Resistance and Susceptibility Immune Factors at Play during Mycobacterium tuberculosis Infection of Macrophages
Abstract
:1. Introduction
2. Brief Overview of M.tb Infection Pathogenesis
3. Cellular Pathways
4. Bioeffector Molecules
5. Other Cellular Factors
6. Microbiological Factors
7. Mycobacterial Strains
8. Other Microbiological Factors
9. Immune Factors: Cytokines
10. Immune Factors: Chemokines
11. Host Genetic Factors
11.1. Cytokines
11.2. Receptors
11.3. Collectins (SP-A and SP-D)
11.4. NRAMP1
12. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gideon, H.P.; Flynn, J.L. Latent tuberculosis: What the host “sees”? Immunol. Res. 2011, 50, 202–212. [Google Scholar] [CrossRef] [Green Version]
- MacMicking, J.D.; North, R.J.; LaCourse, R.; Mudgett, J.S.; Shah, S.K.; Nathan, C.F. Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc. Natl. Acad. Sci. USA 1997, 94, 5243–5248. [Google Scholar] [CrossRef] [Green Version]
- Aston, C.; Rom, W.N.; Talbot, A.T.; Reibman, J. Early inhibition of mycobacterial growth by human alveolar macrophages is not due to nitric oxide. Am. J. Respir. Crit. Care Med. 1998, 157, 1943–1950. [Google Scholar] [CrossRef]
- Guirado, E.; Schlesinger, L.S.; Kaplan, G. Macrophages in tuberculosis: Friend or foe. Semin. Immunopathol. 2013, 35, 563–583. [Google Scholar] [CrossRef] [Green Version]
- Hou, F.; Xiao, K.; Tang, L.; Xie, L. Diversity of Macrophages in Lung Homeostasis and Diseases. Front. Immunol. 2021, 12, 753940. [Google Scholar] [CrossRef] [PubMed]
- Mendoza-Coronel, E.; Castanon-Arreola, M. Comparative evaluation of in vitro human macrophage models for mycobacterial infection study. Pathog. Dis. 2016, 74, ftw052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dharmadhikari, A.S.; Nardell, E.A. What animal models teach humans about tuberculosis. Am. J. Respir. Cell Mol. Biol. 2008, 39, 503–508. [Google Scholar] [CrossRef]
- Arnett, E.; Weaver, A.M.; Woodyard, K.C.; Montoya, M.J.; Li, M.; Hoang, K.V.; Hayhurst, A.; Azad, A.K.; Schlesinger, L.S. PPARgamma is critical for Mycobacterium tuberculosis induction of Mcl-1 and limitation of human macrophage apoptosis. PLoS Pathog. 2018, 14, e1007100. [Google Scholar] [CrossRef] [Green Version]
- Stutz, M.D.; Allison, C.C.; Ojaimi, S.; Preston, S.P.; Doerflinger, M.; Arandjelovic, P.; Whitehead, L.; Bader, S.M.; Batey, D.; Asselin-Labat, M.-L.; et al. Macrophage and neutrophil death programs differentially confer resistance to tuberculosis. Immunity 2021, 54, 1758–1771.e7. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Liu, Y.; Zhou, X.; Ou, M.; Xiao, G.; Li, F.; Wang, Z.; Wang, Z.; Liu, L.; Zhang, G. Sirtuin 7 Regulates Nitric Oxide Production and Apoptosis to Promote Mycobacterial Clearance in Macrophages. Front. Immunol. 2021, 12, 779235. [Google Scholar] [CrossRef] [PubMed]
- Tasneen, R.; Mortensen, D.S.; Converse, P.J.; Urbanowski, M.E.; Upton, A.; Fotouhi, N.; Nuermberger, E.; Hawryluk, N. Dual mTORC1/mTORC2 Inhibition as a Host-Directed Therapeutic Target in Pathologically Distinct Mouse Models of Tuberculosis. Antimicrob. Agents Chemother. 2021, 65, e0025321. [Google Scholar] [CrossRef]
- Iqbal, I.K.; Bajeli, S.; Sahu, S.; Bhat, S.A.; Kumar, A. Hydrogen sulfide-induced GAPDH sulfhydration disrupts the CCAR2-SIRT1 interaction to initiate autophagy. Autophagy 2021, 17, 3511–3529. [Google Scholar] [CrossRef]
- Li, Q.; Xie, Y.; Cui, Z.; Huang, H.; Yang, C.; Yuan, B.; Shen, P.; Shi, C. Activation of hypoxia-inducible factor 1 (Hif-1) enhanced bactericidal effects of macrophages to Mycobacterium tuberculosis. Tuberculosis 2021, 126, 102044. [Google Scholar] [CrossRef]
- Liu, G.; Wan, Q.; Li, J.; Hu, X.; Gu, X.; Xu, S. Silencing miR-125b-5p attenuates inflammatory response and apoptosis inhibition in Mycobacterium tuberculosis-infected human macrophages by targeting DNA damage-regulated autophagy modulator 2 (DRAM2). Cell Cycle 2020, 19, 3182–3194. [Google Scholar] [CrossRef]
- Yuan, Q.; Chen, H.; Yang, Y.; Fu, Y.; Yi, Z. miR-18a promotes Mycobacterial survival in macrophages via inhibiting autophagy by down-regulation of ATM. J. Cell Mol. Med. 2020, 24, 2004–2012. [Google Scholar] [CrossRef] [Green Version]
- Pahari, S.; Negi, S.; Aqdas, M.; Arnett, E.; Schlesinger, L.S.; Agrewala, J.N. Induction of autophagy through CLEC4E in combination with TLR4: An innovative strategy to restrict the survival of Mycobacterium tuberculosis. Autophagy 2020, 16, 1021–1043. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.S.; Jin, Y.B.; Kim, Y.S.; Kim, S.; Kim, J.K.; Lee, H.-M.; Suh, H.-W.; Choe, J.H.; Kim, Y.J.; Koo, B.-S.; et al. SIRT3 promotes antimycobacterial defenses by coordinating mitochondrial and autophagic functions. Autophagy 2019, 15, 1356–1375. [Google Scholar] [CrossRef]
- Santiago-Carvalho, I.; de Almeida-Santos, G.; Bomfim, C.C.B.; de Souza, P.C.; e Silva, J.C.S.; de Melo, B.M.S.; Amaral, E.P.; Cione, M.V.P.; Lasunskaia, E.; Hirata, M.H.; et al. P2x7 Receptor Signaling Blockade Reduces Lung Inflammation and Necrosis During Severe Experimental Tuberculosis. Front. Cell. Infect. Microbiol. 2021, 11, 672472. [Google Scholar] [CrossRef]
- Matty, M.A.; Knudsen, D.R.; Walton, E.M.; Beerman, R.; Cronan, M.R.; Pyle, C.; Hernandez, R.E.; Tobin, D.M. Potentiation of P2RX7 as a host-directed strategy for control of mycobacterial infection. eLife 2019, 8, e39123. [Google Scholar] [CrossRef] [PubMed]
- Zenk, S.F.; Hauck, S.; Mayer, D.; Grieshober, M.; Stenger, S. Stabilization of Hypoxia-Inducible Factor Promotes Antimicrobial Activity of Human Macrophages against Mycobacterium tuberculosis. Front. Immunol. 2021, 12, 678354. [Google Scholar] [CrossRef] [PubMed]
- Resende, M.; Ferreira, C.M.; Barbosa, A.M.; Cardoso, M.S.; Sousa, J.; Saraiva, M.; Castro, A.G.; Appelberg, R.; Torrado, E. Myeloid HIF-1alpha regulates pulmonary inflammation during experimental Mycobacterium tuberculosis infection. Immunology 2020, 159, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Osada-Oka, M.; Goda, N.; Saiga, H.; Yamamoto, M.; Takeda, K.; Ozeki, Y.; Yamaguchi, T.; Soga, T.; Tateishi, Y.; Miura, K.; et al. Metabolic adaptation to glycolysis is a basic defense mechanism of macrophages for Mycobacterium tuberculosis infection. Int. Immunol. 2019, 31, 781–793. [Google Scholar] [CrossRef] [Green Version]
- Hinman, A.E.; Jani, C.; Pringle, S.C.; Zhang, W.R.; Jain, N.; Martinot, A.J.; Barczak, A.K. Mycobacterium tuberculosis canonical virulence factors interfere with a late component of the TLR2 response. eLife 2021, 10, e73984. [Google Scholar] [CrossRef] [PubMed]
- Smulan, L.J.; Martinez, N.; Kiritsy, M.C.; Kativhu, C.; Cavallo, K.; Sassetti, C.M.; Singhal, A.; Remold, H.G.; Kornfeld, H. Sirtuin 3 Downregulation in Mycobacterium tuberculosis-Infected Macrophages Reprograms Mitochondrial Metabolism and Promotes Cell Death. mBio 2021, 12, e03140-20. [Google Scholar] [CrossRef] [PubMed]
- Bafica, A.; Scanga, C.A.; Feng, C.; Leifer, C.; Cheever, A.; Sher, A. TLR9 regulates Th1 responses and cooperates with TLR2 in mediating optimal resistance to Mycobacterium tuberculosis. J. Exp. Med. 2005, 202, 1715–1724. [Google Scholar] [CrossRef] [PubMed]
- Blumenthal, A.; Nagalingam, G.; Huch, J.H.; Walker, L.; Guillemin, G.J.; Smythe, G.A.; Ehrt, S.; Britton, W.J.; Saunders, B.M. M. tuberculosis induces potent activation of IDO-1, but this is not essential for the immunological control of infection. PLoS ONE 2012, 7, e37314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gautam, U.S.; Foreman, T.W.; Bucsan, A.N.; Veatch, A.V.; Alvarez, X.; Adekambi, T.; Golden, N.A.; Gentry, K.M.; Doyle-Meyers, L.A.; Russell-Lodrigue, K.E.; et al. In vivo inhibition of tryptophan catabolism reorganizes the tuberculoma and augments immune-mediated control of Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 2018, 115, E62–E71. [Google Scholar] [CrossRef] [Green Version]
- Elkington, P.; Lerm, M.; Kapoor, N.; Mahon, R.; Pienaar, E.; Huh, D.; Kaushal, D.; Schlesinger, L.S. In Vitro Granuloma Models of Tuberculosis: Potential and Challenges. J. Infect. Dis. 2019, 219, 1858–1866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Afriyie-Asante, A.; Dabla, A.; Dagenais, A.; Berton, S.; Smyth, R.; Sun, J. Mycobacterium tuberculosis Exploits Focal Adhesion Kinase to Induce Necrotic Cell Death and Inhibit Reactive Oxygen Species Production. Front. Immunol. 2021, 12, 742370. [Google Scholar] [CrossRef]
