The Enhanced Recovery after Surgery (ERAS) Pathway Is a Safe Journey for Kidney Transplant Recipients during the “Extended Criteria Donor” Era
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data Collection
2.3. Surgical Technique
2.4. Postoperative Care and ERAS Protocol
2.5. Immunosuppressive Regimen
2.6. Outcomes
2.7. Statistical Analysis
3. Results
3.1. Study Population
3.2. Outcomes
3.3. Risk Factors for Late Discharge within the ERAS Protocol
3.4. Sub-Analysis of Patients Receiving Extended Donor Criteria Grafts
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Greco, M.; Capretti, G.; Beretta, L.; Gemma, M.; Pecorelli, N.; Braga, M. Enhanced Recovery Program in Colorectal Surgery: A Meta-analysis of Randomized Controlled Trials. World J. Surg. 2014, 38, 1531–1541. [Google Scholar] [CrossRef] [PubMed]
- Espino, K.A.; Narvaez, J.R.F.; Ott, M.C.; Kayler, L.K. Benefits of multimodal enhanced recovery pathway in patients undergoing kidney transplantation. Clin. Transplant. 2018, 32, e13173. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, J.; Chen, X.; Du, L.; Li, K.; Zhou, Y. Enhanced recovery after surgery on multiple clinical outcomes: Umbrella review of systematic reviews and meta-analyses. Medicine 2020, 99, e20983. [Google Scholar] [CrossRef]
- Smith, T.W.; Wang, X.; Singer, M.A.; Godellas, C.V.; Vaince, F.T. Enhanced recovery after surgery: A clinical review of implementation across multiple surgical subspecialties. Am. J. Surg. 2020, 219, 530–534. [Google Scholar] [CrossRef] [PubMed]
- Abecassis, M.; Bartlett, S.T.; Collins, A.J.; Davis, C.L.; Delmonico, F.L.; Friedewald, J.; Hays, R.; Howard, A.; Jones, E.; Leichtman, A.B.; et al. Kidney Transplantation as Primary Therapy for End-Stage Renal Disease: A National Kidney Foundation/Kidney Disease Outcomes Quality Initiative (NKF/KDOQI™) Conference. Clin. J. Am. Soc. Nephrol. 2008, 3, 471–480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loubeau, P.; Loubeau, J.-M.; Jantzen, R. The economics of kidney transplantation versus hemodialysis. Prog. Transplant. 2001, 11, 291–297. [Google Scholar] [CrossRef]
- Kasiske, B.L.; Ramos, E.L.; Gaston, R.S.; Bia, M.J.; Danovitch, G.M.; Bowen, P.A.; Lundin, P.A.; Murphy, K.J. The evaluation of renal transplant candidates: Clinical practice guidelines. Patient Care and Education Committee of the American Society of Transplant Physicians. J. Am. Soc. Nephrol. 1995, 6, 1–34. [Google Scholar] [CrossRef]
- Halawa, A.; Rowe, S.; Roberts, F.; Nathan, C.; Hassan, A.; Kumar, A.; Suvakov, B.; Edwards, B.; Gray, C. A Better Journey for Patients, a Better Deal for the NHS: The Successful Implementation of an Enhanced Recovery Program After Renal Transplant Surgery. Exp. Clin. Transplant. 2018, 16, 127–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dias, B.H.; Rana, A.A.M.; Olakkengil, S.A.; Russell, C.H.; Coates, P.T.H.; Clayton, P.A.; Bhattacharjya, S. Development and implementation of an enhanced recovery after surgery protocol for renal transplantation. ANZ J. Surg. 2019, 89, 1319–1323. [Google Scholar] [CrossRef] [PubMed]
- Naghibi, O.; Naghibi, M.; Nazemian, F. Factors affecting length of hospitalization in kidney transplant recipients. Exp. Clin. Transplant. Off. J. Middle East Soc. Organ Transplant. 2007, 5, 614–617. [Google Scholar]
