Trained Immunity Provides Long-Term Protection against Bacterial Infections in Channel Catfish
Abstract
:1. Introduction
2. Results
ChIP Sequencing and H3K4 and H3K27 Chromatin Reconfigurations
3. Discussion
3.1. Beta Glucan Induced Long-Term Survival against Bacterial Pathogens
3.2. Flow Cytometry Suggests Macrophages and Neutrophils Are Involved in Beta Glucan Induced Trained Immune Protection
3.3. ChIP Histone Analyses and KEGG Pathway Analyses
4. Materials and Methods
4.1. Fish Acclimation and Beta Glucan Exposure
4.2. Tank Survival Challenge
4.3. Flow Cytometric Analysis of Cell Populations after Beta Glucan Exposure
4.4. Flow Cytometric Analysis of Bacterial Phagocytosis
4.5. Data Analysis, Statistical Evaluations and Interpretations
4.6. Chromatin Immunoprecipitation (ChIP) and Deep Sequencing Analyses of H3K4 and H3K27
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Netea, M.G.; Domínguez-Andrés, J.; Barreiro, L.B.; Chavakis, T.; Divangahi, M.; Fuchs, E.; Joosten, L.A.B.; van der Meer, J.W.M.; Mhlanga, M.M.; Mulder, W.J.M.; et al. Defining trained immunity and its role in health and disease. Nat. Rev. Immunol. 2020, 20, 375–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hohn, C.; Petrie-Hanson, L. Rag1−/− mutant zebrafish demonstrate specific protection following bacterial re-exposure. PLoS ONE 2012, 7, e44451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peterman, B.; Petrie-Hanson, L. Beta-glucan induced trained immunity is associated with changes in gut Nccrp-1+ and Mpeg-1+ cell populations in rag1-/-zebrafish. J. Aquac. Mar. Biol. Ecol. 2021, 2021, 1–12. [Google Scholar] [CrossRef]
- Petit, J.; Embregts, C.W.E.; Forlenza, M.; Wiegertjes, G.F. Evidence of Trained Immunity in a Fish: Conserved Features in Carp Macrophages. J. Immunol. 2019, 203, 216–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitroulis, I.; Ruppova, K.; Wang, B.; Chen, L.-S.; Grzybek, M.; Grinenko, T.; Eugster, A.; Troullinaki, M.; Palladini, A.; Kourtzelis, I.; et al. Modulation of Myelopoiesis Progenitors Is an Integral Component of Trained Immunity. Cell 2018, 172, 147–161.e112. [Google Scholar] [CrossRef] [Green Version]
- Kaufmann, E.; Sanz, J.; Dunn, J.L.; Khan, N.; Mendonça, L.E.; Pacis, A.; Tzelepis, F.; Pernet, E.; Dumaine, A.; Grenier, J.-C.; et al. BCG Educates Hematopoietic Stem Cells to Generate Protective Innate Immunity against Tuberculosis. Cell 2018, 172, 176–190.e119. [Google Scholar] [CrossRef] [Green Version]
- Netea, M.G.; Joosten, L.A.B.; Latz, E.; Mills, K.H.G.; Natoli, G.; Stunnenberg, H.G.; O’Neill, L.A.J.; Xavier, R.J. Trained immunity: A program of innate immune memory in health and– disease. Science 2016, 352, aaf1098. [Google Scholar] [CrossRef] [Green Version]
- Quintin, J.; Saeed, S.; Martens, J.H.A.; Giamarellos-Bourboulis, E.J.; Ifrim, D.C.; Logie, C.; Jacobs, L.; Jansen, T.; Kullberg, B.-J.; Wijmenga, C.; et al. Candida albicans Infection Affords Protection against Reinfection via Functional Reprogramming of Monocytes. Cell Host Microbe 2012, 12, 223–232. [Google Scholar] [CrossRef] [Green Version]
- Saeed, S.; Quintin, J.; Kerstens, H.H.D.; Rao, N.A.; Aghajanirefah, A.; Matarese, F.; Cheng, S.-C.; Ratter, J.; Berentsen, K.; van der Ent, M.A.; et al. Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science 2014, 345, 1251086. [Google Scholar] [CrossRef] [Green Version]