- Ren, X.; Dong, W.; Feng, J.; Li, P.; Zheng, Y.; Wang, G.; Lu, W.; Wang, X.; Chen, H.; Tan, C. miR-495 Regulates Cellular Reactive Oxygen Species Levels by Targeting sod2 to Inhibit Intracellular Survival of Mycobacterium tuberculosis in Macrophages. Infect. Immun. 2021, 89, e0031521. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, M.; Ming, S.; Liang, Z.; Zhan, X.; Cao, C.; Liang, S.; Liu, Q.; Shang, Y.; Lao, J.; et al. TARM-1 Is Critical for Macrophage Activation and Th1 Response in Mycobacterium tuberculosis Infection. J. Immunol. 2021, 207, 234–243. [Google Scholar] [CrossRef] [PubMed]
- Chandra, P.; He, L.; Zimmerman, M.; Yang, G.; Köster, S.; Ouimet, M.; Wang, H.; Moore, K.J.; Dartois, V.; Schilling, J.D.; et al. Inhibition of Fatty Acid Oxidation Promotes Macrophage Control of Mycobacterium tuberculosis. mBio 2020, 11, e01139-20. [Google Scholar] [CrossRef] [PubMed]
- Scheuermann, L.; Pei, G.; Domaszewska, T.; Zyla, J.; Oberbeck-Müller, D.; Bandermann, S.; Feng, Y.; Moreno, J.S.R.; Opitz, B.; Mollenkopf, H.-J.; et al. Platelets Restrict the Oxidative Burst in Phagocytes and Facilitate Primary Progressive Tuberculosis. Am. J. Respir. Crit. Care Med. 2020, 202, 730–744. [Google Scholar] [CrossRef] [PubMed]
- Kachour, N.; Beever, A.; Owens, J.; Cao, R.; Kolloli, A.; Kumar, R.; Sasaninia, K.; Vaughn, C.; Singh, M.; Truong, E.; et al. Liposomal Glutathione Helps to Mitigate Mycobacterium tuberculosis Infection in the Lungs. Antioxidants 2022, 11, 673. [Google Scholar] [CrossRef] [PubMed]
- Periyasamy, K.M.; Ranganathan, U.D.; Tripathy, S.P.; Bethunaickan, R. Vitamin D—A host directed autophagy mediated therapy for tuberculosis. Mol. Immunol. 2020, 127, 238–244. [Google Scholar] [CrossRef]
- Rivas-Santiago, B.; Santiago, C.E.R.; Castañeda-Delgado, J.E.; León–Contreras, J.C.; Hancock, R.E.; Hernandez-Pando, R. Activity of LL-37, CRAMP and antimicrobial peptide-derived compounds E2, E6 and CP26 against Mycobacterium tuberculosis. Int. J. Antimicrob. Agents 2013, 41, 143–148. [Google Scholar] [CrossRef]
- Rao Muvva, J.; Ahmed, S.; Rekha, R.S.; Kalsum, S.; Groenheit, R.; Schön, T.; Agerberth, B.; Bergman, P.; Brighenti, S. Immunomodulatory Agents Combat Multidrug-Resistant Tuberculosis by Improving Antimicrobial Immunity. J. Infect. Dis. 2021, 224, 332–344. [Google Scholar] [CrossRef]
- Kim, Y.S.; Lee, H.-M.; Kim, J.K.; Yang, C.-S.; Kim, T.S.; Jung, M.; Jin, H.S.; Kim, S.; Jang, J.; Oh, G.T.; et al. PPAR-alpha Activation Mediates Innate Host Defense through Induction of TFEB and Lipid Catabolism. J. Immunol. 2017, 198, 3283–3295. [Google Scholar] [CrossRef] [Green Version]
- Rajaram, M.V.; Brooks, M.N.; Morris, J.D.; Torrelles, J.B.; Azad, A.K.; Schlesinger, L.S. Mycobacterium tuberculosis activates human macrophage peroxisome proliferator-activated receptor gamma linking mannose receptor recognition to regulation of immune responses. J. Immunol. 2010, 185, 929–942. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Zhang, M.; Barnes, P.F. Chemokine production by a human alveolar epithelial cell line in response to Mycobacterium tuberculosis. Infect. Immun. 1998, 66, 1121–1126. [Google Scholar] [CrossRef]
- Reuschl, A.K.; Edwards, M.R.; Parker, R.; Connell, D.W.; Hoang, L.; Halliday, A.; Jarvis, H.; Siddiqui, N.; Wright, C.; Bremang, S.; et al. Innate activation of human primary epithelial cells broadens the host response to Mycobacterium tuberculosis in the airways. PLoS Pathog. 2017, 13, e1006577. [Google Scholar] [CrossRef]
- Thacker, V.V.; Dhar, N.; Sharma, K.; Barrile, R.; Karalis, K.; McKinney, J.D. A lung-on-chip model of early Mycobacterium tuberculosis infection reveals an essential role for alveolar epithelial cells in controlling bacterial growth. eLife 2020, 9, e59961. [Google Scholar] [CrossRef]
- Roca, F.J.; Whitworth, L.J.; Prag, H.A.; Murphy, M.P.; Ramakrishnan, L. Tumor necrosis factor induces pathogenic mitochondrial ROS in tuberculosis through reverse electron transport. Science 2022, 376, eabh2841. [Google Scholar] [CrossRef]
- Arbues, A.; Brees, D.; Chibout, S.-D.; Fox, T.; Kammüller, M.; Portevin, D. TNF-alpha antagonists differentially induce TGF-beta1-dependent resuscitation of dormant-like Mycobacterium tuberculosis. PLoS Pathog. 2020, 16, e1008312. [Google Scholar] [CrossRef] [Green Version]
- Du Bruyn, E.; Ruzive, S.; Arlehamn, C.S.L.; Sette, A.; Sher, A.; Barber, D.L.; Wilkinson, R.J.; Riou, C. Mycobacterium tuberculosis-specific CD4 T cells expressing CD153 inversely associate with bacterial load and disease severity in human tuberculosis. Mucosal Immunol. 2021, 14, 491–499. [Google Scholar] [CrossRef]
- Ladel, C.H.; Blum, C.; Dreher, A.; Reifenberg, K.; Kopf, M.; Kaufmann, S.H. Lethal tuberculosis in interleukin-6-deficient mutant mice. Infect. Immun. 1997, 65, 4843–4849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagabhushanam, V.; Solache, A.; Ting, L.-M.; Escaron, C.J.; Zhang, J.Y.; Ernst, J.D. Innate inhibition of adaptive immunity: Mycobacterium tuberculosis-induced IL-6 inhibits macrophage responses to IFN-gamma. J. Immunol. 2003, 171, 4750–4757. [Google Scholar] [CrossRef] [Green Version]
- Yao, J.; Du, X.; Chen, S.; Shao, Y.; Deng, K.; Jiang, M.; Liu, J.; Shen, Z.; Chen, X.; Feng, G. Rv2346c enhances mycobacterial survival within macrophages by inhibiting TNF-alpha and IL-6 production via the p38/miRNA/NF-kappaB pathway. Emerg. Microbes Infect. 2018, 7, 158. [Google Scholar] [CrossRef] [Green Version]
- Bryson, B.D.; Rosebrock, T.R.; Tafesse, F.G.; Itoh, C.Y.; Nibasumba, A.; Babunovic, G.H.; Corleis, B.; Martin, C.; Keegan, C.; Andrade, P.; et al. Heterogeneous GM-CSF signaling in macrophages is associated with control of Mycobacterium tuberculosis. Nat. Commun. 2019, 10, 2329. [Google Scholar] [CrossRef] [Green Version]
- Pasula, R.; Azad, A.K.; Gardner, J.C.; Schlesinger, L.S.; McCormack, F.X. Keratinocyte growth factor administration attenuates murine pulmonary Mycobacterium tuberculosis infection through granulocyte-macrophage colony-stimulating factor (GM-CSF)-dependent macrophage activation and phagolysosome fusion. J. Biol. Chem. 2015, 290, 7151–7159. [Google Scholar] [CrossRef]
- Mishra, A.; Singh, V.K.; Actor, J.K.; Hunter, R.L.; Jagannath, C.; Subbian, S.; Khan, A. GM-CSF Dependent Differential Control of Mycobacterium tuberculosis Infection in Human and Mouse Macrophages: Is Macrophage Source of GM-CSF Critical to Tuberculosis Immunity? Front. Immunol. 2020, 11, 1599. [Google Scholar] [CrossRef] [PubMed]
- Juffermans, N.P.; Florquin, S.; Camoglio, L.; Verbon, A.; Kolk, A.H.; Speelman, P.; Van Deventer, S.J.H.; Van Der Poll, T. Interleukin-1 signaling is essential for host defense during murine pulmonary tuberculosis. J. Infect. Dis. 2000, 182, 902–908. [Google Scholar] [CrossRef] [Green Version]
- Fremond, C.M.; Togbe, D.; Doz, E.; Rose, S.; Vasseur, V.; Maillet, I.; Jacobs, M.; Ryffel, B.; Quesniaux, V.F.J. IL-1 receptor-mediated signal is an essential component of MyD88-dependent innate response to Mycobacterium tuberculosis infection. J. Immunol. 2007, 179, 1178–1189. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.R.; Chang, L.-Y.; Chang, C.-H.; Yan, B.-S.; Wang, J.-Y.; Lin, W.-H. Differed IL-.1 Beta Response between Active TB and LTBI Cases by Ex Vivo Stimulation of Human Monocyte-Derived Macrophage with TB-Specific Antigen. Dis. Markers 2019, 2019, 7869576. [Google Scholar] [CrossRef] [PubMed]
- Ji, D.X.; Yamashiro, L.H.; Chen, K.J.; Mukaida, N.; Kramnik, I.; Darwin, K.H.; Vance, R.E. Type I interferon-driven susceptibility to Mycobacterium tuberculosis is mediated by IL-1Ra. Nat. Microbiol. 2019, 4, 2128–2135. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Jiang, X.; Pfau, D.; Ling, Y.; Nathan, C.F. Type I interferon signaling mediates Mycobacterium tuberculosis-induced macrophage death. J. Exp. Med. 2021, 218, e20200887. [Google Scholar] [CrossRef] [PubMed]
- Moreira-Teixeira, L.; Mayer-Barber, K.; Sher, A.; O’Garra, A. Type I interferons in tuberculosis: Foe and occasionally friend. J. Exp. Med. 2018, 215, 1273–1285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banks, D.A.; Ahlbrand, S.E.; Hughitt, V.K.; Shah, S.; Mayer-Barber, K.D.; Vogel, S.N.; El-Sayed, N.M.; Briken, V. Mycobacterium tuberculosis Inhibits Autocrine Type I IFN Signaling to Increase Intracellular Survival. J. Immunol. 2019, 202, 2348–2359. [Google Scholar] [CrossRef] [Green Version]
- Abreu, R.; Essler, L.; Giri, P.; Quinn, F. Interferon-gamma promotes iron export in human macrophages to limit intracellular bacterial replication. PLoS ONE 2020, 15, e0240949. [Google Scholar] [CrossRef]
