Colletotrichum truncatum—A New Etiological Anthracnose Agent of Sword Bean (Canavalia gladiata) in Southwestern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Collection and Fungal Isolation
2.2. Morphological Characterization
2.3. DNA Extraction, Polymerase Chain Reaction (PCR) Amplification, and Sequencing
2.4. Phylogenetic Analysis
2.5. Pathogenicity Assay
3. Results
3.1. Symptoms and Fungal Isolation
3.2. Morphological Characterization
3.3. Phylogenetic Analysis
3.4. Pathogenicity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Morris, J. Sword bean (Canavalia ensiformis (L.) DC.) genetic resources regenerated for potential medical, nutraceutical and agricultural traits. Genet. Resour. Crop Evol. 2007, 54, 586–592. [Google Scholar] [CrossRef]
- Joo, S.; Choi, K.; Kim, K.; Lee, J.; Park, S. Characteristics of yougurt prepared with Jinpum bean and sword bean (Canavalia gladiata). Korean J. Postharv. Sci. Technol. 2001, 8, 308–312. [Google Scholar]
- Han, V.X. Optimal extraction and fattay acid analysis of oil from Canavalia gladiata. Food. Mach. 2022, 2, 186–209. [Google Scholar]
- Li, J.; Peng, K.; Li, Y.; Zhi, S.; Huang, M. The cultivation technology and application value of jack bean in South China. J. Chang. Veg. 2019, 16, 41–43. [Google Scholar]
- Hwang, K.A.; Heo, W.; Hwang, H.J.; Han, B.K.; Song, M.C.; Kim, Y.J. Anti-Inflammatory effect of immature sword bean pod (Canavalia gladiata) in Lipopoly saccharide-Induced RAW264.7 Cells. J. Med. Food 2020, 23, 1183–1191. [Google Scholar] [CrossRef] [PubMed]
- Purseglove, J.W. Tropical Crops—Dicotyledons; Longmans: Harlow, UK, 1984; 225p. [Google Scholar]
- Lin, Z. The composition and nutrition of legume oil seeds. China Oil Fats 1986, 3, 24–28. [Google Scholar]
- Barbetti, M. Survey of fungi associated with subterrane an clover leaves and petioles in Western Australia. Plant Pathol. 1985, 34, 49–53. [Google Scholar] [CrossRef]
- Hartman, G.; Manandhar, J.; Sinclair, J. Incidence of Colletotrichum spp. on soybean and weeds in Illinois and pathogenicity of Colletotrichum Truncatum. Plant Dis. 1986, 70, 780–782. [Google Scholar] [CrossRef] [Green Version]
- Kaiser, W.J.; Mihov, M.; Muehlbauer, F.J.; Hannan, R.M. First report of anthracnose of lentil incited by Colletotrichum truncatum in Bulgaria. Plant Dis. 1998, 82, 128. [Google Scholar] [CrossRef]
- O’Connell, R.J.; Thon, M.R.; Hacquard, S.; Amyotte, S.G.; Kleemann, J.; Torres, M.F. Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nat. Genet. 2012, 44, 1056–1060. [Google Scholar] [CrossRef]
- Freeman, S.; Katan, T.; Shabi, E. Characterization of Colletotrichum species responsible for anthracnose diseases of various fruits. Plant Dis. 1998, 82, 596–605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pande, A.; Rao, V.G. A Compendium Fungi on Legumes from India; Scientific Publishers: New Delhi, India, 1998; 188p. [Google Scholar]
- Tai, F.L. Sylloge Fungorum Sinicorum; Science Press: Beijing, China, 1979; 1527p. [Google Scholar]
- David, A.S.; Mark, A.J. Germination of soil-incorporated microsclerotia of Colletotrichum truncatum and colonization of seedlings of the weed Sesbania exaltata. Can. J. Microbiol. 1996, 1, 1032–1038. [Google Scholar]
- Md, A.; Tania, A.; Young, G.L.; Byung, S.K. Post-harvest anthracnose of papaya caused by Colletotrichum truncatum in Korea. Eur. J. Plant Pathol. 2017, 6, 259–265. [Google Scholar]