- Benjaskulluecha, S.; Boonmee, A.; Pattarakankul, T.; Wongprom, B.; Klomsing, J.; Palaga, T. Screening of compounds to identify novel epigenetic regulatory factors that affect innate immune memory in macrophages. Sci. Rep. 2022, 12, 1912. [Google Scholar] [CrossRef]
- Bernstein, B.E.; Kamal, M.; Lindblad-Toh, K.; Bekiranov, S.; Bailey, D.K.; Huebert, D.J.; McMahon, S.; Karlsson, E.K.; Kulbokas, E.J.; Gingeras, T.R.; et al. Genomic Maps and Comparative Analysis of Histone Modifications in Human and Mouse. Cell 2005, 120, 169–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novakovic, B.; Habibi, E.; Wang, S.-Y.; Arts, R.J.W.; Davar, R.; Megchelenbrink, W.; Kim, B.; Kuznetsova, T.; Kox, M.; Zwaag, J.; et al. β-Glucan Reverses the Epigenetic State of LPS-Induced Immunological Tolerance. Cell 2016, 167, 1354–1368.e1314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barski, A.; Cuddapah, S.; Cui, K.; Roh, T.-Y.; Schones, D.E.; Wang, Z.; Wei, G.; Chepelev, I.; Zhao, K. High-Resolution Profiling of Histone Methylations in the Human Genome. Cell 2007, 129, 823–837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhattarai, S.; Li, Q.; Ding, J.; Liang, F.; Gusev, E.; Lapohos, O.; Fonseca, G.J.; Kaufmann, E.; Divangahi, M.; Petrof, B.J. TLR4 is a regulator of trained immunity in a murine model of Duchenne muscular dystrophy. Nat. Commun. 2022, 13, 879. [Google Scholar] [CrossRef] [PubMed]
- Petit, J.; Wiegertjes, G.F. Long-lived effects of administering β-glucans: Indications for trained immunity in fish. Dev. Comp. Immunol. 2016, 64, 93–102. [Google Scholar] [CrossRef] [Green Version]
- Petit, J.; Bailey, E.C.; Wheeler, R.T.; de Oliveira, C.A.F.; Forlenza, M.; Wiegertjes, G.F. Studies Into β-Glucan Recognition in Fish Suggests a Key Role for the C-Type Lectin Pathway. Front. Immunol. 2019, 10, 280. [Google Scholar] [CrossRef]
- Ellett, F.; Pase, L.; Hayman, J.W.; Andrianopoulos, A.; Lieschke, G.J. mpeg1 promoter transgenes direct macrophage-lineage expression in zebrafish. Blood 2011, 117, e49–e56. [Google Scholar] [CrossRef] [Green Version]
- Kordon, A.O.; Kalindamar, S.; Majors, K.; Abdelhamed, H.; Tan, W.; Karsi, A.; Pinchuk, L.M. Effects of Live Attenuated Vaccine and Wild Type Strains of Edwardsiella ictaluri on Phagocytosis, Bacterial Killing, and Survival of Catfish B Cells. Front. Immunol. 2019, 10, 2383. [Google Scholar] [CrossRef] [Green Version]
- Ainsworth, A.J.; Dexiang, C.; Greenway, T. Characterization of monoclonal antibodies produced to channel catfish, Ictalurus punctatus, leukocytes. Vet. Immunol. Immunopathol. 1990, 26, 81–92. [Google Scholar] [CrossRef]
- Evans, D.L.; Kaur, H.; Leary, J.; Praveen, K.; Jaso-Friedmann, L. Molecular characterization of a novel pattern recognition protein from nonspecific cytotoxic cells: Sequence analysis, phylogenetic comparisons and anti-microbial activity of a recombinant homologue. Dev. Comp. Immunol. 2005, 29, 1049–1064. [Google Scholar] [CrossRef]
- Sizemore, R.C.; Miller, N.W.; Cuchens, M.A.; Lobb, C.J.; Clem, L.W. Phylogeny of lymphocyte heterogeneity: The cellular requirements for in vitro mitogenic responses of channel catfish leukocytes. J. Immunol. 1984, 133, 2920–2924. [Google Scholar] [PubMed]