- Seawright, A.H.; Taylor, L. A systematic approach to postoperative management of deceased donor kidney transplant patients with a clinical pathway. Prog. Transplant. 2011, 21, 43–52. [Google Scholar] [CrossRef]
- Kruszyna, T.; Niekowal, B.; Kraśnicka, M.; Sadowski, J. Enhanced Recovery After Kidney Transplantation Surgery. Transplant. Proc. 2016, 48, 1461–1465. [Google Scholar] [CrossRef] [PubMed]
- Melih, K.V.; Boynuegri, B.; Mustafa, C.; Nilgun, A. Incidence, Risk Factors, and Outcomes of Delayed Graft Function in Deceased Donor Kidney Transplantation. Transplant. Proc. 2019, 51, 1096–1100. [Google Scholar] [CrossRef] [PubMed]
- Han, F.; Lin, M.-Z.; Zhou, H.-L.; Li, H.; Sun, Q.-P.; Huang, Z.-Y.; Hong, L.-Q.; Wang, G.; Cai, R.-M. Delayed graft function is correlated with graft loss in recipients of expanded-criteria rather than standard-criteria donor kidneys: A retrospective, multicenter, observation cohort study. Chin. Med. J. 2020, 133, 561–570. [Google Scholar] [CrossRef]
- Aubert, O.; Kamar, N.; Vernerey, D.; Viglietti, D.; Martinez, F.; Duong-Van-Huyen, J.-P.; Eladari, D.; Empana, J.-P.; Rabant, M.; Verine, J.; et al. Long term outcomes of transplantation using kidneys from expanded criteria donors: Prospective, population based cohort study. BMJ 2015, 351, h3557. [Google Scholar] [CrossRef] [Green Version]
- Port, F.K.; Bragg-Gresham, J.L.; Metzger, R.A.; Dykstra, D.M.; Gillespie, B.W.; Young, E.W.; Delmonico, F.L.; Wynn, J.J.; Merion, R.M.; Wolfe, R.A.; et al. Donor characteristics associated with reduced graft survival: An approach to expanding the pool of kidney donors. Transplantation 2002, 74, 1281–1286. [Google Scholar] [CrossRef] [PubMed]
- Karpinski, J.; Lajoie, G.; Cattran, D.; Fenton, S.; Zaltzman, J.; Cardella, C.; Cole, E. Outcome of Kidney Transplantation from High-Risk Donors Is Determined by Both Structure And Function. Transplantation 1999, 67, 1162–1167. [Google Scholar] [CrossRef]
- Remuzzi, G.; Cravedi, P.; Perna, A.; Dimitrov, B.D.; Turturro, M.; Locatelli, G.; Rigotti, P.; Baldan, N.; Beatini, M.; Valente, U.; et al. Long-Term Outcome of Renal Transplantation from Older Donors. N. Engl. J. Med. 2006, 354, 343–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lich, R.; Howerton, L.W.; Davis, L.A. Childhood urosepsis. J. Ky. Med. Assoc. 1961, 59, 1177–1179. [Google Scholar] [PubMed]
- Ojo, A.O.; Wolfe, R.A.; Held, P.J.; Port, F.K.; Schmouder, R.L. Delayed Graft Function: Risk Factors And Implications For Renal Allograft Survival. Transplantation 1997, 63, 968–974. [Google Scholar] [CrossRef]
- Siedlecki, A.; Irish, W.; Brennan, D.C. Delayed Graft Function in the Kidney Transplant. Am. J. Transplant. 2011, 11, 2279–2296. [Google Scholar] [CrossRef] [PubMed]
- Kehlet, H. Multimodal approach to control postoperative pathophysiology and rehabilitation. Br. J. Anaesth. 1997, 78, 606–617. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Jensen, C.C. Patient Satisfaction and Quality of Life with Enhanced Recovery Protocols. Clin. Colon Rectal Surg. 2019, 32, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Vanni, G.; Materazzo, M.; Santori, F.; Pellicciaro, M.; Costesta, M.; Orsaria, P.; Cattadori, F.; Pistolese, C.A.; Perretta, T.; Chiocchi, M.; et al. The Effect of Coronavirus (COVID-19) on Breast Cancer Teamwork: A Multicentric Survey. In Vivo 2020, 34, 1685–1694. [Google Scholar] [CrossRef] [PubMed]