- Dwivedy, A.; Ashraf, A.; Jha, B.; Kumar, D.; Agarwal, N.; Biswal, B.K. De novo histidine biosynthesis protects Mycobacterium tuberculosis from host IFN-gamma mediated histidine starvation. Commun. Biol. 2021, 4, 410. [Google Scholar] [CrossRef]
- Richardson, E.T.; Shukla, S.; Sweet, D.R.; Wearsch, P.; Tsichlis, P.N.; Boom, W.H.; Harding, C.V. Toll-like receptor 2-dependent extracellular signal-regulated kinase signaling in Mycobacterium tuberculosis-infected macrophages drives anti-inflammatory responses and inhibits Th1 polarization of responding T cells. Infect. Immun. 2015, 83, 2242–2254. [Google Scholar] [CrossRef] [Green Version]
- Saraiva, M.; Vieira, P.; O’Garra, A. Biology and therapeutic potential of interleukin-10. J. Exp. Med. 2020, 217, e20190418. [Google Scholar] [CrossRef] [Green Version]
- O’Leary, S.; O’Sullivan, M.P.; Keane, J. IL-10 blocks phagosome maturation in Mycobacterium tuberculosis-infected human macrophages. Am. J. Respir. Cell Mol. Biol. 2011, 45, 172–180. [Google Scholar] [CrossRef]
- Arcos, J.; Sasindran, S.J.; Moliva, J.I.; Scordo, J.M.; Sidiki, S.; Guo, H.; Venigalla, P.; Kelley, H.V.; Lin, G.; DiAngelo, L.; et al. Mycobacterium tuberculosis cell wall released fragments by the action of the human lung mucosa modulate macrophages to control infection in an IL-10-dependent manner. Mucosal Immunol. 2017, 10, 1248–1258. [Google Scholar] [CrossRef] [Green Version]
- Warsinske, H.C.; Pienaar, E.; Linderman, J.J.; Mattila, J.T.; Kirschner, D.E. Deletion of TGF-beta1 Increases Bacterial Clearance by Cytotoxic T Cells in a Tuberculosis Granuloma Model. Front. Immunol. 2017, 8, 1843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keegan, C.; Krutzik, S.; Schenk, M.; Scumpia, P.O.; Lu, J.; Pang, Y.L.J.; Russell, B.S.; Lim, K.S.; Shell, S.; Prestwich, E.; et al. Mycobacterium tuberculosis Transfer RNA Induces IL-12p70 via Synergistic Activation of Pattern Recognition Receptors within a Cell Network. J. Immunol. 2018, 200, 3244–3258. [Google Scholar] [CrossRef] [Green Version]
- Cooper, A.M.; Solache, A.; Khader, S.A. Interleukin-12 and tuberculosis: An old story revisited. Curr. Opin. Immunol. 2007, 19, 441–447. [Google Scholar] [CrossRef] [Green Version]
- Monin, L.; Khader, S.A. Chemokines in tuberculosis: The good, the bad and the ugly. Semin. Immunol. 2014, 26, 552–558. [Google Scholar] [CrossRef] [Green Version]
- Kumar, N.P.; Hissar, S.; Thiruvengadam, K.; Banurekha, V.V.; Balaji, S.; Elilarasi, S.; Gomathi, N.S.; Ganesh, J.; Aravind, M.A.; Baskaran, D.; et al. Plasma chemokines as immune biomarkers for diagnosis of pediatric tuberculosis. BMC Infect. Dis. 2021, 21, 1055. [Google Scholar] [CrossRef]
- Philips, J.A.; Ernst, J.D. Tuberculosis pathogenesis and immunity. Annu. Rev. Pathol. 2012, 7, 353–384. [Google Scholar] [CrossRef] [PubMed]
- Rajaram, M.V.; Ni, B.; Dodd, C.E.; Schlesinger, L.S. Macrophage immunoregulatory pathways in tuberculosis. Semin. Immunol. 2014, 26, 471–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hossain, M.M.; Norazmi, M.N. Pattern recognition receptors and cytokines in Mycobacterium tuberculosis infection—The double-edged sword? BioMed Res. Int. 2013, 2013, 179174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Labbe, K.; Saleh, M. Cell death in the host response to infection. Cell Death. Differ. 2008, 15, 1339–1349. [Google Scholar] [CrossRef] [Green Version]
- Abdalla, A.E.; Ejaz, H.; Mahjoob, M.O.; Alameen, A.A.M.; Abosalif, K.O.A.; Elamir, M.Y.M.; Mousa, M.A. Intelligent Mechanisms of Macrophage Apoptosis Subversion by Mycobacterium. Pathogens 2020, 9, 218. [Google Scholar] [CrossRef] [Green Version]
- Wan, M.; Zhou, Y.; Zhu, Y. Subversion of Macrophage Functions by Bacterial Protein Toxins and Effectors. Curr. Issues Mol. Biol. 2018, 25, 61–80. [Google Scholar] [CrossRef]
- Liang, S.; Song, Z.; Wu, Y.; Gao, Y.; Gao, M.; Liu, F.; Wang, F.; Zhang, Y. MicroRNA-27b Modulates Inflammatory Response and Apoptosis during Mycobacterium tuberculosis Infection. J. Immunol. 2018, 200, 3506–3518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, D.; Yi, Z.; Fu, Y. Downregulation of miR-20b-5p facilitates Mycobacterium tuberculosis survival in RAW 264.7 macrophages via attenuating the cell apoptosis by Mcl-1 upregulation. J. Cell. Biochem. 2019, 120, 5889–5896. [Google Scholar] [CrossRef] [PubMed]
- Kundu, M.; Basu, J. The Role of microRNAs and Long Non-Coding RNAs in the Regulation of the Immune Response to Mycobacterium tuberculosis Infection. Front. Immunol. 2021, 12, 687962. [Google Scholar] [CrossRef] [PubMed]
- Fu, B.; Lin, X.; Tan, S.; Zhang, R.; Xue, W.; Zhang, H.; Zhang, S.; Zhao, Q.; Wang, Y.; Feldman, K.; et al. MiR-342 controls Mycobacterium tuberculosis susceptibility by modulating inflammation and cell death. EMBO Rep. 2021, 22, e52252. [Google Scholar] [CrossRef]
- Deng, Q.; Huang, J.; Yan, J.; Mao, E.; Chen, H.; Wang, C. Circ_0001490/miR-579-3p/FSTL1 axis modulates the survival of mycobacteria and the viability, apoptosis and inflammatory response in Mycobacterium tuberculosis-infected macrophages. Tuberculosis 2021, 131, 102123. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Wu, X.; Jin, C.; Li, F.; Xiong, S.; Dong, Y. MptpB Promotes Mycobacteria Survival by Inhibiting the Expression of Inflammatory Mediators and Cell Apoptosis in Macrophages. Front. Cell Infect. Microbiol. 2018, 8, 171. [Google Scholar] [CrossRef] [PubMed]
- Tur, J.; Pereira-Lopes, S.; Vico, T.; Marín, E.A.; Muñoz, J.P.; Hernández-Alvarez, M.; Cardona, P.-J.; Zorzano, A.; Lloberas, J.; Celada, A. Mitofusin 2 in Macrophages Links Mitochondrial ROS Production, Cytokine Release, Phagocytosis, Autophagy, and Bactericidal Activity. Cell Rep. 2020, 32, 108079. [Google Scholar] [CrossRef] [PubMed]
- Klionsky, D.J.; Petroni, G.; Amaravadi, R.K.; Baehrecke, E.H.; Ballabio, A.; Boya, P.; Pedro, J.M.B.; Cadwell, K.; Cecconi, F.; Choi, A.M.K.; et al. Autophagy in major human diseases. EMBO J. 2021, 40, e108863. [Google Scholar] [CrossRef]
- Lam, A.; Prabhu, R.; Gross, C.M.; Riesenberg, L.A.; Singh, V.; Aggarwal, S. Role of apoptosis and autophagy in tuberculosis. Am. J. Physiol. Lung Cell. Mol. Physiol. 2017, 313, L218–L229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelley, N.; Jeltema, D.; Duan, Y.; He, Y. The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and Regulation. Int. J. Mol. Sci. 2019, 20, 3328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mishra, B.B.; Moura-Alves, P.; Sonawane, A.; Hacohen, N.; Griffiths, G.; Moita, L.F.; Anes, E. Mycobacterium tuberculosis protein ESAT-6 is a potent activator of the NLRP3/ASC inflammasome. Cell. Microbiol. 2010, 12, 1046–1063. [Google Scholar] [CrossRef]
- Carlsson, F.; Kim, J.; Dumitru, C.; Barck, K.H.; Carano, R.A.D.; Sun, M.; Diehl, L.; Brown, E.J. Host-detrimental role of Esx-1-mediated inflammasome activation in mycobacterial infection. PLoS Pathog. 2010, 6, e1000895. [Google Scholar] [CrossRef]
- Wong, K.W.; Jacobs, W.R., Jr. Critical role for NLRP3 in necrotic death triggered by Mycobacterium tuberculosis. Cell. Microbiol. 2011, 13, 1371–1384. [Google Scholar] [CrossRef]
- Abdalla, H.; Srinivasan, L.; Shah, S.; Mayer-Barber, K.D.; Sher, A.; Sutterwala, F.S.; Briken, V. Mycobacterium tuberculosis infection of dendritic cells leads to partially caspase-1/11-independent IL-1beta and IL-18 secretion but not to pyroptosis. PLoS ONE 2012, 7, e40722. [Google Scholar] [CrossRef]
- Beckwith, K.S.; Beckwith, M.S.; Ullmann, S.; Sætra, R.S.; Kim, H.; Marstad, A.; Åsberg, S.E.; Strand, T.A.; Haug, M.; Niederweis, M.; et al. Plasma membrane damage causes NLRP3 activation and pyroptosis during Mycobacterium tuberculosis infection. Nat. Commun. 2020, 11, 2270. [Google Scholar] [CrossRef]
- Subbarao, S.; Sanchez-Garrido, J.; Krishnan, N.; Shenoy, A.R.; Robertson, B.D. Genetic and pharmacological inhibition of inflammasomes reduces the survival of Mycobacterium tuberculosis strains in macrophages. Sci. Rep. 2020, 10, 3709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gleeson, L.E.; Sheedy, F.J.; Palsson-McDermott, E.M.; Triglia, D.; O'Leary, S.M.; O’Sullivan, M.P.; O'Neill, L.A.J.; Keane, J. Cutting Edge: Mycobacterium tuberculosis Induces Aerobic Glycolysis in Human Alveolar Macrophages That Is Required for Control of Intracellular Bacillary Replication. J. Immunol. 2016, 196, 2444–2449. [Google Scholar] [CrossRef] [Green Version]