- Kleinnijenhuis, J.; Quintin, J.; Preijers, F.; Joosten, L.A.B.; Ifrim, D.C.; Saeed, S.; Jacobs, C.; van Loenhout, J.; de Jong, D.; Stunnenberg, H.G.; et al. Bacille Calmette-Guérin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proc. Natl. Acad. Sci. USA 2012, 109, 17537–17542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrie-Hanson, L.; Ainsworth, A.J. Ontogeny of channel catfish lymphoid organs. Vet. Immunol. Immunopathol. 2001, 81, 113–127. [Google Scholar] [CrossRef]
- Shoemaker, C.A.; Klesius, P.H.; Evans, J.J. In ovo methods for utilizing the modified live Edwardsiella ictaluri vaccine against enteric septicemia in channel catfish. Aquaculture 2002, 203, 221–227. [Google Scholar] [CrossRef]
- Shoemaker, C.A.; Klesius, P.H.; Evans, J.J. Immunization of eyed channel catfish, Ictalurus punctatus, eggs with monovalent Flavobacterium columnare vaccine and bivalent F. columnare and Edwardsiella ictaluri vaccine. Vaccine 2007, 25, 1126–1131. [Google Scholar] [CrossRef]
- Shoemaker, C.A.; Klesius, P.H.; Bricker, J.M. Efficacy of a modified live Edwardsiella ictaluri vaccine in channel catfish as young as seven days post hatch. Aquaculture 1999, 176, 189–193. [Google Scholar] [CrossRef]
- Klesius, P.H.; Shoemaker, C.A. Development and use of modified live Edwardsiella ictaluri vaccine against enteric septicemia of catfish. In Veterinary Vaccines and Diagnostics; Advances in Veterinary Science and Comparative Medicine; Schultz, R.D., Ed.; Academic Press: San Diego, CA, USA, 1999; Volume 41, pp. 523–537. [Google Scholar]
- Petrie-Hanson, L.; Ainsworth, A.J. Humoral immune responses of channel catfish (Ictalurus punctatus) fry and fingerlings exposed to Edwardsiella ictaluri. Fish Shellfish Immunol. 1999, 9, 579–589. [Google Scholar] [CrossRef]
- Mackey, R. Specificity of the Developing Channel Catfish Immune Response to Heterotypic Bacterial Challenge. Master’s Thesis, Mississippi State University, Starkville, MS, USA, 2002. [Google Scholar]
- Petrie-Hanson, L.; Hohn, C.; Hanson, L. Characterization of rag1 mutant zebrafish leukocytes. BMC Immunol. 2009, 10, 8. [Google Scholar] [CrossRef] [Green Version]
- Inoue, T.; Moritomo, T.; Tamura, Y.; Mamiya, S.; Fujino, H.; Nakanishi, T. A new method for fish leucocyte counting and partial differentiation by flow cytometry. Fish Shellfish Immunol. 2002, 13, 379–390. [Google Scholar] [CrossRef]
- Morgan, J.A.W.; Pottinger, T.G.; Rippon, P. Evaluation of flow cytometry as a method for quantification of circulating blood cell populations in salmonid fish. J. Fish Biol. 1993, 42, 131–141. [Google Scholar] [CrossRef]
- Muire, P.J.; Hanson, L.A.; Wills, R.; Petrie-Hanson, L. Differential gene expression following TLR stimulation in rag1−/− mutant zebrafish tissues and morphological descriptions of lymphocyte-like cell populations. PLoS ONE 2017, 12, e0184077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, L.; Stuge, T.B.; Evenhuis, J.P.; Bengten, E.; Wilson, M.; Chinchar, V.G.; Clem, L.W.; Miller, N.W. Channel catfish NK-like cells are armed with IgM via a putative FcmicroR. Dev. Comp. Immunol. 2003, 27, 699–714. [Google Scholar] [CrossRef]
- Miller, N.W.; Bly, J.E.; Ginkel, F.v.; Ellsaesser, C.F.; Clem, L.W. Phylogeny of lymphocyte heterogeneity: Identification and seperation of functionally distinct subpopulations of channel catfish lymphocytes with monoclonal antibodies. Dev. Comp. Immunol. 1987, 11, 739–747. [Google Scholar] [CrossRef]
