes after Kidney and Kidney–Pancreas Transplantation. Clin. J. Am. Soc. Nephrol. 2014, 9, 553–561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korth, J.; Widera, M.; Dolff, S.; Guberina, H.; Bienholz, A.; Brinkhoff, A.; Anastasiou, O.E.; Kribben, A.; Dittmer, U.; Verheyen, J.; et al. Impact of low-level BK polyomavirus viremia on intermediate-term renal allograft function. Transpl. Infect. Dis. 2017, 20, e12817. [Google Scholar] [CrossRef] [PubMed]
- Mengel, M.; Marwedel, M.; Radermacher, J.; Eden, G.; Schwarz, A.; Haller, H.; Kreipe, H. Incidence of polyomavirus-nephropathy in renal allografts: Influence of modern immunosuppressive drugs. Nephrol. Dial. Transplant. 2003, 18, 1190–1196. [Google Scholar] [CrossRef] [Green Version]
- Mallat, S.G.; Tanios, B.Y.; Itani, H.S.; Lotfi, T.; McMullan, C.; Gabardi, S.; Akl, E.A.; Azzi, J.R. CMV and BKPyV Infections in Renal Transplant Recipients Receiving an mTOR Inhibitor–Based Regimen Versus a CNI-Based Regimen: A Systematic Review and Meta-Analysis of Randomized, Controlled Trials. Clin. J. Am. Soc. Nephrol. 2017, 12, 1321–1336. [Google Scholar] [CrossRef] [Green Version]
- Binet, I.; Nickeleit, V.; Hirsch, H.H.; Prince, O.; Dalquen, P.; Gudat, F.; Mihatsch, M.; Thiel, G. Polyomavirus disease under new immunosuppressive drugs: A cause of renal graft dysfunction and graft loss. Transplantation 1999, 67, 918–922. [Google Scholar] [CrossRef] [Green Version]
- Yu, M.; Liu, M.; Zhang, W.; Ming, Y. Pharmacokinetics, Pharmacodynamics and Pharmacogenetics of Tacrolimus in Kidney Transplantation. Curr. Drug Metab. 2018, 19, 513–522. [Google Scholar] [CrossRef]
- Chakrabarti, K.; Frame, D.; Al Abbas, M.; McCune, W.J. The use of mycophenolate mofetil area under the curve. Curr. Opin. Rheumatol. 2021, 33, 221–232. [Google Scholar] [CrossRef]
- Gupta, H.; Sakharwade, S.C.; Angural, A.; Kotambail, A.; Bhat, G.K.; Hande, M.H.; D’Souza, S.C.; Rao, P.; Kumari, V.; Saadi, A.V.; et al. Evidence for genetic linkage between a polymorphism in the GNAS gene and malaria in South Indian population. Acta Trop. 2013, 128, 571–577. [Google Scholar] [CrossRef]
- Auburn, S.; Diakite, M.; Fry, A.E.; Ghansah, A.; Campino, S.; Richardson, A.; Jallow, M.; Sisay-Joof, F.; Pinder, M.; Griffiths, M.J.; et al. Association of the GNAS locus with severe malaria. Qual. Life Res. 2008, 124, 499–506. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Cheng, D.; Wen, J.; Ni, X.; Li, X.; Xie, K.; Chen, J. The immunophenotyping of different stages of BK virus allograft nephropathy. Ren. Fail. 2019, 41, 855–861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Binggeli, S.; Egli, A.; Schaub, S.; Binet, I.; Mayr, M.; Steiger, J.; Hirsch, H.H. Polyomavirus BK-Specific Cellular Immune Response to VP1 and Large T-Antigen in Kidney Transplant Recipients. Am. J. Transplant. 2007, 7, 1131–1139. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, T.; Adam, C.; Hirsch, H.H.; Janssen, M.W.W.; Wolf, M.; Dirks, J.; Kardas, P.; Ahlenstiel-Grunow, T.; Pape, L.; Rohrer, T.; et al. BK Polyomavirus-Specific Cellular Immune Responses Are Age-Dependent and Strongly Correlate With Phases of Virus Replication. Am. J. Transplant. 2014, 14, 1334–1345. [Google Scholar] [CrossRef]