- Braverman, J.; Sogi, K.M.; Benjamin, D.; Nomura, D.K.; Stanley, S.A. HIF-1alpha Is an Essential Mediator of IFN-gamma-Dependent Immunity to Mycobacterium tuberculosis. J. Immunol. 2016, 197, 1287–1297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Domingo-Gonzalez, R.; Das, S.; Griffiths, K.L.; Ahmed, M.; Bambouskova, M.; Gopal, R.; Gondi, S.; Muñoz-Torrico, M.; Salazar-Lezama, M.A.; Cruz-Lagunas, A.; et al. Interleukin-17 limits hypoxia-inducible factor 1alpha and development of hypoxic granulomas during tuberculosis. JCI Insight 2017, 2, e92973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faridgohar, M.; Nikoueinejad, H. New findings of Toll-like receptors involved in Mycobacterium tuberculosis infection. Pathog. Glob. Health 2017, 111, 256–264. [Google Scholar] [CrossRef]
- Oliveira-Nascimento, L.; Massari, P.; Wetzler, L.M. The Role of TLR2 in Infection and Immunity. Front. Immunol. 2012, 3, 79. [Google Scholar] [CrossRef] [Green Version]
- Reiling, N.; Hölscher, C.; Fehrenbach, A.; Kröger, S.; Kirschning, C.J.; Goyert, S.; Ehlers, S. Cutting edge: Toll-like receptor (TLR)2- and TLR4-mediated pathogen recognition in resistance to airborne infection with Mycobacterium tuberculosis. J. Immunol. 2002, 169, 3480–3484. [Google Scholar] [CrossRef] [Green Version]
- Panday, A.; Sahoo, M.K.; Osorio, D.; Batra, S. NADPH oxidases: An overview from structure to innate immunity-associated pathologies. Cell. Mol. Immunol. 2015, 12, 5–23. [Google Scholar] [CrossRef] [Green Version]
- Aibana, O.; Huang, C.-C.; Aboud, S.; Arnedo-Pena, A.; Becerra, M.C.; Bellido-Blasco, J.B.; Bhosale, R.; Calderon, R.; Chiang, S.; Contreras, C.; et al. Vitamin D status and risk of incident tuberculosis disease: A nested case-control study, systematic review, and individual-participant data meta-analysis. PLoS Med. 2019, 16, e1002907. [Google Scholar] [CrossRef]
- Wilkinson, R.J.; Llewelyn, M.; Toossi, Z.; Patel, P.; Pasvol, G.; Lalvani, A.; Wright, D.; Latif, M.; Davidson, R.N. Influence of vitamin D deficiency and vitamin D receptor polymorphisms on tuberculosis among Gujarati Asians in west London: A case-control study. Lancet 2000, 355, 618–621. [Google Scholar] [CrossRef]
- Montoya-Rosales, A.; Provvedi, R.; Torres-Juarez, F.; Enciso-Moreno, J.A.; Hernandez-Pando, R.; Manganelli, R.; Rivas-Santiago, B. lysX gene is differentially expressed among Mycobacterium tuberculosis strains with different levels of virulence. Tuberculosis 2017, 106, 106–117. [Google Scholar] [CrossRef] [PubMed]
- Ganmaa, D.; Uyanga, B.; Zhou, X.; Gantsetseg, G.; Delgerekh, B.; Enkhmaa, D.; Khulan, D.; Ariunzaya, S.; Sumiya, E.; Bolortuya, B.; et al. Vitamin D Supplements for Prevention of Tuberculosis Infection and Disease. N. Engl. J. Med. 2020, 383, 359–368. [Google Scholar] [CrossRef] [PubMed]
- Sudfeld, C.R.; Mugusi, F.; Muhihi, A.; Aboud, S.; Nagu, T.J.; Ulenga, N.; Hong, B.; Wang, M.; Fawzi, W.W. Efficacy of vitamin D3 supplementation for the prevention of pulmonary tuberculosis and mortality in HIV: A randomised, double-blind, placebo-controlled trial. Lancet HIV 2020, 7, e463–e471. [Google Scholar] [CrossRef]
- Wu, H.X.; Xiong, X.-F.; Zhu, M.; Wei, J.; Zhuo, K.-Q.; Cheng, D.-Y. Effects of vitamin D supplementation on the outcomes of patients with pulmonary tuberculosis: A systematic review and meta-analysis. BMC Pulm. Med. 2018, 18, 108. [Google Scholar] [CrossRef]
- Jolliffe, D.A.; Ganmaa, D.; Wejse, C.; Raqib, R.; Haq, M.A.; Salahuddin, N.; Daley, P.K.; Ralph, A.P.; Ziegler, T.R.; Martineau, A.R. Adjunctive vitamin D in tuberculosis treatment: Meta-analysis of individual participant data. Eur. Respir. J. 2019, 53, 1802003. [Google Scholar] [CrossRef] [Green Version]
- Christofides, A.; Konstantinidou, E.; Jani, C.; Boussiotis, V.A. The role of peroxisome proliferator-activated receptors (PPAR) in immune responses. Metabolism 2021, 114, 154338. [Google Scholar] [CrossRef]
- Hu, S.; He, W.; Du, X.; Huang, Y.; Fu, Y.; Yang, Y.; Hu, C.; Li, S.; Wang, Q.; Wen, Q.; et al. Vitamin B1 Helps to Limit Mycobacterium tuberculosis Growth via Regulating Innate Immunity in a Peroxisome Proliferator-Activated Receptor-gamma-Dependent Manner. Front. Immunol. 2018, 9, 1778. [Google Scholar] [CrossRef] [Green Version]
- Pan, Q.; Yan, J.; Liu, Q.; Yuan, C.; Zhang, X.L. A single-stranded DNA aptamer against mannose-capped lipoarabinomannan enhances anti-tuberculosis activity of macrophages through downregulation of lipid-sensing nuclear receptor peroxisome proliferator-activated receptor gamma expression. Microbiol. Immunol. 2017, 61, 92–102. [Google Scholar] [CrossRef] [Green Version]
- Ward, H.E.; Nicholas, T.E. Alveolar type I and type II cells. Aust. N. Z. J. Med. 1984, 14, 731–734. [Google Scholar] [CrossRef]
- Fehrenbach, H. Alveolar epithelial type II cell: Defender of the alveolus revisited. Respir. Res. 2001, 2, 33–46. [Google Scholar] [CrossRef]
- Knight, D.A.; Holgate, S.T. The airway epithelium: Structural and functional properties in health and disease. Respirology 2003, 8, 432–446. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Vilanova, A.; Chan, J.; Torrelles, J.B. Underestimated Manipulative Roles of Mycobacterium tuberculosis Cell Envelope Glycolipids During Infection. Front. Immunol. 2019, 10, 2909. [Google Scholar] [CrossRef] [PubMed]
- Kaur, D.; Guerin, M.E.; Skovierova, H.; Brennan, P.J.; Jackson, M. Chapter 2: Biogenesis of the cell wall and other glycoconjugates of Mycobacterium tuberculosis. Adv. Appl. Microbiol. 2009, 69, 23–78. [Google Scholar] [CrossRef] [Green Version]
- Torrelles, J.B.; Knaup, R.; Kolareth, A.; Slepushkina, T.; Kaufman, T.M.; Kang, P.; Hill, P.J.; Brennan, P.J.; Chatterjee, D.; Belisle, J.T.; et al. Identification of Mycobacterium tuberculosis clinical isolates with altered phagocytosis by human macrophages due to a truncated lipoarabinomannan. J. Biol. Chem. 2008, 283, 31417–31428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, K.L.; Li, X.; Zhang, X.L.; Pan, Q. Mycobacterial mannose-capped lipoarabinomannan: A modulator bridging innate and adaptive immunity. Emerg. Microbes Infect. 2019, 8, 1168–1177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torrelles, J.B.; Schlesinger, L.S. Diversity in Mycobacterium tuberculosis mannosylated cell wall determinants impacts adaptation to the host. Tuberculosis 2010, 90, 84–93. [Google Scholar] [CrossRef] [Green Version]
- Turner, J.; Torrelles, J.B. Mannose-capped lipoarabinomannan in Mycobacterium tuberculosis pathogenesis. Pathog. Dis. 2018, 76, fty026. [Google Scholar] [CrossRef] [Green Version]
- Torrelles, J.B.; Azad, A.K.; Schlesinger, L.S. Fine discrimination in the recognition of individual species of phosphatidyl-myo-inositol mannosides from Mycobacterium tuberculosis by C-type lectin pattern recognition receptors. J. Immunol. 2006, 177, 1805–1816. [Google Scholar] [CrossRef] [Green Version]
- Kang, P.B.; Azad, A.K.; Torrelles, J.B.; Kaufman, T.M.; Beharka, A.; Tibesar, E.; Desjardin, L.E.; Schlesinger, L.S. The human macrophage mannose receptor directs Mycobacterium tuberculosis lipoarabinomannan-mediated phagosome biogenesis. J. Exp. Med. 2005, 202, 987–999. [Google Scholar] [CrossRef]
- Astarie-Dequeker, C.; N’Diaye, E.-N.; Le Cabec, V.; Rittig, M.G.; Prandi, J.; Maridonneau-Parini, I. The mannose receptor mediates uptake of pathogenic and nonpathogenic mycobacteria and bypasses bactericidal responses in human macrophages. Infect. Immun. 1999, 67, 469–477. [Google Scholar] [CrossRef]
- Chieppa, M.; Bianchi, G.; Doni, A.; Del Prete, A.; Sironi, M.; Laskarin, G.; Monti, P.; Piemonti, L.; Biondi, A.; Mantovani, A.; et al. Cross-linking of the mannose receptor on monocyte-derived dendritic cells activates an anti-inflammatory immunosuppressive program. J. Immunol. 2003, 171, 4552–4560. [Google Scholar] [CrossRef] [Green Version]
- Wong, K.W. The Role of ESX-1 in Mycobacterium tuberculosis Pathogenesis. Microbiol. Spectr. 2017, 5. [Google Scholar] [CrossRef]
- Houben, D.; Demangel, C.; van Ingen, J.; Perez, J.; Baldeón, L.; Abdallah, A.M.; Caleechurn, L.; Bottai, D.; van Zon, M.; de Punder, K.; et al. ESX-1-mediated translocation to the cytosol controls virulence of mycobacteria. Cell. Microbiol. 2012, 14, 1287–1298. [Google Scholar] [CrossRef]