- Chen, D.; Ainsworth, A.J. Glucan administration potentiates immune defence mechanisms of channel catfish, Ictalurus punctatus Rafinesque. J. Fish Dis. 1992, 15, 295–304. [Google Scholar] [CrossRef]
- Russo, R.; Shoemaker, C.A.; Panangala, V.S.; Klesius, P.H. In vitro and in vivo interaction of macrophages from vaccinated and non-vaccinated channel catfish (Ictalurus punctatus) to Edwardsiella ictaluri. Fish Shellfish Immunol. 2009, 26, 543–552. [Google Scholar] [CrossRef]
- Cirovic, B.; de Bree, L.C.J.; Groh, L.; Blok, B.A.; Chan, J.; van der Velden, W.J.F.M.; Bremmers, M.E.J.; van Crevel, R.; Händler, K.; Picelli, S.; et al. BCG Vaccination in Humans Elicits Trained Immunity via the Hematopoietic Progenitor Compartment. Cell Host Microbe 2020, 28, 322–334.e325. [Google Scholar] [CrossRef]
- Kalafati, L.; Kourtzelis, I.; Schulte-Schrepping, J.; Li, X.; Hatzioannou, A.; Grinenko, T.; Hagag, E.; Sinha, A.; Has, C.; Dietz, S.; et al. Innate Immune Training of Granulopoiesis Promotes Anti-tumor Activity. Cell 2020, 183, 771–785.e712. [Google Scholar] [CrossRef]
- Hyun, K.; Jeon, J.; Park, K.; Kim, J. Writing, erasing and reading histone lysine methylations. Exp. Mol. Med. 2017, 49, e324. [Google Scholar] [CrossRef] [Green Version]
- May, R.C.; Machesky, L.M. Phagocytosis and the actin cytoskeleton. J. Cell Sci. 2001, 114, 1061–1077. [Google Scholar] [CrossRef]
- Wang, R.; Kovalchin, J.T.; Muhlenkamp, P.; Chandawarkar, R.Y. Exogenous heat shock protein 70 binds macrophage lipid raft microdomain and stimulates phagocytosis, processing, and MHC-II presentation of antigens. Blood 2006, 107, 1636–1642. [Google Scholar] [CrossRef]
- Hoppe, A.D.; Swanson, J.A. Cdc42, Rac1, and Rac2 Display Distinct Patterns of Activation during Phagocytosis. Mol. Biol. Cell 2004, 15, 3509–3519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ueyama, T.; Eto, M.; Kami, K.; Tatsuno, T.; Kobayashi, T.; Shirai, Y.; Lennartz, M.R.; Takeya, R.; Sumimoto, H.; Saito, N. Isoform-Specific Membrane Targeting Mechanism of Rac during FcγR-Mediated Phagocytosis: Positive Charge-Dependent and Independent Targeting Mechanism of Rac to the Phagosome. J. Immunol. 2005, 175, 2381–2390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keshi, H.; Sakamoto, T.; Kawai, T.; Ohtani, K.; Katoh, T.; Jang, S.-J.; Motomura, W.; Yoshizaki, T.; Fukuda, M.; Koyama, S.; et al. Identification and Characterization of a Novel Human Collectin CL-K1. Microbiol. Immunol. 2006, 50, 1001–1013. [Google Scholar] [CrossRef] [Green Version]
- Dong, X.; Wu, W.; Ma, L.; Liu, C.; Bhuckory, M.B.; Wang, L.; Nandrot, E.F.; Xu, H.; Li, K.; Liu, Y.; et al. Collectin-11 Is an Important Modulator of Retinal Pigment Epithelial Cell Phagocytosis and Cytokine Production. J. Innate Immun. 2017, 9, 529–545. [Google Scholar] [CrossRef] [Green Version]