- Orsaria, P.; Varvaras, D.; Vanni, G.; Pagnani, G.; Scaggiante, J.; Frusone, F.; Granai, A.V.; Petrella, G.; Buonomo, O.C. Nodal Status Assessment in Breast Cancer: Strategies of Clinical Grounds and Quality of Life Implications. Int. J. Breast Cancer 2014, 2014, 469803. [Google Scholar] [CrossRef]
- Bizard, F.; Boudemaghe, T.; Delaunay, L.; Léger, L.; Slim, K. Medico-economic impact of enhanced rehabilitation after surgery: An exhaustive, nation-wide claims study. BMC Health Serv. Res. 2021, 21, 1341. [Google Scholar] [CrossRef] [PubMed]
- Mandell, M.S.; Huang, J.; Zhao, J. Enhanced recovery after surgery and practical application to liver transplantation. Best Pract. Res. Clin. Anaesthesiol. 2020, 34, 119–127. [Google Scholar] [CrossRef]
- Taner, C.B.; Willingham, D.L.; Bulatao, I.G.; Shine, T.S.; Peiris, P.; Torp, K.D.; Canabal, J.; Nguyen, J.H.; Kramer, D.J. Is a mandatory intensive care unit stay needed after liver transplantation? Feasibility of fast-tracking to the surgical ward after liver transplantation. Liver Transplant. 2012, 18, 361–369. [Google Scholar] [CrossRef]
- Golder, H.; Papalois, V. Enhanced Recovery after Surgery: History, Key Advancements and Developments in Transplant Surgery. J. Clin. Med. 2021, 10, 1634. [Google Scholar] [CrossRef] [PubMed]
- Brustia, R.; Monsel, A.; Conti, F.; Savier, E.; Rousseau, G.; Perdigao, F.; Bernard, D.; Eyraud, D.; Loncar, Y.; Langeron, O.; et al. Enhanced Recovery in Liver Transplantation: A Feasibility Study. World J. Surg. 2019, 43, 230–241. [Google Scholar] [CrossRef]
- US Renal Data System. USRDS 2008 Annual Data Report: Atlas of Chronic Kidney Disease and End-Stage Renal Disease in the United States; National Institute of Diabetes and Digestive and Kidney Diseases: Bethesda, MD, USA, 2008.
- Angelico, R.; Blasi, F.; Manzia, T.; Toti, L.; Tisone, G.; Cacciola, R. The Management of Immunosuppression in Kidney Transplant Recipients with COVID-19 Disease: An Update and Systematic Review of the Literature. Medicina 2021, 57, 435. [Google Scholar] [CrossRef]
- Monaco, A.; Manzia, T.M.; Angelico, R.; Iaria, G.; Gazia, C.; Al Alawi, Y.; Fourtounas, K.; Tisone, G.; Cacciola, R. Awareness and Impact of Non-pharmaceutical Interventions During Coronavirus Disease 2019 Pandemic in Renal Transplant Recipients. Transplant. Proc. 2020, 52, 2607–2613. [Google Scholar] [CrossRef]
- Fiorentino, M.; Pesce, F.; Schena, A.; Simone, S.; Castellano, G.; Gesualdo, L. Updates on urinary tract infections in kidney transplantation. J. Nephrol. 2019, 32, 751–761. [Google Scholar] [CrossRef]
- Agrawal, A.; Ison, M.G.; Danziger-Isakov, L. Long-Term Infectious Complications of Kidney Transplantation. Clin. J. Am. Soc. Nephrol. 2022, 17, 286–295. [Google Scholar] [CrossRef]
- Prionas, A.; Craddock, C.; Papalois, V. Enhanced Recovery after Renal Transplantation Decreases Recipients’ Urological Complications and Hospital Stay: A Systematic Review and Meta-Analysis. J. Clin. Med. 2021, 10, 2286. [Google Scholar] [CrossRef]