- Li, X.; Murray, F.; Koide, N.; Goldstone, J.; Dann, S.M.; Chen, J.; Bertin, S.; Fu, G.; Weinstein, L.S.; Chen, M.; et al. Divergent requirement for Gαs and cAMP in the differentiation and inflammatory profile of distinct mouse Th subsets. J. Clin. Investig. 2012, 122, 963–973. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Kim, T.H.; Murray, F.; Li, X.; Choi, S.S.; Broide, D.H.; Corr, M.; Lee, J.; Webster, N.J.G.; Insel, P.A.; et al. Cyclic AMP concentrations in dendritic cells induce and regulate Th2 immunity and allergic asthma. Proc. Natl. Acad. Sci. USA 2015, 112, 1529–1534. [Google Scholar] [CrossRef] [Green Version]
- Beige, J.; Engeli, S.; Ringel, J.; Offermann, G.; Distler, A.; Sharma, A.M. Donor G protein beta3 subunit 825TT genotype is associated with reduced kidney allograft survival. J. Am. Soc. Nephrol. 1999, 10, 1717–1721. [Google Scholar] [CrossRef] [PubMed]
χ2 | OR | p Value | ||||
---|---|---|---|---|---|---|
All Recipients n = 436 | GNAS TT/TC n = 319 | GNAS CC n = 117 | ||||
Recipients | ||||||
Age in years, median (range) | 53 (18–81) | 53 (18–81) | 52 (18–79) | 0.49 | ||
Women, n (%) | 183 (42) | 132 (41) | 51 (44) | 0.17 | 0.91 | 0.68 |
Previous transplants, n (%) | 52 (12) | 41 (13) | 11 (9) | 0.97 | 1.42 | 0.32 |
CMV status positive, n (%) | 270 (62) | 204 (64) | 66 (56) | 2.06 | 1.37 | 0.15 |
CMV high risk (D+/R−), n (%) | 75 (17) | 51 (16) | 24 (21) | 1.23 | 0.74 | 0.27 |
PRA, n (%) | 37 (8) | 24 (8) | 13 (11) | 1.42 | 0.65 | 0.23 |
Preformed anti-HLA antibodies, n (%) | 163 (37) | 114 (36) | 49 (42) | 1.38 | 0.77 | 0.24 |
Class I, n (%) | 89 (20) | 61 (19) | 28 (24) | 1.22 | 0.75 | 0.27 |
Class II, n (%) | 27 (6) | 18 (6) | 9 (8) | 0.62 | 0.72 | 0.43 |
Classes I and II, n (%) | 47 (11) | 35 (11) | 12 (10) | 0.05 | 1.08 | 0.83 |
Preformed anti-HLA DSAs, n (%) | 38 (9) | 31 (10) | 7 (6) | 1.50 | 1.69 | 0.22 |
Rest diuresis in ml, median (range) | 500 (0–3000) | 500 (0–3000) | 500 (0–2800) | 0.28 | ||
Delayed graft function, n (%) | 99 (23) | 68 (21) | 31 (26) | 1.31 | 0.75 | 0.25 |
Cold ischemia time in minutes, median (range) | 660 (58–1869) | 660 (59–1869) | 649 (58–1711) | 0.67 | ||
Warm ischemia time in minutes, median (range) | 26 (11–82) | 62 (11–82) | 25 (11–75) | 0.93 | ||
Donor | ||||||
Deceased donors, n (%) | 313 (72) | 227 (71) | 86 (74) | 0.23 | 0.89 | 0.63 |
Age in years, median (range) | 52 (0–82) | 52 (3–82) | 51 (0–85) | 0.63 | ||
Women, n (%) | 203 (47) | 145 (45) | 58 (50) | 0.58 | 0.85 | 0.45 |
CMV status, +/−, n (%) | 245 (56) | 184 (58) | 61 (52) | 1.07 | 1.25 | 0.30 |