- Ford, R.; Banniza, D.S.; Photita, B.W.; Taylor, P.W.J. Morphological and molecular discrimination of Colletotrichum truncatumcausing anthracnose on lentil in Canada. Australas. Plant Pathol. 2004, 33, 559–569. [Google Scholar] [CrossRef]
- Yang, H.C.; Hartman, G.L. Methods and evaluation of soybean genotypes for resistance to Colletotrichum truncatum. Plant Dis. 2015, 99, 143–148. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.Z. Studies of yellow stunt and root rot of standing milk-vetch (Astragalus adsuegens Pall.). Ph.D. Thesis, Lanzhou University, Lanzhou, China, 2007. [Google Scholar]
- Xu, S.; Christensen, M.J.; Li, Y.Z. Pathogenicity and characterization of Colletotrichum lentis: A causal agent of anthracnose in common vetch (Vicia sativa). Eur. J. Plant Pathol. 2017, 149, 718–731. [Google Scholar] [CrossRef]
- Hoog, G.S.D.; vanden, G.; Ende, A.H.G. Molecular diagnostics of clinical strains of filamentous Basidiomycetes. Mycoses 1998, 41, 183–189. [Google Scholar] [CrossRef]
- White, T.J. A Guide to Methods and Applications; Academic Press: Cambridge, MA, USA, 1990; Volume 1, 315p. [Google Scholar]
- Carbone, I.; Kohn, L.M. A method for designing primer sets for speciation studies infilamentous ascomycetes. Mycologia 1999, 91, 553–556. [Google Scholar] [CrossRef]
- Guerber, J.C.; Liu, B.; Correll, J.C.; Johnston, P.R. Characterization of diversity in Colletotrichum acutatum sensulato by sequence analysis of two gene introns, mtDNA and intron RFLPs and mating compatibility. Mycologia 2003, 95, 872–895. [Google Scholar] [CrossRef]
- Crous, P.W.; Groenewald, J.Z.; Risede, J.M.; Hywel-Jones, N.L. Calonectria species and their Cylindrocladium anamorphs: Species with sphaerop edunculate vesicles. Stud. Mycol. 2004, 50, 415–430. [Google Scholar]
- Damm, U.; Woudenberg, J.H.C.; Cannon, P.F.; Crous, P.W. Colletotrichum species with curved conidia from herbaceous hosts. Fungal Divers. 2009, 39, 45–87. [Google Scholar]
- Vu, D.; Groenewald, M.; Vries, M.D.; Gehrmann, T.; Stielow, B.; Eberhardt, U.; Al-Hatmi, A.; Groenewald, J.Z.; Cardinali, G.; Houbraken, J. Large-Scale Generation and Analysis of Filamentous Fungal DNA Barcodes Boosts Coverage for Kingdom Fungi and Reveals Thresholds for Fungal Species and Higher Taxon Delimitation; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Kennedy, A.H.; Schoch, C.L.; Marrero, G.; Brover, V.; Robbertse, B. Publicly available and validated DNA reference sequences are critical to fungal identification and global plant protection efforts: Ause-casein Colletotrichum. Plant Dis. 2022, 106, 1573–1596. [Google Scholar] [CrossRef] [PubMed]
- Hacquard, S.; Kracher, B.; Hiruma, K.; Munch, P.C.; Garrido-Oter, R.; Thon, M.R.; Weimann, A.; Damm, U.; Dallery, J.F.; Hainaut, M. Survival trade-offs in plant roots during colonization by closely related beneficial and pathogenic fungi. Nat. Commun. 2016, 7, 11362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paul, N.C.; Deng, J.X.; Lee, H.B.; Yu, S.H. Characterization and pathogenicity of Alternaria burnsii from seeds of Cucurbita maxima. Mycobio. 2015, 43, 384–391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corda, A.C.I. DiePilzeDeutschlands. In Deutschlands Flora in Abbildungennach der Nturmit Beschreibungen 3; Sturm, J., Ed.; Abt., ab.21-Nürnberg; Sturm12: Nurnberg, Germany, 1831; pp. 33–64. [Google Scholar]
- Hyde, K.D.; Cai, L.; Cannon, P.F.; Crouch, J.A.; Crous, P.W.; Damm, U.; Goodwin, P.H.; Chen, H.; Johnston, P.R.; Jones, E.B.G. Colletotrichum—Names in current use. Fungal Divers. 2009, 39, 147–183. [Google Scholar]