- Manzanillo, P.S.; Shiloh, M.U.; Portnoy, D.A.; Cox, J.S. Mycobacterium tuberculosis activates the DNA-dependent cytosolic surveillance pathway within macrophages. Cell Host Microbe 2012, 11, 469–480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sly, L.M.; Hingley-Wilson, S.M.; Reiner, N.E.; McMaster, W.R. Survival of Mycobacterium tuberculosis in host macrophages involves resistance to apoptosis dependent upon induction of antiapoptotic Bcl-2 family member Mcl-1. J. Immunol. 2003, 170, 430–437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dallenga, T.; Repnik, U.; Corleis, B.; Eich, J.; Reimer, R.; Griffiths, G.W.; Schaible, U.E. M. tuberculosis-Induced Necrosis of Infected Neutrophils Promotes Bacterial Growth Following Phagocytosis by Macrophages. Cell Host Microbe 2017, 22, 519–530.e513. [Google Scholar] [CrossRef] [Green Version]
- Kwon, B.E.; Ahn, J.-H.; Min, S.; Kim, H.; Seo, J.; Yeo, S.-G.; Ko, H.-J. Development of New Preventive and Therapeutic Vaccines for Tuberculosis. Immune Netw. 2018, 18, e17. [Google Scholar] [CrossRef]
- Lu, Q.; Zhang, W.; Fang, J.; Zheng, J.; Dong, C.; Xiong, S. Mycobacterium tuberculosis Rv1096, facilitates mycobacterial survival by modulating the NF-kappaB/MAPK pathway as peptidoglycan N-deacetylase. Mol. Immunol. 2020, 127, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Kent, J.E.; Whitaker, M.; Young, D.C.; Herrmann, D.; Aleshin, A.E.; Ko, Y.-H.; Cingolani, G.; Saad, J.S.; Moody, D.B.; et al. A periplasmic cinched protein is required for siderophore secretion and virulence of Mycobacterium tuberculosis. Nat. Commun. 2022, 13, 2255. [Google Scholar] [CrossRef] [PubMed]
- Treerat, P.; Prince, O.; Cruz-Lagunas, A.; Muñoz-Torrico, M.; Salazar-Lezama, M.; Selman, M.; Fallert-Junecko, B.; Reinhardt, T.; Alcorn, J.F.; Kaushal, D.; et al. Novel role for IL-22 in protection during chronic Mycobacterium tuberculosis HN878 infection. Mucosal Immunol. 2017, 10, 1069–1081. [Google Scholar] [CrossRef]
- Nahid, P.; Jarlsberg, L.G.; Kato-Maeda, M.; Segal, M.R.; Osmond, D.H.; Gagneux, S.; Dobos, K.; Gold, M.; Hopewell, P.C.; Lewinsohn, D.M. Interplay of strain and race/ethnicity in the innate immune response to M. tuberculosis. PLoS ONE 2018, 13, e0195392. [Google Scholar] [CrossRef] [PubMed]
- Dunlap, M.D.; Howard, N.; Das, S.; Scott, N.; Ahmed, M.; Prince, O.; Rangel-Moreno, J.; Rosa, B.A.; Martin, J.; Kaushal, D.; et al. A novel role for C-C motif chemokine receptor 2 during infection with hypervirulent Mycobacterium tuberculosis. Mucosal Immunol. 2018, 11, 1727–1742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bucsan, A.N.; Veatch, A.; Singh, D.K.; Akter, S.; Golden, N.A.; Kirkpatrick, M.; Threeton, B.; Moodley, C.; Ahmed, M.; Doyle, L.A.; et al. Response to Hypoxia and the Ensuing Dysregulation of Inflammation Impacts Mycobacterium tuberculosis Pathogenicity. Am. J. Respir. Crit. Care Med. 2022, 206, 94–104. [Google Scholar] [CrossRef]
- Forrellad, M.A.; Vázquez, C.L.; Blanco, F.C.; Klepp, L.I.; García, E.A.; Rocha, R.V.; Luciana, V.; Bigi, M.M.; Gutierrez, M.G.; Bigi, F. Rv2617c and P36 are virulence factors of pathogenic mycobacteria involved in resistance to oxidative stress. Virulence 2019, 10, 1026–1033. [Google Scholar] [CrossRef] [Green Version]
- Strong, E.J.; Ng, T.W.; Porcelli, S.A.; Lee, S. Mycobacterium tuberculosis PE_PGRS20 and PE_PGRS47 Proteins Inhibit Autophagy by Interaction with Rab1A. mSphere 2021, 6, e0054921. [Google Scholar] [CrossRef] [PubMed]
- Shey-Njila, O.; Hikal, A.F.; Gupta, T.; Sakamoto, K.; Azami, H.Y.; Watford, W.T.; Quinn, F.D.; Karls, R.K. CtpB Facilitates Mycobacterium tuberculosis Growth in Copper-Limited Niches. Int. J. Mol. Sci. 2022, 23, 5713. [Google Scholar] [CrossRef]
- Wang, L.; Asare, E.; Shetty, A.C.; Sanchez-Tumbaco, F.; Edwards, M.R.; Saranathan, R.; Weinrick, B.; Xu, J.; Chen, B.; Bénard, A.; et al. Multiple genetic paths including massive gene amplification allow Mycobacterium tuberculosis to overcome loss of ESX-3 secretion system substrates. Proc. Natl. Acad. Sci. USA 2022, 119, e2112608119. [Google Scholar] [CrossRef]
- Rodel, H.E.; Ferreira, I.A.T.M.; Ziegler, C.G.K.; Ganga, Y.; Bernstein, M.; Hwa, S.-H.; Nargan, K.; Lustig, G.; Kaplan, G.; Noursadeghi, M.; et al. Aggregated Mycobacterium tuberculosis Enhances the Inflammatory Response. Front. Microbiol. 2021, 12, 757134. [Google Scholar] [CrossRef]
- Domingo-Gonzalez, R.; Prince, O.; Cooper, A.; Khader, S.A. Cytokines and Chemokines in Mycobacterium tuberculosis Infection. Microbiol. Spectr. 2016, 4, 33–72. [Google Scholar] [CrossRef] [Green Version]
- Tartaglia, L.A.; Weber, R.F.; Figari, I.S.; Reynolds, C.; Palladino, M.A.; Goeddel, D.V. The two different receptors for tumor necrosis factor mediate distinct cellular responses. Proc. Natl. Acad. Sci. USA 1991, 88, 9292–9296. [Google Scholar] [CrossRef] [PubMed]
- Horiuchi, T.; Mitoma, H.; Harashima, S.; Tsukamoto, H.; Shimoda, T. Transmembrane TNF-alpha: Structure, function and interaction with anti-TNF agents. Rheumatology 2010, 49, 1215–1228. [Google Scholar] [CrossRef] [Green Version]
- Di Paolo, N.C.; Shafiani, S.; Day, T.; Papayannopoulou, T.; Russell, D.W.; Iwakura, Y.; Sherman, D.; Urdahl, K.; Shayakhmetov, D.M. Interdependence between Interleukin-1 and Tumor Necrosis Factor Regulates TNF-Dependent Control of Mycobacterium tuberculosis Infection. Immunity 2015, 43, 1125–1136. [Google Scholar] [CrossRef] [Green Version]
- Miller, E.A.; Ernst, J.D. Anti-TNF immunotherapy and tuberculosis reactivation: Another mechanism revealed. J. Clin. Investig. 2009, 119, 1079–1082. [Google Scholar] [CrossRef] [Green Version]
- Neurath, M.F.; Finotto, S. IL-6 signaling in autoimmunity, chronic inflammation and inflammation-associated cancer. Cytokine Growth Factor Rev. 2011, 22, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Xing, Z.; Gauldie, J.; Cox, G.; Baumann, H.; Jordana, M.; Lei, X.F.; Achong, M.K. IL-6 is an antiinflammatory cytokine required for controlling local or systemic acute inflammatory responses. J. Clin. Investig. 1998, 101, 311–320. [Google Scholar] [CrossRef]
- Hunter, C.A.; Jones, S.A. IL-6 as a keystone cytokine in health and disease. Nat. Immunol. 2015, 16, 448–457. [Google Scholar] [CrossRef]
- Bordon, Y. Immunometabolism: IL-6, the resistance fighter. Nat. Rev. Immunol. 2014, 14, 282–283. [Google Scholar] [CrossRef]
- Li, J.; Cao, C.; Xiang, Y.; Hong, Z.; He, D.; Liu, Y.; Wu, Y.; Zheng, X.; Yin, H.; Zhou, J.; et al. TLT2 Suppresses Th1 Response by Promoting IL-6 Production in Monocyte Through JAK/STAT3 Signal Pathway in Tuberculosis. Front. Immunol. 2020, 11, 2031. [Google Scholar] [CrossRef] [PubMed]
- Becher, B.; Tugues, S.; Greter, M. GM-CSF: From Growth Factor to Central Mediator of Tissue Inflammation. Immunity 2016, 45, 963–973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez, F.O.; Gordon, S. The M1 and M2 paradigm of macrophage activation: Time for reassessment. F1000Prime Rep. 2014, 6, 13. [Google Scholar] [CrossRef] [PubMed]
- Benmerzoug, S.; Marinho, F.V.; Rose, S.; Mackowiak, C.; Gosset, D.; Sedda, D.; Poisson, E.; Uyttenhove, C.; Van Snick, J.; Jacobs, M.; et al. GM-CSF targeted immunomodulation affects host response to M. tuberculosis infection. Sci. Rep. 2018, 8, 8652. [Google Scholar] [CrossRef] [Green Version]
- Lovey, A.; Verma, S.; Kaipilyawar, V.; Ribeiro-Rodrigues, R.; Husain, S.; Palaci, M.; Dietze, R.; Ma, S.; Morrison, R.D.; Sherman, D.R.; et al. Early alveolar macrophage response and IL-1R-dependent T cell priming determine transmissibility of Mycobacterium tuberculosis strains. Nat. Commun. 2022, 13, 884. [Google Scholar] [CrossRef]
- Moorlag, S.; Khan, N.; Novakovic, B.; Kaufmann, E.; Jansen, T.; van Crevel, R.; Divangahi, M.; Netea, M.G. beta-Glucan Induces Protective Trained Immunity against Mycobacterium tuberculosis Infection: A Key Role for IL-1. Cell Rep. 2020, 31, 107634. [Google Scholar] [CrossRef]
- Hackett, E.E.; Charles-Messance, H.; O’Leary, S.; Gleeson, L.E.; Muñoz-Wolf, N.; Case, S.; Wedderburn, A.; Johnston, D.G.; Williams, M.A.; Smyth, A.; et al. Mycobacterium tuberculosis Limits Host Glycolysis and IL-1beta by Restriction of PFK-M via MicroRNA-21. Cell Rep. 2020, 30, 124–136.e124. [Google Scholar] [CrossRef]
- Romagnoli, A.; Petruccioli, E.; Palucci, I.; Camassa, S.; Carata, E.; Petrone, L.; Mariano, S.; Sali, M.; Dini, L.; Girardi, E.; et al. Clinical isolates of the modern Mycobacterium tuberculosis lineage 4 evade host defense in human macrophages through eluding IL-1beta-induced autophagy. Cell Death Dis. 2018, 9, 624. [Google Scholar] [CrossRef] [Green Version]
- de Padilla, C.M.L.; Niewold, T.B. The type I interferons: Basic concepts and clinical relevance in immune-mediated inflammatory diseases. Gene 2016, 576, 14–21. [Google Scholar] [CrossRef] [Green Version]