ABO-incompatible transplant, n (%) | 33 (8) | 26 (8) | 7 (6) | 0.57 | 1.39 | 0.45 |
Immunosuppression at transplant | ||||||
IL-2 receptor antagonist, n (%) | 405 (93) | 298 (93) | 107 (91) | 0.50 | 1.33 | 0.48 |
ATG, n (%) | 23 (5) | 14 (4) | 9 (8) | 1.87 | 0.55 | 0.17 |
Calcineurin inhibitor, n (%) | 436 (100) | 319 (100) | 117 (100) | |||
Tacrolimus, n (%) | 402 (92) | 296 (93) | 106 (91) | 0.57 | 1.34 | 0.45 |
Tacrolimus extended-release formulation, n (%) | 26 (6) | 19 (6) | 7 (6) | 0.0001 | 1 | 0.99 |
Cyclosporine A, n (%) | 34 (8) | 23 (7) | 11 (9) | 0.57 | 0.75 | 0.45 |
mTOR inhibitor, n (%) | 73 (17) | 55 (17) | 18 (15) | 0.21 | 1.15 | 0.65 |
MMF/MPA, n (%) | 362 (83) | 264 (83) | 98 (84) | 0.06 | 0.93 | 0.80 |
Steroids, n (%) | 436 (100) | 319 (100) | 117 (100) | |||
Rituximab, n (%) | 5 (1) | 4 (1) | 1 (1) | 0.12 | 1.47 | 0.73 |
Other, n (%) | 3 (1) | 2 (1) | 1 (1) | 0.06 | 0.73 | 0.80 |
HLA mismatches | ||||||
MM (A/B), n (%) | 362 (83) | 268 (84) | 94 (80) | 0.82 | 1.29 | 0.37 |
HLA class I MM (A/B): 1–2, n (%) | 214 (49) | 161 (50) | 53 (45) | 0.92 | 1.23 | 0.34 |
HLA class I MM (A/B): 3–4, n (%) | 148 (34) | 107 (34) | 41 (35) | 0.09 | 0.94 | 0.77 |
MM (DR), n (%) | 312 (72) | 226 (71) | 86 (74) | 0.30 | 0.88 | 0.59 |
HLA class II MM (DR): 1, n (%) | 206 (47) | 145 (45) | 61 (52) | 1.53 | 0.77 | 0.22 |
HLA class II MM (DR): 2, n (%) | 106 (24) | 81 (25) | 25 (21) | 0.75 | 1.25 | 0.39 |
Causes of renal failure | ||||||
1. Diabetic glomerulosclerosis, n (%) | 40 (9) | 30 (9) | 10 (9) | 0.08 | 1.11 | 0.78 |
2. Chronic glomerulonephritis, n (%) | 117 (27) | 88 (28) | 29 (25) | 0.34 | 1.16 | 0.56 |
3. Nephrosclerosis, n (%) | 58 (13) | 44 (14) | 14 (12) | 0.25 | 1.18 | 0.62 |
4. Polycystic kidney disease, n (%) | 66 (15) | 45 (14) | 21 (18) | 0.98 | 0.75 | 0.32 |
5. Tubulointerstitial nephritis, n (%) | 15 (3) | 11 (3) | 4 (3) | 0.0002 | 1.01 | 0.99 |
6. Congenital anomalies, n (%) | 39 (9) | 29 (9) | 10 (9) | 0.03 | 1.07 | 0.86 |
7. Autoimmune disease, n (%) | 18 (4) | 11 (3) | 7 (6) | 1.39 | 0.56 | 0.24 |
8. Amyloidosis, n (%) | 4 (1) | 4 (1) | 0 | 1.48 | 1.47 | 0.22 |
9. Reflux nephropathy/recurrent pyelonephritis, n (%) | 21 (5) | 13 (4) | 8 (7) | 1.43 | 0.58 | 0.23 |
10. HUS, n (%) | 8 (2) | 6 (2) | 2 (2) | 0.01 | 1.10 | 0.91 |
11. Other, n (%) | 50 (11) | 38 (12) | 12 (10) | 0.23 | 1.18 | 0.63 |
χ2 | OR | p Value | ||||
---|---|---|---|---|---|---|
All Recipients n = 436 | GNAS TT/TC n = 319 | GNAS CC n = 117 | ||||
Rejection Banff category 4, n (%) | 81 (19) | 56 (18) | 25 (21) | 0.82 | 0.78 | 0.36 |
Rejection Banff category 3, n (%) | 77 (18) | 62 (19) | 15 (13) | 2.58 | 1.64 | 0.11 |
Rejection Banff categories 3 and 4, n (%) | 137 (31) | 103 (32) | 34 (29) | 0.41 | 1.16 | 0.52 |
ABMR (Banff category 2), n (%) | 28 (6) | 19 (6) | 9 (8) | 0.43 | 0.76 | 0.51 |
Rejection Banff categories 2,3 and 4, n (%) | 155 (36) | 113 (35) | 42 (36) | 0.01 | 0.98 | 0.93 |