- Richter, E.; Ventz, K.; Harms, M.; Mostertz, J.; Hochgräfe, F. Induction of Macrophage Function in Human THP-1 Cells Is Associated with Rewiring of MAPK Signaling and Activation of MAP3K7 (TAK1) Protein Kinase. Front. Cell Dev. Biol. 2016, 4, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mielke, L.A.; Elkins, K.L.; Wei, L.; Starr, R.; Tsichlis, P.N.; O’Shea, J.J.; Watford, W.T. Tumor Progression Locus 2 (Map3k8) Is Critical for Host Defense against Listeria monocytogenes and IL-1β Production. J. Immunol. 2009, 183, 7984–7993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, F.; Wang, H.; Wang, X.; Jiang, G.; Liu, H.; Zhang, G.; Wang, H.; Fang, R.; Bu, X.; Cai, S.; et al. TGF-β induces M2-like macrophage polarization via SNAIL-mediated suppression of a pro-inflammatory phenotype. Oncotarget 2016, 7, 52294–52306. [Google Scholar] [CrossRef] [Green Version]
- Prantner, D.; Nallar, S.; Vogel, S.N. The role of RAGE in host pathology and crosstalk between RAGE and TLR4 in innate immune signal transduction pathways. FASEB J. 2020, 34, 15659–15674. [Google Scholar] [CrossRef]
- Doyle, S.E.; O’Connell, R.M.; Miranda, G.A.; Vaidya, S.A.; Chow, E.K.; Liu, P.T.; Suzuki, S.; Suzuki, N.; Modlin, R.L.; Yeh, W.-C.; et al. Toll-like Receptors Induce a Phagocytic Gene Program through p38. J. Exp. Med. 2004, 199, 81–90. [Google Scholar] [CrossRef]
- Celhar, T.; Pereira-Lopes, S.; Thornhill, S.I.; Lee, H.Y.; Dhillon, M.K.; Poidinger, M.; Connolly, J.E.; Lim, L.H.K.; Biswas, S.K.; Fairhurst, A.-M. TLR7 and TLR9 ligands regulate antigen presentation by macrophages. Int. Immunol. 2015, 28, 223–232. [Google Scholar] [CrossRef]
- Young, J.D.; Ko, S.S.; Cohn, Z.A. The increase in intracellular free calcium associated with IgG gamma 2b/gamma 1 Fc receptor-ligand interactions: Role in phagocytosis. Proc. Natl. Acad. Sci. USA 1984, 81, 5430–5434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, L.; Sun, L.; Zhang, H.; Liu, Q.; Liu, Y.; Qin, L.; Shi, G.; Hu, J.-H.; Xu, A.; Sun, Y.-P.; et al. An Essential Role for RIG-I in Toll-like Receptor-Stimulated Phagocytosis. Cell Host Microbe 2009, 6, 150–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jati, S.; Sen, M. Wnt Signaling Regulates Macrophage Mediated Immune Response to Pathogens. In Macrophage Activation-Biology and Disease; Intechopen: London, UK, 2019. [Google Scholar]
- Reichley, S.R.; Waldbieser, G.C.; Tekedar, H.C.; Lawrence, M.L.; Griffin, M.J. Complete Genome Sequence of Edwardsiella piscicida Isolate S11-285 Recovered from Channel Catfish (Ictalurus punctatus) in Mississippi, USA. Genome Announc. 2016, 4, e01259-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrie-Hanson, L.; Romano, C.L.; Mackey, R.B.; Khosravi, P.; Hohn, C.M.; Boyle, C.R. Evaluation of Zebrafish Danio rerio as a Model for Enteric Septicemia of Catfish (ESC). J. Aquat. Anim. Health 2007, 19, 151–158. [Google Scholar] [CrossRef]
- Hohn, C.; Lee, S.R.; Pinchuk, L.M.; Petrie-Hanson, L. Zebrafish kidney phagocytes utilize macropinocytosis and Ca+-dependent endocytic mechanisms. PLoS ONE 2009, 4, e4314. [Google Scholar] [CrossRef] [Green Version]
- Mortazavi, A.; Williams, B.A.; McCue, K.; Schaeffer, L.; Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 2008, 5, 621–628. [Google Scholar] [CrossRef]
- Weber, M.; Davies, J.J.; Wittig, D.; Oakeley, E.J.; Haase, M.; Lam, W.L.; Schubeler, D. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat. Genet. 2005, 37, 853–862. [Google Scholar] [CrossRef]
Antibody | Fluor | Company/Catalog | Specificity | Reference |
---|---|---|---|---|
Polyclonal Mpeg-1 1 | Ana Spec AS-55917 | Macrophages | [3,17] | |
Monoclonal L/CD207 2 | PE | Biolegend 405307 | Dendritic cells | [18] |
Monoclonal 51a 3 | Neutrophils | [19] | ||