- Berry, M.P.; Graham, C.M.; McNab, F.W.; Xu, Z.; Bloch, S.A.A.; Oni, T.; Wilkinson, K.A.; Banchereau, R.; Skinner, J.; Wilkinson, R.J.; et al. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 2010, 466, 973–977. [Google Scholar] [CrossRef] [Green Version]
- Pichugin, A.V.; Yan, B.S.; Sloutsky, A.; Kobzik, L.; Kramnik, I. Dominant role of the sst1 locus in pathogenesis of necrotizing lung granulomas during chronic tuberculosis infection and reactivation in genetically resistant hosts. Am. J. Pathol. 2009, 174, 2190–2201. [Google Scholar] [CrossRef] [Green Version]
- Kramnik, I.; Dietrich, W.F.; Demant, P.; Bloom, B.R. Genetic control of resistance to experimental infection with virulent Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 2000, 97, 8560–8565. [Google Scholar] [CrossRef] [Green Version]
- Olson, G.S.; Murray, T.A.; Jahn, A.N.; Mai, D.; Diercks, A.H.; Gold, E.S.; Aderem, A. Type I interferon decreases macrophage energy metabolism during mycobacterial infection. Cell Rep. 2021, 35, 109195. [Google Scholar] [CrossRef]
- Zarogoulidis, P.; Kioumis, I.; Papanas, N.; Manika, K.; Kontakiotis, T.; Papagianis, A.; Zarogoulidis, K. The effect of combination IFN-alpha-2a with usual antituberculosis chemotherapy in non-responding tuberculosis and diabetes mellitus: A case report and review of the literature. J. Chemother. 2012, 24, 173–177. [Google Scholar] [CrossRef]
- Ghanavi, J.; Farnia, P.; Farnia, P.; Velayati, A.A. The role of interferon-gamma and interferon-gamma receptor in tuberculosis and nontuberculous mycobacterial infections. Int. J. Mycobacteriol. 2021, 10, 349–357. [Google Scholar] [CrossRef] [PubMed]
- Sodhi, A.; Gong, J.; Silva, C.; Qian, D.; Barnes, P.F. Clinical correlates of interferon gamma production in patients with tuberculosis. Clin. Infect. Dis. 1997, 25, 617–620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Couper, K.N.; Blount, D.G.; Riley, E.M. IL-10: The master regulator of immunity to infection. J. Immunol. 2008, 180, 5771–5777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Redford, P.S.; Murray, P.J.; O’Garra, A. The role of IL-10 in immune regulation during M. tuberculosis infection. Mucosal Immunol. 2011, 4, 261–270. [Google Scholar] [CrossRef] [Green Version]
- Upadhyay, R.; Sanchez-Hidalgo, A.; Wilusz, C.J.; Lenaerts, A.J.; Arab, J.; Yeh, J.; Stefanisko, K.; Tarasova, N.I.; Gonzalez-Juarrero, M. Host Directed Therapy for Chronic Tuberculosis via Intrapulmonary Delivery of Aerosolized Peptide Inhibitors Targeting the IL-10-STAT3 Pathway. Sci. Rep. 2018, 8, 16610. [Google Scholar] [CrossRef] [Green Version]
- Krstic, J.; Trivanovic, D.; Mojsilovic, S.; Santibanez, J.F. Transforming Growth Factor-Beta and Oxidative Stress Interplay: Implications in Tumorigenesis and Cancer Progression. Oxid. Med. Cell. Longev. 2015, 2015, 654594. [Google Scholar] [CrossRef] [Green Version]
- Pompei, L.; Jang, S.; Zamlynny, B.; Ravikumar, S.; McBride, A.; Hickman, S.P.; Salgame, P. Disparity in IL-12 release in dendritic cells and macrophages in response to Mycobacterium tuberculosis is due to use of distinct TLRs. J. Immunol. 2007, 178, 5192–5199. [Google Scholar] [CrossRef] [Green Version]
- Dao, D.N.; Sweeney, K.; Hsu, T.; Gurcha, S.S.; Nascimento, I.P.; Roshevsky, D.; Besra, G.S.; Chan, J.; Porcelli, S.A.; Jacobs, W.R. Mycolic acid modification by the mmaA4 gene of M. tuberculosis modulates IL-12 production. PLoS Pathog. 2008, 4, e1000081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, N.P.; Moideen, K.; Nancy, A.; Viswanathan, V.; Shruthi, B.S.; Sivakumar, S.; Natarajan, M.; Kornfeld, H.; Babu, S. Plasma chemokines are biomarkers of disease severity, higher bacterial burden and delayed sputum culture conversion in pulmonary tuberculosis. Sci. Rep. 2019, 9, 18217. [Google Scholar] [CrossRef]
- Kumar, N.P.; Moideen, K.; Nancy, A.; Viswanathan, V.; Thiruvengadam, K.; Nair, D.; Banurekha, V.V.; Sivakumar, S.; Hissar, S.; Kornfeld, H.; et al. Plasma Chemokines Are Baseline Predictors of Unfavorable Treatment Outcomes in Pulmonary Tuberculosis. Clin. Infect. Dis. 2021, 73, e3419–e3427. [Google Scholar] [CrossRef]
- Azad, A.K.; Sadee, W.; Schlesinger, L.S. Innate immune gene polymorphisms in tuberculosis. Infect. Immun. 2012, 80, 3343–3359. [Google Scholar] [CrossRef] [Green Version]
- Ghanavi, J.; Farnia, P.; Farnia, P.; Velayati, A.A. Human genetic background in susceptibility to tuberculosis. Int. J. Mycobacteriol. 2020, 9, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Wenhao, S.; Yuanyuan, M.; Yang, L.; Daming, Z.; Jiangchun, X.; Jijun, J. A single nucleotide polymorphism in the interferon-gamma gene (IFNG + 874 T/A) is associated with susceptibility to tuberculosis. Oncotarget 2017, 8, 50415–50429. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Wang, M.G.; Wang, Y.; He, J.Q. Polymorphisms of cytokine genes and tuberculosis in two independent studies. Sci. Rep. 2019, 9, 2507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Deng, G.; Zhang, G.; Yu, Z.-Q.; Yang, F.; Chen, J.; Cai, Y.; Werz, O.; Chen, X. Genetic polymorphism rs8193036 of IL17A is associated with increased susceptibility to pulmonary tuberculosis in Chinese Han population. Cytokine 2020, 127, 154956. [Google Scholar] [CrossRef]
- Shah, J.A.; Warr, A.J.; Graustein, A.D.; Saha, A.; Dunstan, S.J.; Thuong, N.T.T.; Thwaites, G.E.; Caws, M.; Thai, P.V.K.; Bang, N.D.; et al. REL and BHLHE40 Variants Are Associated with IL-12 and IL-10 Responses and Tuberculosis Risk. J. Immunol. 2022, 208, 1352–1361. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.G.; Zhang, M.-M.; Wang, Y.; Wu, S.-Q.; Zhang, M.; He, J.-Q. Association of TLR8 and TLR9 polymorphisms with tuberculosis in a Chinese Han population: A case-control study. BMC Infect. Dis. 2018, 18, 561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.W.; Hu, H.C.; Liu, H.J.; Chiu, Y.C.; Lee, S.W.; Wu, L.S. The association of inflammasome and TLR2 gene polymorphisms with susceptibility to tuberculosis in the Han Taiwanese population. Sci. Rep. 2020, 10, 10184. [Google Scholar] [CrossRef] [PubMed]
- Cubillos-Angulo, J.M.; Fernandes, C.D.; Araújo, D.N.; Carmo, C.A.; Arriaga, M.B.; Andrade, B.B. The influence of single nucleotide polymorphisms of NOD2 or CD14 on the risk of Mycobacterium tuberculosis diseases: A systematic review. Syst. Rev. 2021, 10, 174. [Google Scholar] [CrossRef] [PubMed]
- Olvany, J.M.; Sausville, L.N.; White, M.J.; Tacconelli, A.; Tavera, G.; Sobota, R.S.; Ciccacci, C.; Bohlbro, A.S.; Wejse, C.; Williams, S.M.; et al. CLEC4E (Mincle) genetic variation associates with pulmonary tuberculosis in Guinea-Bissau (West Africa). Infect. Genet. Evol. 2020, 85, 104560. [Google Scholar] [CrossRef]
- Lao, W.; Kang, H.; Jin, G.; Chen, L.; Chu, Y.; Sun, J.; Sun, B. Evaluation of the relationship between MARCO and CD36 single-nucleotide polymorphisms and susceptibility to pulmonary tuberculosis in a Chinese Han population. BMC Infect. Dis. 2017, 17, 488. [Google Scholar] [CrossRef] [Green Version]
- Panda, S.; Tiwari, A.; Luthra, K.; Sharma, S.K.; Singh, A. Association of Fok1 VDR polymorphism with Vitamin D and its associated molecules in pulmonary tuberculosis patients and their household contacts. Sci. Rep. 2019, 9, 15251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Zhu, H.; Yang, X.; Guo, S.; Liang, Q.; Lu, Y.; Chen, X. Serum vitamin D level and vitamin D receptor genotypes may be associated with tuberculosis clinical characteristics: A case-control study. Medicine 2018, 97, e11732. [Google Scholar] [CrossRef]
- Mohammadi, A.; Khanbabaei, H.; Nasiri-Kalmarzi, R.; Khademi, F.; Jafari, M.; Tajik, N. Vitamin D receptor ApaI (rs7975232), BsmI (rs1544410), Fok1 (rs2228570), and TaqI (rs731236) gene polymorphisms and susceptibility to pulmonary tuberculosis in an Iranian population: A systematic review and meta-analysis. J. Microbiol. Immunol. Infect. 2020, 53, 827–835. [Google Scholar] [CrossRef]
- Abate, E.; Blomgran, R.; Verma, D.; Lerm, M.; Fredrikson, M.; Belayneh, M.; Söderkvist, P.; Stendahl, O.; Schön, T. Polymorphisms in CARD8 and NLRP3 are associated with extrapulmonary TB and poor clinical outcome in active TB in Ethiopia. Sci. Rep. 2019, 9, 3126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Figueira, M.B.D.A.; de Lima, D.S.; Boechat, A.L.; Filho, M.G.D.N.; Antunes, I.A.; Matsuda, J.d.S.; Ribeiro, T.R.d.A.; Felix, L.S.; Gonçalves, A.S.F.; da Costa, A.G.; et al. Single-Nucleotide Variants in the AIM2-Absent in Melanoma 2 Gene (rs1103577) Associated with Protection for Tuberculosis. Front. Immunol. 2021, 12, 604975. [Google Scholar] [CrossRef]