Allograft failure, n (%) | 52 (12) | 39 (12) | 13 (11) | 0.10 | 1.11 | 0.75 |
Decrease in eGFR, n (%) | 84 (19) | 59 (18) | 25 (21) | 0.45 | 0.84 | 0.50 |
de novo anti-HLA antibodies, n (%) | 117 (27) | 86 (27) | 31 (26) | 0.009 | 1.02 | 0.92 |
Class I, n (%) | 42 (10) | 26 (8) | 16 (14) | 3.00 | 0.56 | 0.08 |
Class II, n (%) | 42 (10) | 35 (11) | 7 (6) | 2.49 | 1.94 | 0.12 |
Classes I and II, n (%) | 33 (8) | 25 (8) | 8 (7) | 0.12 | 1,16 | 0.73 |
de novo anti HLA DSAs, n (%) | 51 (12) | 43 (13) | 8 (7) | 3.66 | 2.12 | 0.056 |
Class I, n (%) | 17 (4) | 16 (5) | 1 (1) | 3.96 | 6.13 | 0.05 |
Class II, n (%) | 24 (6) | 21 (7) | 3 (3) | 2.66 | 2.68 | 0.10 |
Classes I and II, n (%) | 10 (2) | 6 (2) | 4 (3) | 0.90 | 0.54 | 0.34 |
Infections | ||||||
CMV, n (%) | 162 (37) | 120 (38) | 42 (36) | 0.11 | 1.08 | 0.74 |
CMV disease, n (%) | 34 (8) | 21 (7) | 13 (11) | 2.44 | 0.56 | 0.12 |
BK viremia, n (%) | 101 (23) | 84 (26) | 17 (15) | 6.70 | 2.10 | 0.01 |
BKV-associated nephropathy, n (%) | 30 (7) | 27 (8) | 3 (3) | 4.65 | 3.51 | 0.03 |
HEV, n (%) | 11 (3) | 7 (2) | 4 (3) | 0.52 | 0.63 | 0.47 |
EBV reactivation, n (%) | 84 (19) | 68 (21) | 16 (14) | 3.21 | 1.71 | 0.07 |
Influenza A and B, n (%) | 19 (4) | 15 (5) | 4 (3) | 0.34 | 1.39 | 0.56 |
Norovirus, n (%) | 9 (2) | 5 (2) | 4 (3) | 1.45 | 0.45 | 0.23 |
HSV, n (%) | 6 (1) | 5 (2) | 1 (1) | 0.32 | 1.85 | 0.57 |
VZV/Zoster, n (%) | 11 (3) | 9 (3) | 2 (2) | 0.43 | 1.67 | 0.51 |
Pyelonephritis, n (%) | 122 (28) | 89 (28) | 33 (28) | 0.004 | 0.99 | 0.95 |
More than 1 episode, n (%) | 64 (15) | 46 (14) | 18 (15) | 0.06 | 0.93 | 0.8 |
Pneumonia, n (%) | 62 (14) | 49 (15) | 13 (11) | 1.27 | 1.45 | 0.26 |
More than 1 episode, n (%) | 21 (5) | 16 (5) | 5 (4) | 0.10 | 1.18 | 0.75 |
Sepsis, n (%) | 85 (19) | 60 (19) | 25 (21) | 0.36 | 0.85 | 0.55 |
More than 1 episode, n (%) | 21 (5) | 13 (4) | 8 (7) | 1.43 | 0.58 | 0.23 |
Recipients with BK Viremia n = 101 | Recipients without BK Viremia n = 335 | Univariate Relative Risk (95% CI) | p Value | Multivariate Relative Risk (95% CI) | p Value | |
---|---|---|---|---|---|---|
Variable | ||||||
Men, n (%) | 65 (64) | 188 (56) | 1.15 (0.95–1.35) | 0.14 | ||
Recipient age in years, median (range) | 53 (18–78) | 52 (18–81) | 0.49 | |||
Previous transplants, n (%) | 11 (11) | 41 (12) | 0.89 (0.47–1.63) | 0.71 | ||
Decrease in eGFR, n (%) | 28 (28) | 56 (17) | 1.66 (1.11–2.43) | 0.01 | 2.07 (1.18–3.63) | 0.01 |
ABO-incompatible transplant, n (%) | 6 (6) | 27 (8) | 0.74 (0.32–1.67) | 0.48 | ||
Rejections, n (%) | 45 (45) | 110 (33) | 1.36 (1.03–1.75) | 0.03 | 1.20 (0.71–2.03) | 0.49 |
de novo anti-HLA DSAs, n (%) | 10 (10) | 41 (12) | 0.81 (0.42–1.52) | 0.52 | ||
de novo anti-HLA, n (%) | 20 (20) | 97 (29) | 0.68 (0.44–1.03) | 0.07 | ||
Delayed graft function, n (%) | 19 (19) | 80 (24) | 0.79 (0.50–1.21) | 0.29 | ||