Monoclonal 5C6 4 | FITC | Invitrogen, MA5-16528 | NCCs | [20] |
Monoclonal C24a 5 | T cells, NK cells | [19] | ||
Monoclonal 9E1 6 | B cells, IgM | [21] | ||
Secondary | APC | Invitrogen A21039 | Mpeg-1 goat anti rabbit IgG | |
Secondary | FITC | Invitrogen F2761 | 51a, C24a, 9E1 goat anti mouse IgG |
Antibody | Gate | Saline | Bg | p-Value |
---|---|---|---|---|
L/CD207 (dendritic cells) | Granulocytes | 2097 ± 186 | 3966 ± 589 | 0.02 |
Lymphocytes | 24 ± 8 | 73 ± 28 | 0.2 | |
Mpeg-1 (macrophages) | Granulocytes | 3587 ± 616 | 3919 ± 1030 | 0.8 |
Lymphocytes | 14 ± 5 | 19 ± 4 | 0.5 | |
51a (neutrophils) | Granulocytes | 2651 ± 765 | 1864 ± 187 | 0.4 |
Lymphocytes | 9 ± 4 | 10 ± 3 | 0.8 | |
9E1 (B cells, IgM) | Granulocytes | 2819 ± 673 | 2808 ± 874 | 0.9 |
Lymphocytes | 670 ± 158 | 1586 ± 358 | 0.06 | |
C24a (T cells/NK cells) | Granulocytes | 1561 ± 478 | 2378 ± 134 | 0.2 |
Lymphocytes | 337 ± 243 | 24 ± 6 | 0.02 | |
5C6 (NCCs) | Granulocytes | 4673 ± 751 | 6807 ± 698 | 0.07 |
Lymphocytes | 148 ± 24 | 166 ± 42 | 0.7 |
Antibody Positive Cells | Saline | Beta Glucan | p-Value |
---|---|---|---|
5C6 (NCCs) | 12.3 ± 1.9 | 13.6 ± 1.67 | 0.6 |
C24a (T cells and NK cells) | 22.4 ± 2.4 | 29.2 ± 4.3 | 0.2 |
51a (neutrophils) | 16.1 ± 1.7 | 26 ± 3.4 | 0.04 |
Mpeg (macrophages) | 15 ± 1.0 | 22.7 ± 3.6 | 0.08 |
9E1 (B cells/IgM) | 12.5 ± 3.2 | 21.1 ± 3.1 | 0.1 |
L/CD207 (dendritic cells) | 55.1 ± 6.2 | 62.3 ± 2.0 | 0.3 |
Antibody Positive Cells | Saline | Beta Glucan | p-Value |
---|---|---|---|
5C6 (NCCs) | 30.4 ± 12.1 | 37.9 ± 4.3 | 0.2 |
C24a (T/NK cells) | 35.5 ± 6.7 | 44.1 ± 16.4 | 0.3 |
51a (neutrophils) | 43.9 ± 2.4 | 68.2 ± 1.5 | <0.001 |
Mpeg (macrophages) | 41.0 ± 1.9 | 69 ± 3.2 | <0.001 |
9E1 (B cells/IgM) | 48.1 ± 5.3 | 52.3 ± 1.19 | 0.4 |
L/CD207 (dendritic cells) | 55.9 ± 2.9 | 65 ± 1.8 | 0.08 |
Histone modification | Pathways with phagocytosis related DEGs, 1 month after beta glucan exposure |
H3K4me1 (enhancer) Upregulated | Regulation of actin cytoskeleton MAPK signaling Endocytosis Focal adhesion ECM-receptor interaction Cell adhesion molecules (CAMs) |
H3K4me3 (promoter) upregulated | Toll-like receptor signaling Phagosome MAPK signaling AGE-RAGE signaling |
H3K27ac (promoter) upregulated | Toll-like receptor signaling RIG-1-like receptor signaling Regulation of actin cytoskeleton Calcium signaling pathway |
H3K27me3 (polychrome repression) downregulated | Wnt signaling |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrie-Hanson, L.; Peterman, A.E. Trained Immunity Provides Long-Term Protection against Bacterial Infections in Channel Catfish. Pathogens 2022, 11, 1140. https://doi.org/10.3390/pathogens11101140
Petrie-Hanson L, Peterman AE. Trained Immunity Provides Long-Term Protection against Bacterial Infections in Channel Catfish. Pathogens. 2022; 11(10):1140. https://doi.org/10.3390/pathogens11101140
Chicago/Turabian StylePetrie-Hanson, Lora, and Ann E. (Beth) Peterman. 2022. "Trained Immunity Provides Long-Term Protection against Bacterial Infections in Channel Catfish" Pathogens 11, no. 10: 1140. https://doi.org/10.3390/pathogens11101140
APA StylePetrie-Hanson, L., & Peterman, A. E. (2022). Trained Immunity Provides Long-Term Protection against Bacterial Infections in Channel Catfish. Pathogens, 11(10), 1140. https://doi.org/10.3390/pathogens11101140