- Klassert, T.E.; Goyal, S.; Stock, M.; Driesch, D.; Hussain, A.; Berrocal-Almanza, L.C.; Myakala, R.; Sumanlatha, G.; Valluri, V.; Ahmed, N.; et al. AmpliSeq Screening of Genes Encoding the C-Type Lectin Receptors and Their Signaling Components Reveals a Common Variant in MASP1 Associated with Pulmonary Tuberculosis in an Indian Population. Front. Immunol. 2018, 9, 242. [Google Scholar] [CrossRef] [Green Version]
- Sokolowska, A.; Świerzko, A.S.; Szala-Poździej, A.; Augustynowicz-Kopeć, E.; Kozińska, M.; Niemiec, T.; Błachnio, M.; Borkowska-Tatar, D.; Jensenius, J.C.; Thiel, S.; et al. Selected factors of the innate immunity in Polish patients suffering from pulmonary tuberculosis. Immunobiology 2020, 225, 151905. [Google Scholar] [CrossRef]
- Hsieh, M.H.; Ou, C.-Y.; Hsieh, W.-Y.; Kao, H.-F.; Lee, S.-W.; Wang, J.-Y.; Wu, L.S.H. Functional Analysis of Genetic Variations in Surfactant Protein D in Mycobacterial Infection and Their Association with Tuberculosis. Front. Immunol. 2018, 9, 1543. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.Y.; Li, H.; Wang, Y.-G.; Xu, C.-Y.; Zhao, Y.-L.; Ma, X.-G.; Li, X.-W.; Chen, H. Correlation analysis between single nucleotide polymorphisms of pulmonary surfactant protein A gene and pulmonary tuberculosis in the Han population in China. Int. J. Infect. Dis. 2014, 26, 31–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellamy, R.; Ruwende, C.; Corrah, T.; McAdam, K.P.; Whittle, H.C.; Hill, A.V. Variations in the NRAMP1 gene and susceptibility to tuberculosis in West Africans. N. Engl. J. Med. 1998, 338, 640–644. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Ke, Z.; Guo, Y.; Xi, X.; Luo, Z. NRAMP1 D543N and INT4 polymorphisms in susceptibility to pulmonary tuberculosis: A meta-analysis. Infect. Genet. Evol. 2017, 54, 91–97. [Google Scholar] [CrossRef]
- Medapati, R.V.; Suvvari, S.; Godi, S.; Gangisetti, P. NRAMP1 and VDR gene polymorphisms in susceptibility to pulmonary tuberculosis among Andhra Pradesh population in India: A case-control study. BMC Pulm. Med. 2017, 17, 89. [Google Scholar] [CrossRef]
- Hu, W.; Spaink, H.P. The Role of TLR2 in Infectious Diseases Caused by Mycobacteria: From Cell Biology to Therapeutic Target. Biology 2022, 11, 246. [Google Scholar] [CrossRef]
- Bowker, N.; Salie, M.; Schurz, H.; van Helden, P.D.; Kinnear, C.J.; Hoal, E.G.; Möller, M. Polymorphisms in the Pattern Recognition Receptor Mincle Gene (CLEC4E) and Association with Tuberculosis. Lung 2016, 194, 763–767. [Google Scholar] [CrossRef]
- Meyer, V.; Bornman, L. Cdx-2 polymorphism in the vitamin D receptor gene (VDR) marks VDR expression in monocyte/macrophages through VDR promoter methylation. Immunogenetics 2018, 70, 523–532. [Google Scholar] [CrossRef]
- Nayak, A.; Dodagatta-Marri, E.; Tsolaki, A.G.; Kishore, U. An Insight into the Diverse Roles of Surfactant Proteins, SP-A and SP-D in Innate and Adaptive Immunity. Front. Immunol. 2012, 3, 131. [Google Scholar] [CrossRef] [Green Version]
- Gaynor, C.D.; McCormack, F.X.; Voelker, D.R.; McGowan, S.E.; Schlesinger, L.S. Pulmonary surfactant protein A mediates enhanced phagocytosis of Mycobacterium tuberculosis by a direct interaction with human macrophages. J. Immunol. 1995, 155, 5343–5351. [Google Scholar]
- Ferguson, J.S.; Voelker, D.R.; McCormack, F.X.; Schlesinger, L.S. Surfactant protein D binds to Mycobacterium tuberculosis bacilli and lipoarabinomannan via carbohydrate-lectin interactions resulting in reduced phagocytosis of the bacteria by macrophages. J. Immunol. 1999, 163, 312–321. [Google Scholar]
- Azad, A.K.; Curtis, A.; Papp, A.; Webb, A.; Knoell, D.; Sadee, W.; Schlesinger, L.S. Allelic mRNA expression imbalance in C-type lectins reveals a frequent regulatory SNP in the human surfactant protein A (SP-A) gene. Genes Immun. 2013, 14, 99–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moliva, J.I.; Duncan, M.A.; Olmo-Fontánez, A.; Akhter, A.; Arnett, E.; Scordo, J.M.; Ault, R.; Sasindran, S.J.; Azad, A.K.; Montoya, M.J.; et al. The Lung Mucosa Environment in the Elderly Increases Host Susceptibility to Mycobacterium tuberculosis Infection. J. Infect. Dis. 2019, 220, 514–523. [Google Scholar] [CrossRef] [PubMed]
- Fritsche, G.; Nairz, M.; Theurl, I.; Mair, S.; Bellmann-Weiler, R.; Barton, H.C.; Weiss, G. Modulation of macrophage iron transport by Nramp1 (Slc11a1). Immunobiology 2007, 212, 751–757. [Google Scholar] [CrossRef] [PubMed]
- Canonne-Hergaux, F.; Gruenheid, S.; Govoni, G.; Gros, P. The Nramp1 protein and its role in resistance to infection and macrophage function. Proc. Assoc. Am. Physicians 1999, 111, 283–289. [Google Scholar] [CrossRef] [PubMed]
Innate Factors | Host/Cell Type | Biological Effects during Host-M.tb Interaction | References |
---|---|---|---|
Cellular Pathways: | |||
Mcl-1 | Human MDMs | Treatment of macrophages with Mcl-1 antagonists resulted in significantly decreased M.tb growth | [8] |
Caspase-8 | Mouse macrophages | Drives cell death of M.tb-infected macrophages, thereby controlling infection | [9] |
Sirtuin 7 | Mouse RAW 264.7 | Helps control M.tb growth through NO-induced apoptosis | [10] |
mTOR | Mice | Increases autophagy and controls M.tb growth in infected mice (lung homogenate) | [11] |
Hydrogen sulfide | Mouse RAW 264.7 | Increases autophagy and controls M.tb growth in infected cells | [12] |
HIF-1 | Human U937 monocytes | Increases autophagy and controls M.tb growth in infected cells | [13] |
DRAM2 | Human MDMs | Binds to microtubule-associated proteins essential for the initiation of autophagy and decreases M.tb growth | [14] |
microRNA miR-18a | Mouse RAW 264.7 | Decreases LC3-II expression, required for autophagosome formation, and promotes M.tb survival | [15] |
CLEC4E | Mouse BMDMs | Enhances autophagy and decreases M.tb growth | [16] |
TLR4 | Mouse BMDMs | Enhances autophagy and decreases M.tb growth | [16] |
Sirtuin 3 | Mouse BMDMs | Involved in the expression of PPARα, an autophagy activator, and its KO macrophages show increased growth of M.tb | [17] |
P2X7 | Mice | Detects ATP released during cellular stress or death pathways and activates the inflammasome, leading to decreased disease severity and M.tb CFUs in lung | [18] |
P2RX7 | Zebrafish | Potentiation through the drug clemastine improves mycobacterial infection control | [19] |
HIF-1α | Human MDMs | Presence in normoxic conditions decreases intracellular M.tb growth and also decreases the release of TNFα and IL-10. | [20] |
Mice | Deficiency of HIF-1α increases lung bacterial burden in infected mice | [21] | |
Mouse BMDMs | Deficiency of HIF-1α increases M.tb growth and impairs the expression of glycolysis-related genes | [22] | |
Bioeffector Proteins and Molecules: | |||
TLR2 | Mouse BMDMs | A late, endosome-specific component of the TLR2 response is inhibited by M.tb virulence factors PDIM and ESX-1 to improve M.tb growth. | [23] |
Mice | Critical for activation of Sirtuin 3 and protection against M.tb in macrophages from lung and spleen | [24] | |
TLR9 | Mouse BMDMs | Recognizes unmethylated CpG motifs in bacterial DNA and plays role in the recognition and control of M.tb infection | [25] |
IDO-1 | Human and mouse macrophages | Expression is upregulated by M.tb infection but is not essential for the control of M.tb growth in vitro. | [26] |
Mice, Non-human primates (NHP) | Expression correlates with the increase in mouse lung CFUs of M.tb and treatment of rhesus macaques with an IDO-1 inhibitor decreases lung bacterial burden. | [27] | |
Human PBMCs, MDMs | Represents one of the biochemical pathways in human macrophages that prevents the efficient killing of M.tb in TB granulomas | [28] | |
FAK | Human THP-1 | Overexpression leads to decreased M.tb survival, which is due to increased ROS production | [29] |
microRNA miR-495 | Human THP-1 | Causes decreased M.tb survival through the increased production of ROS and inhibition of SOD2 | [30] |
TARM-1 | Mouse RAW 264.7 | Knocking down of this receptor decreases the production of ROS and increases the growth of M.tb H37Rv | [31] |
FAO | Mouse BMDMs | Inhibition of fatty acid oxidase leads to NADPH oxidase recruitment and decreased M.tb growth | [32] |
CD157 | Human MDMs | Macrophage treatment with soluble CD157 leads to decreased CFUs of M.tb, likely due to TLR2-dependent ROS production | [33] |