Cold ischemia time in minutes, mean (range) | 597 (70–1592) | 618 (58–1869) | 0.37 | |||
Deceased donation, n (%) | 72 (71) | 241 (72) | 0.99 (0.85–1.13) | 0.90 | ||
MM (A/B), n (%) | 84 (83) | 278 (83) | 1.00 (0.89–1.10) | 0.97 | ||
MM (DR), n (%) | 75 (74) | 237 (71) | 1.05 (0.91–1.19) | 0.49 | ||
GNAS CC genotype, n (%) | 17 (17) | 100 (30) | 0.55 (0.34–0.87) | 0.01 | 0.54 (0.30–0.97) | 0.04 |
Induction with rituximab, n (%) | 2 (2) | 3 (1) | 2.21 (0.44–10.88) | 0.37 | ||
Induction with ATG, n (%) | 8 (8) | 15 (4) | 1.77 (0.78–3.93) | 0.17 | ||
Administration of cyclosporine A, n (%) | 8 (8) | 26 (8) | 1.02 (0.48–2.12) | 0.96 | ||
Administration of tacrolimus, n (%) | 93 (92) | 309 (92) | 1.00 (0.92–1.06) | 0.96 | ||
Administration of tacrolimus extended-release formulation, n (%) | 6 (6) | 20 (6) | 1.00 (0.42–2.32) | 0.99 | ||
Tacrolimus trough level, mean (range) | 7.1 (0.8–14.9) | 6.2 (0.2–19.3) | 0.0002 | 1.07 (1.00–1.15) | 0.04 | |
Administration of mTOR inhibitors, n (%) | 25 (25) | 48 (14) | 1.73 (1.12–2.62) | 0.01 | 0.60 (0.08–4.48) | 0.62 |
Administration of MMF/MPA, n (%) | 76 (76) | 286 (85) | 0.88 (0.77–0.98) | 0.02 | 0.52 (0.06–4.46) | 0.55 |
MMF level, mean (range) | 4.1 (0.1–18.0) | 3.1 (0.0–22.0) | 0.005 | 1.05 (0.99–1.11) | 0.101 |
Recipients with BKV-Associated Nephropathy n = 30 | Recipients without BKV-Associated Nephropathy n = 406 | Univariate Relative Risk (95% CI) | p Value | Multivariate Relative Risk (95% CI) | p Value | |
---|---|---|---|---|---|---|
Variable | ||||||
Men, n (%) | 19 (63) | 234 (58) | 1.1 (0.78–1.38) | 0.54 | ||
Recipient age in years, median (range) | 53 (18–76) | 53 (18–81) | 0.95 | |||
Previous transplants, n (%) | 5 (17) | 47 (12) | 1.44 (0.61–3.07) | 0.41 | ||
Decrease in eGFR, n (%) | 19 (63) | 65 (16) | 3.96 (2.68–5.46) | <0.0001 | 10.84 (4.17–28.22) | <0.001 |
ABO-incompatible transplant, n (%) | 0 | 33 (8) | 0 (0–1.41) | 0.1 | ||
Rejections, n (%) | 17 (57) | 138 (34) | 1.67 (1.13–2.23) | 0.01 | 0.94 (0.37–2.37) | 0.89 |
de novo anti-HLA DSAs, n (%) | 5 (17) | 46 (11) | 1.47 (0.62–3.14) | 0.38 | ||
de novo anti-HLA, n (%) | 8 (27) | 109 (27) | 0.99 (0.52–1.71) | 0.98 | ||
Delayed graft function, n (%) | 5 (17) | 94 (23) | 0.72 (0.31–1.49) | 0.41 | ||
Cold ischemia time in minutes, mean (range) | 744 (70–1592) | 605 (58–1869) | 0.31 | |||
Deceased donation, n (%) | 25 (83) | 288 (71) | 1.18 (0.93–1.34) | 0.15 | ||
MM (A/B), n (%) | 26 (87) | 336 (83) | 1.05 (0.85–1.16) | 0.58 | ||
MM (DR), n (%) | 23 (77) | 289 (71) | 1.08 (0.83–1.26) | 0.52 | ||
GNAS CC genotype, n (%) | 3 (10) | 114 (28) | 0.36 (0.12–0.93) | 0.03 | 0.27 (0.08–0.92) | 0.036 |
Induction with rituximab, n (%) | 0 | 5 (1) | 0 (0–9.69) | 0.54 | ||
Induction with ATG, n (%) | 2 (7) | 21 (5) | 1.29 (0.34–4.45) | 0.72 | ||
Administration of cyclosporine A, n (%) | 0 | 34 (8) | 0 (0–1.37) | 0.10 | ||