- McAdams-DeMarco, M.A.; King, E.A.; Luo, X.; Haugen, C.; DiBrito, S.; Shaffer, A.; Kucirka, L.M.; Desai, N.M.; Dagher, N.N.; Lonze, B.E.; et al. Frailty, Length of Stay, and Mortality in Kidney Transplant Recipients: A national registry and prospective cohort study. Ann. Surg. 2017, 266, 1084–1090. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.W.; Tsapepas, D.; King, K.L.; Husain, S.A.; Corvino, F.A.; Dillon, A.; Wang, W.; Mayne, T.J.; Mohan, S. Financial impact of delayed graft function in kidney transplantation. Clin. Transplant. 2020, 34, e14022. [Google Scholar] [CrossRef]
- Stewart, D.E.; Kucheryavaya, A.Y.; Klassen, D.K.; Turgeon, N.A.; Formica, R.N.; Aeder, M.I. Changes in Deceased Donor Kidney Transplantation One Year After KAS Implementation. Am. J. Transplant. 2016, 16, 1834–1847. [Google Scholar] [CrossRef] [Green Version]
- Irish, W.D.; Ilsley, J.N.; Schnitzler, M.A.; Feng, S.; Brennan, D.C. A Risk Prediction Model for Delayed Graft Function in the Current Era of Deceased Donor Renal Transplantation. Am. J. Transplant. 2010, 10, 2279–2286. [Google Scholar] [CrossRef]
- Axelrod, D.A.; Schnitzler, M.A.; Xiao, H.; Irish, W.; Tuttle-Newhall, E.; Chang, S.-H.; Kasiske, B.L.; Alhamad, T.; Lentine, K.L. An economic assessment of contemporary kidney transplant practice. Am. J. Transplant. 2018, 18, 1168–1176. [Google Scholar] [CrossRef] [Green Version]
- Massie, A.B.; Luo, X.; Chow, E.; Alejo, J.; Desai, N.M.; Segev, D.L. Survival Benefit of Primary Deceased Donor Transplantation With High-KDPI Kidneys. Am. J. Transplant. 2014, 14, 2310–2316. [Google Scholar] [CrossRef]
- Gillissen, F.; Hoff, C.; Maessen, J.M.C.; Winkens, B.; Teeuwen, J.H.F.A.; Von Meyenfeldt, M.F.; DeJong, C.H.C. Structured Synchronous Implementation of an Enhanced Recovery Program in Elective Colonic Surgery in 33 Hospitals in The Netherlands. World J. Surg. 2013, 37, 1082–1093. [Google Scholar] [CrossRef]
- Varadhan, K.K.; Neal, K.R.; Dejong, C.H.; Fearon, K.C.; Ljungqvist, O.; Lobo, D.N. The enhanced recovery after surgery (ERAS) pathway for patients undergoing major elective open colorectal surgery: A meta-analysis of randomized controlled trials. Clin. Nutr. 2010, 29, 434–440. [Google Scholar] [CrossRef]
- Gabay, C.; Kushner, I. Acute-Phase Proteins and Other Systemic Responses to Inflammation. N. Engl. J. Med. 1999, 340, 448–454. [Google Scholar] [CrossRef]
- Kumar, A.; Anel, R.; Bunnell, E.; Habet, K.; Zanotti, S.; Marshall, S.; Neumann, A.; Ali, A.; Cheang, M.; Kavinsky, C.; et al. Pulmonary artery occlusion pressure and central venous pressure fail to predict ventricular filling volume, cardiac performance, or the response to volume infusion in normal subjects. Crit. Care Med. 2004, 32, 691–699. [Google Scholar] [CrossRef]
- Ghosh, S.; Arthur, B.; Klein, A.A. NICE guidance on CardioQTM oesophageal Doppler monitoring. Anaesthesia 2011, 66, 1081–1083. [Google Scholar] [CrossRef]
- Frank, P.; Logemann, F.; Gras, C.; Palmaers, T. Noninvasive continuous arterial pressure monitoring during anesthesia induction in patients undergoing cardiac surgery. Ann. Card. Anaesth. 2021, 24, 281–287. [Google Scholar]