Liposomal glutathione | Mice | An antioxidant that prevents damage to host immune cells by ROS, but decreases lung CFUs of M.tb at the same time | [34] |
Vitamin D | Mice | Activated form induces the synthesis of LL-37, and administration of which in M.tb-infected mice leads to a reduction in lung bacterial burden | [35,36] |
Vitamin D + Phenylbutyrate | Human MDMs | Inhibit the growth of MDR-TB strains | [37] |
PPARα | Mouse BMDMs | Protective against infection, since KO mice show increased M.tb growth compared to WT | [38] |
PPARy | Human MDMs | Permissive to infection, since knocking down of the gene significantly decreases M.tb growth concomitant with an increase in TNF | [39] |
Other Cellular Factors: | |||
Airway epithelial cells (AECs) | Human alveolar epithelial cells | Express PRRs, surfactant, and recruit neutrophils. Provide protective host response against M.tb infection in the airway environment which contains alveolar macrophages. | [40,41] |
Lung-on-chip model with mouse cells | Cells lacking surfactant allowed for the rapid growth of M.tb further highlighting the importance of surfactant in bacterial control in the alveolar environment which contains alveolar macrophages | [42] | |
Cytokines and Chemokines: | |||
TNF-α | Zebrafish macrophages | Considered as a critical host resistance factor against TB but excess TNF confers TB susceptibility by increasing mitochondrial ROS in infected macrophages. | [43] |
Human PBMCs/ in vitro granuloma | TNF-α antagonists differentially induce TGF-β1-dependent resuscitation of dormant M.tb | [44] | |
CD153 | Human T cells | M.tb-specific CD4+ T cells expressing CD153 is significantly reduced in patients with active TB | [45] |
IL-6 | Mice | KO mice are highly susceptible to M.tb infection | [46] |
Mouse macrophages | M.tb-induced IL-6 inhibits macrophage response to IFN-γ | [47] | |
Human U937, Mouse RAW 264.7 | M.tb virulence factor, Rv3246c, enhances bacterial survival in macrophages by inhibiting TNF-α and IL-6 production in an NF-κB pathway-dependent manner | [48] | |
GM-CSF | Human MDMs, Mouse AMs and RAW 264.7 | Enhances M.tb localization in acidic compartments, resulting in phagolysosomal fusion and bacterial clearance | [49,50] |
Human and Mouse AMs | Human AMs after M.tb infection produce more GM-CSF, conferring higher control of infection than mouse AMs | [51] | |
IL-1β | Mice | Absence leads to M.tb outgrowth in the lungs and distant organs and impaired granuloma formation containing fewer macrophages | [52] |
Mice, Mouse macrophages | Absence of IL-1R signal leads to a dramatic defect in early control of M.tb infection in vivo and also in stimulated macrophages due to an absence of MyD88-dependent signaling | [53] | |
Human MDMs | Both gene and protein expression are decreased in MDMs from active TB patients compared to LTBI subjects, suggesting a role for IL-1β in preventing TB reactivation | [54] | |
Type I IFN | Mice (B6.Sst1 strain) | Uncontrolled production of type I IFN by mice increases their susceptibility to M.tb | [55] |
Mice, Mouse BMDMs and RAW 264.7 | Type I IFN signaling mediates M.tb-induced macrophage death. Its absence in combination with Rifampin treatment leads to a significant reduction in CFUs in lungs and liver | [56] | |
Human | Patients with active TB have increased levels of type I IFN, which correlates with disease severity | [57] | |
IFN-β | Mouse BMDM | IFN-β signaling promotes protection against M.tb infection by increasing the production of NO | [58] |
IFN-γ | Human THP-1 | Associated with limiting intracellular bacterial replication by reducing hepcidin secretion in macrophages | [59] |
Mice, Mouse macrophages | Depletes intracellular histidine which is essential for M.tb survival both in vivo and ex vivo murine macrophages | [60] | |
IL-10 | Human and mouse macrophages | Production in macrophages is upregulated via the TLR2-ERK pathway during M.tb infection. IL-10, through STAT3 induction, mediates anti-inflammatory response and diminishes antibacterial activity | [61,62] |
Human AMs, MDMs and THP-1 | Blocks phagosome maturation resulting in increased M.tb survival in macrophages | [63] | |
Human MDMs | Presence of alveolar lining fluid in infected cell culture releases M.tb cell wall fragments resulting in the production of IL-10 which, coupled with STAT3 signaling, leads to macrophage-mediated control and growth of M.tb | [64] | |
TGF-β | GranSim granuloma model, NHP | Presence of TGF-β in TB granulomas inhibits the killing of infected macrophages by cytotoxic T cells | [65] |
Human PBMCs/ in vitro granuloma | Adalimumab, an anti–TNF-α–targeting molecule, specifically mediates TGF-β1-dependent resuscitation of dormant M.tb | [44] | |
IL-12 | Human PBMCs, macrophages | Promotes macrophage bactericidal activity, proliferation, and cytosolic activity | [66] |
Human/Mouse macrophages and DCs | Mutations in IL-12 confer increased susceptibility to M.tb infection | [67] | |
Chemokines | Human immune cells, macrophages | Recruit cells including macrophages into the M.tb-infected lung which contributes to M.tb containment | [68] |
CCL1, CCL3, CXCL1, CXCL2, CXCL10 | Confirmed and Control TB subjects | Baseline levels of these plasma chemokines are significantly higher in active TB patients compared to TB controls in children | [69] |
Gene | Polymorphism | Population | Association with TB | Effect | References |
---|---|---|---|---|---|
IFN-γ | +874 T/A (rs2430561) | American, European, African, Asian | Yes | Susceptible | [174] |
TNF | rs1799964, rs1800630 | Chinese Tibetan | Yes | Susceptible | [175] |
rs1799724, rs1800629 | Tibetan | Yes | Susceptible | [175] | |
IL-1β | rs16944 | Chinese Han, Tibetan | Yes | Protective | [175] |
IL-6 | rs2069837 | Chinese Han | Yes | Protective | [175] |
IL-17A | rs8193036 | Chinese Han | Yes | Susceptible | [176] |
REL/IL-12 | rs842618 | Vietnamese | Yes | Susceptible | [177] |
BHLHE40/ IL-10 | rs11130215 | South Africa | Yes | Protective | [177] |
TLR8 | rs3764880 | Chinese Han | Yes | Protective | [178] |
TLR9 | rs187084 | Chinese Han | Yes | Susceptible | [178] |
TLR2 | rs3804099, rs3804100 | Han Taiwanese | Yes | Susceptible | [179] |
NOD2 | rs1861759, rs7194886 | Chinese Han | Yes | Susceptible | [180] |
rs2066842, rs2066844 | African Americans | Yes | Protective | [180] | |
CD14 | rs2569190, rs2569191 | Chinese Han | Yes | Susceptible | [180] |
Mincle (CLEC4E) | rs10841847 | West African | Yes | Susceptible | [181] |
MARCO | rs12998782 | Chinese Han | Yes | Susceptible | [182] |
CD36 | rs1194182, rs10499859 | Chinese Han | Yes | Protective | [182] |
VDR | Fok1(T/C) genotype | North Indian | Yes | Susceptible | [183] |
Folk1(ff) genotype | Chinese | Yes | Susceptible | [184] | |
BsmI (rs1544410) TaqI (rs731236), | Iranian | Yes | Susceptible | [185] | |
CARD8 | rs2043211 | Ethiopian | Yes | Susceptible | [186] |
NLRP3 | rs35829419 | Ethiopian | Yes | Susceptible | [186] |
AIM2 | rs1103577 | Brazilian | Yes | Protective | [187] |
MASP1 | rs3774275 | Indian | Yes | Protective | [188] |
MBL2 | A/O, O/O genotype | Polish | Yes | Susceptible | [189] |
SP-D | rs721917 | Taiwanese | Yes | Susceptible | [190] |
SP-A | rs17886395, rs1965707 | Chinese Han | Yes | Susceptible | [191] |
NRAMP | 5′(CA)n, INT4, D543N, and 3'UTR | African, American | Yes | Susceptible | [192,193] |
3'UTR | Indian | Yes | Susceptible | [194] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simper, J.D.; Perez, E.; Schlesinger, L.S.; Azad, A.K. Resistance and Susceptibility Immune Factors at Play during Mycobacterium tuberculosis Infection of Macrophages. Pathogens 2022, 11, 1153. https://doi.org/10.3390/pathogens11101153
Simper JD, Perez E, Schlesinger LS, Azad AK. Resistance and Susceptibility Immune Factors at Play during Mycobacterium tuberculosis Infection of Macrophages. Pathogens. 2022; 11(10):1153. https://doi.org/10.3390/pathogens11101153
Chicago/Turabian StyleSimper, Jan D., Esteban Perez, Larry S. Schlesinger, and Abul K. Azad. 2022. "Resistance and Susceptibility Immune Factors at Play during Mycobacterium tuberculosis Infection of Macrophages" Pathogens 11, no. 10: 1153. https://doi.org/10.3390/pathogens11101153
APA StyleSimper, J. D., Perez, E., Schlesinger, L. S., & Azad, A. K. (2022). Resistance and Susceptibility Immune Factors at Play during Mycobacterium tuberculosis Infection of Macrophages. Pathogens, 11(10), 1153. https://doi.org/10.3390/pathogens11101153