Administration of tacrolimus, n (%) | 30 (100) | 372 (92) | 1.09 (0.97–2.53) | 0.10 | ||
Administration of tacrolimus extended-release formulation, n (%) | 0 | 26 (6) | 0 (0–1.8) | 0.15 | ||
Tacrolimus trough level, mean (range) | 7.0 (3.0–12.6) | 6.2 (0.2–19.3) | 0.04 | 1.03 (0.92–1.16) | 0.59 | |
Use of mTOR inhibitors, n (%) | 7 (23) | 66 (16) | 1.44 (0.70–2.65) | 0.32 | ||
Use of MMF/MPA, n (%) | 23 (77) | 339 (83) | 0.92 (0.71–1.07) | 0.34 | ||
MMF level, mean (range) | 4.2 (0.1–10.8) | 3.1 (0.0–22.0) | 0.04 | 1.07 (0.98–1.17) | 0.16 |
Patients with BK Viremia n = 101 | Patients with BKV-Associated Nephropathy n = 30 | Patients without BKV-Associated Nephropathy n = 71 | χ2 | OR | p Value | |
---|---|---|---|---|---|---|
Decrease in eGFR, n (%) | 28 (28) | 19 (63) | 9 (13) | 27.0 | 11.9 | 0.0001 |
Transplant failure, n (%) | 17 (17) | 13 (43) | 4 (6) | 21.4 | 12.8 | 0.0001 |
High-dose viremia (≥10E4), n (%) | 39 (39) | 22 (73) | 17 (24) | 21.7 | 8.7 | 0.0001 |
de novo anti-HLA DSAs, n (%) | 10 (10) | 5 (17) | 5 (7) | 2.2 | 2.6 | 0.14 |
Appearance of de novo anti-HLA DSAs before BK viremia, n (%) | 8 (8) | 5 (17) | 3 (4) | 6.2 | 6.8 | 0.01 |
GNAS CC genotype, n (%) | 17 (17) | 3(10) | 14 (20) | 1.4 | 0.45 | 0.23 |
Additional increase in viral load at 6-month follow-up, n (%) | 10 (10) | 4 (13) | 6 (8) | 0.6 | 1.7 | 0.5 |
mTOR inhibitor as maintenance immunosuppressant, n (%) | 26 (26) | 6 (20) | 20 (28) | 0.7 | 0.6 | 0.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peitz, T.; Möhlendick, B.; Eisenberger, U.; Siffert, W.; Heinemann, F.M.; Kribben, A.; Friebus-Kardash, J. CC Genotype of GNAS c.393C>T (rs7121) Polymorphism Has a Protective Effect against Development of BK Viremia and BKV-Associated Nephropathy after Renal Transplant. Pathogens 2022, 11, 1138. https://doi.org/10.3390/pathogens11101138
Peitz T, Möhlendick B, Eisenberger U, Siffert W, Heinemann FM, Kribben A, Friebus-Kardash J. CC Genotype of GNAS c.393C>T (rs7121) Polymorphism Has a Protective Effect against Development of BK Viremia and BKV-Associated Nephropathy after Renal Transplant. Pathogens. 2022; 11(10):1138. https://doi.org/10.3390/pathogens11101138
Chicago/Turabian StylePeitz, Tobias, Birte Möhlendick, Ute Eisenberger, Winfried Siffert, Falko Markus Heinemann, Andreas Kribben, and Justa Friebus-Kardash. 2022. "CC Genotype of GNAS c.393C>T (rs7121) Polymorphism Has a Protective Effect against Development of BK Viremia and BKV-Associated Nephropathy after Renal Transplant" Pathogens 11, no. 10: 1138. https://doi.org/10.3390/pathogens11101138
APA StylePeitz, T., Möhlendick, B., Eisenberger, U., Siffert, W., Heinemann, F. M., Kribben, A., & Friebus-Kardash, J. (2022). CC Genotype of GNAS c.393C>T (rs7121) Polymorphism Has a Protective Effect against Development of BK Viremia and BKV-Associated Nephropathy after Renal Transplant. Pathogens, 11(10), 1138. https://doi.org/10.3390/pathogens11101138