Counseling at listing for KT |
|
Preoperative |
|
Intraoperative |
|
Postoperative |
|
Variables | Number (%) or Median (Range) |
---|---|
Number of KT | 454 |
Recipient | |
Age (years) | 57 (19–77) |
Age (>60 years) | 190 (41.9%) |
Gender (male) | 290 (63.9 %) |
BMI | 24 (15–37) |
Obesity (BMI ≥ 30) | 50 (11%) |
Cause of ESRD: | |
| 183 (40.3%) |
| 96 (21.1%) |
| 48 (10.6%) |
| 39 (8.6%) |
| 30 (6.6%) |
| 28 (6.2%) |
| 19 (4.2%) |
| 11 (2.4%) |
Median time on waiting list (days) | 675 (1–4760) |
Comorbidities | 203 (44.7%) |
| 135 (29.7%) |
| 74 (16.3%) |
| 34 (7.5%) |
| 34 (7.5%) |
Donor | |
Type of donor: | |
| 440 (96.9%) |
| 14 (3.1%) |
Age (years) | 56 (11–88) |
Aged > 60 years | 189 (41.6%) |
| |
| 285 (62.8%) |
| 94 (20.7%) |
| 36 (7.9%) |
| 27 (5.9%) |
| 12 (2.6%) |
Comorbidities: | |
| 79 (17.4%) |
| 175 (38.5%) |
| 88 (19.4%) |
Extended criteria donor | 225 (49.6%) |
Transplant | |
Type of KT: | |
| 434 (95.6%) |
| 20 (4.4%): 11 (2.4%)/9 (2%) |
Re-transplant | 44 (9.7%) |
Sequential KT after LT | 4 (0.9 %) |
Pre-implant renal biopsy: | 225 (49.56 %) |
Renal biopsy score ≤3 | 136 (30%) |
Renal biopsy score >3 | 89 (19.6%) |
Median CIT (h) | 11 (1–29) |
Outcomes | Number (%) or Median (Range) |
---|---|
Number of KT | 454 |
Post-KT delayed graft function | 174 (38.3%) |
Median hospital stay (days) | 6 (3–62) |
Time of discharge: | |
| 212 (46.7%) |
| 242 (53.3%) |
Post-operative dialytic treatment: | |
| 174 (38.3%) |
| 46 (10.1%) |
Median number of dialytic treatments | 0 (0–21) |
1 year readmission rates after KT | 156 (34.4%) |
| 122 (26.9%) |
| 34 (7.5%) |
Median time of occurrence of readmission after KT (days) | 42 (1–352) |
Number of outpatient clinic visits within 3 months from KT | 7 (0–16) |
Early complications (≤3 months after KT): | 122 (26.9%) |
| 109 (24.0%) |
| 21 (4.5%) |
| 2 (0.4%) |
Treatment of early complications: | |
| 16 (3.5%) |
| 5 (1.1%) |
| 39 (8.5%) |
| 12 (2.6 %) |
| 14 (3%) |
| 9 (1.9%) |
| 3 (0.6%) |
Variables | Patients Discharged ≤5 Days after KT (n = 212) | Patients Discharged >5 Days after KT (n = 242) | p-Value |
---|---|---|---|
Recipient | |||
Age (years) | 54 (19–77) | 58 (23–74) | 0.003 |
Age > 60 years | 78 (36.8%) | 112 (46.3%) | 0.045 |
Gender (male) | 135 (63.7%) | 155 (64%) | 1.000 |
BMI | 23 (15–37) | 25 (16–38) | 0.008 |
Obesity (BMI ≥ 30) | 21 (9.9%) | 29 (12%) | 0.549 |
Cause of ESRD: | 0.052 | ||
| 101 (47.6%) | 82 (33.9%) | |
| 45 (21.2%) | 51 (21.1%) | |
| 17 (8%) | 31 (12.8%) | |
| 15 (7.1%) | 24 (9.9%) | |
| 15 (7.1%) | 15 (6.2%) | |
| 10 (4.7%) | 18 (7.4%) | |
| 5 (2.4%) | 14 (5.8%) | |
| 4 (1.9%) | 7 (2.9%) | |
Median time on waiting list (days) | 649 (1–4760) | 700.5 (2–3821) | 0.214 |
Comorbidities | 77 (36.3%) | 126 (51.1%) | <0.001 |
| 49 (23.1%) | 86 (35.5%) | |
| 26 (12.3%) | 48 (19.8%) | |
| 15 (7.1%) | 19 (7.9%) | |
| 12 (5.7%) | 22 (9.1%) | |
Donor | |||
Type of donor: | 1.000 | ||
| (96.7%) | 235 (97.1%) | |
| 7 (3.3%) | 7 (2.9%) | |
Age (years) | 53 (11–88) | 59 (15–83) | 0.002 |
Age > 60 years | 71(33.5%) | 118 (48.8%) | 0.001 |
Cause of death: | 0.273 | ||
| 123 (58%) | 162 (66.9%) | |
| 48 (22.6%) | 46 (19%) | |
| 20 (9.4%) | 16 (6.6%) | |
| 16 (7.5%) | 11 (4.5%) | |
| 5 (2.4%) | 7 (2.9%) | |
Comorbidities: | |||
| 34 (16%) | 45 (18.6%) | 0.535 |
| 75 (35.4%) | 100 (41.3%) | 0.210 |
| 41 (19.3%) | 47 (19.4%) | 1.000 |
Expanded criteria donor | 89 (42.0%) | 136 (56.2%) | 0.003 |
Transplant | |||
Type of KT: | 0.094 | ||
| (98.1%) | 227 (93.8%) | |
| 4 (1.9%) | 15 (6.2%) | |
Retransplant | 19 (9%) | 25 (10.3%) | 0.638 |
Sequential KT after LT | 3 (1.4 %) | 1 (0.4%) | 0.344 |
Pre-implant renal biopsy: | 87 (41.03%) | 138 (57.02%) | 0.001 |
| 49 (56.3%) | 87 (63%) | 0.330 |
| 38 (43.7%) | 51 (37%) | |
Median CIT (h) | 10.2 (1.0–23.3) | 11.5 (1.0–29.0) | 0.068 |
CIT ≥ 10 h | 66 (31.1%) | 100 (41.3%) | 0.025 |
Outcomes | |||
Post-KT delayed graft function | 38 (17.9%) | 136 (56.2%) | <0.0001 |
Median hospital stay (days) | 5 (3–5) | 8 (6-62) | <0.0001 |
Postoperative dialytic treatment: | |||
| 35 (16.5%) | 139 (57.4%) | 0.0001 |
| 13 (6.1%) | 33 (13.6%) | 0.008 |
Early complications (≤3 months after KT) | 55 (25.9%) | 67 (27.7%) | 0.750 |
| 48 (22.6%) | 61 (25.2%) | 0.582 |
| 11 (5.2%) | 10 (4.1%) | 0.658 |
| 1 (0.5%) | 1 (0.4%) | 1.000 |
1 year readmission rates after KT | 67 (31.6%) | 89 (36.8%) | 0.276 |
| 50 (23.6%) | 72 (29.8%) | 0.433 |
| 17 (8.0%) | 17 (7.0%) | |
Median time of readmission after KT (days) | 45 (1-238) | 42 (2-352) | 0.339 |
Number of outpatient clinic reviews within 3 months after KT | 7 (1–15) | 7 (0–16) | 0.454 |
Variables | HR | 95%–CI | p-Value |
---|---|---|---|
Type of KT (single vs. dual) | 3.04 | 0.91–10.11 | 0.072 |
CIT > 10 h | 1.36 | 0.88–2.11 | 0.162 |
DGF | 2.16 | 1.08–4.34 | 0.030 |
Recipient age | 1.01 | 0.98–1.03 | 0.650 |
ECD | 1.35 | 0.73–2.47 | 0.338 |
Donor age | 0.99 | 0.98–1.0.23 | 0.944 |
In-hospital dialytic treatment | 3.68 | 1.73–7.85 | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angelico, R.; Romano, F.; Riccetti, C.; Pellicciaro, M.; Toti, L.; Favi, E.; Cacciola, R.; Manzia, T.M.; Tisone, G. The Enhanced Recovery after Surgery (ERAS) Pathway Is a Safe Journey for Kidney Transplant Recipients during the “Extended Criteria Donor” Era. Pathogens 2022, 11, 1193. https://doi.org/10.3390/pathogens11101193
Angelico R, Romano F, Riccetti C, Pellicciaro M, Toti L, Favi E, Cacciola R, Manzia TM, Tisone G. The Enhanced Recovery after Surgery (ERAS) Pathway Is a Safe Journey for Kidney Transplant Recipients during the “Extended Criteria Donor” Era. Pathogens. 2022; 11(10):1193. https://doi.org/10.3390/pathogens11101193
Chicago/Turabian StyleAngelico, Roberta, Francesca Romano, Camilla Riccetti, Marco Pellicciaro, Luca Toti, Evaldo Favi, Roberto Cacciola, Tommaso Maria Manzia, and Giuseppe Tisone. 2022. "The Enhanced Recovery after Surgery (ERAS) Pathway Is a Safe Journey for Kidney Transplant Recipients during the “Extended Criteria Donor” Era" Pathogens 11, no. 10: 1193. https://doi.org/10.3390/pathogens11101193
APA StyleAngelico, R., Romano, F., Riccetti, C., Pellicciaro, M., Toti, L., Favi, E., Cacciola, R., Manzia, T. M., & Tisone, G. (2022). The Enhanced Recovery after Surgery (ERAS) Pathway Is a Safe Journey for Kidney Transplant Recipients during the “Extended Criteria Donor” Era. Pathogens, 11(10), 1193. https://doi.org/10.3390/pathogens11101193