- Latunde-Dada, A.O.; Lucas, J.A. Localized hemibiotrophy in Colletotrichum: Cytological and molecular taxonomic similarities among C. destructivum, C. linicola and C. truncatum. Plant Pathol. 2007, 56, 437–447. [Google Scholar] [CrossRef] [Green Version]
- Cannon, P.F.; Damm, U.; Johnston, P.R.; Weir, B.S. Colletotrichum—Current status and future directions. Stud. Mycol. 2012, 73, 181–213. [Google Scholar] [CrossRef] [Green Version]
- Doyle, J.J.; Gaut, B.S. Evolution of genes and taxa:Aprimer. Plant Mol. Bio. 2000, 42, 1–23. [Google Scholar] [CrossRef]
- Inderbitzin, P.; Bostock, R.M.; Davis, R.M.; Usami, T.; Platt, H.W.; Subbarao, K.V. Phylogenetics and taxonomy of the fungal vascular wilt pathogen Verticillium, with the descriptions of five new species. PLoS ONE 2011, 6, 28341. [Google Scholar] [CrossRef]
- Miyamoto, M.M.; Fitch, W.M. Testing species phylogenies and phylogenetic methods with congruence. Syst. Biol. 1995, 44, 64–76. [Google Scholar] [CrossRef]
- He, Y.Y.; Chen, Q.G.; Shu, C.W.; Yang, M.; Zhou, E. Colletotrichum truncatum, a new cause of anthracnose on Chinese flowering cabbage (Brassica parachinensis) in China. Trop. Plant Pathol. 2016, 6, 183–192. [Google Scholar] [CrossRef]
- Auyong, A.S.; Ford, R.; Taylor, P.W.J. Genetic transformation of Colletotrichum truncatum associated with anthracnose disease of chili by random insertional mutagenesis. J. Basic Microbiol. 2012, 52, 327–382. [Google Scholar] [CrossRef] [PubMed]
- Buchwaldt, L.; Anderson, K.L.; MorrallRA, A.; Gossen, B.D.; Bernier, C.C. Identification of lentil germ plasm resistant to Colletotrichum truncatum and characterization of two pathogen races. Phytopathology 2004, 94, 236–243. [Google Scholar] [CrossRef] [PubMed]
Gene | Product | Primer | Direction | Sequence (5′–3′) | Reference |
---|---|---|---|---|---|
ITS | Internal transcribed spacer | ITS1 | Forward | TCCGTAGGTGAACCTGCGG | [21,22] |
ITS4 | Reverse | TCCTCCGCTTATTGATATGC | |||
ACT | Actin | ACT-512F | Forward | ATGTGCAAGGCCGGTTTCGC | [23] |
ACT-783R | Reverse | TACGAGTCCTTCTGGCCCAT | |||
GAPDH | Glyceraldehyde- 3-phosphate dehydrogenase | GDF1 | Forward | GCCGTCAACGACCCCTTCATTG | [24] |
GDR1 | Reverse | GGGTGGAGTCGTACTTGAGCAT | |||
HIS3 | Chitin synthase I | CYLH3F | Forward | AGGTCCACTGGTGGCAAG | [25] |
CYLH3R | Reverse | AGCTGGATGTCCTTGGACTG |
Species | Cultural Number | Host | Country | GenBank Accessions | ||||
---|---|---|---|---|---|---|---|---|
ITS | ACT | gapdh | His3 | Reference | ||||
C. anthrisci | CBS 125334 | Anthriscus sylvestris | The Netherlands | GU227845 | GU227943 | GU228237 | GU228041 | [27] |
CBS 125335 | Anthriscus sylvestris | The Netherlands | GU227846 | GU227944 | GU228238 | GU228042 | [27] | |
C. chlorophyti | IMI 103806 | Chlorophytum | India | GU227894 | GU227992 | GU228286 | GU228090 | [28] |
CBS 142.79 | Stylosanthes hamata | Australia | GU227895 | GU227993 | GU228287 | GU228091 | [27] | |
C. circinans | CBS 111.21 | Allium cepa | USA | GU227854 | GU227952 | GU228246 | GU228050 | [26] |
CBS 221.81 | Allium cepa | Serbia | GU227855 | GU227953 | GU228247 | GU228051 | [27] | |
C. dematium | CBS 125.25 | Eryngium campestre | France | GU227819 | GU227917 | GU228211 | GU228015 | [26] |
CBS 125340 | Apiaceae | Czech | GU227820 | GU227918 | GU228212 | GU228016 | [27] | |
C. fructi | CBS 346.37 | Malus sylvestris | USA | GU227844 | GU227942 | GU228236 | GU228040 | [26] |
C. lilii | CBS 109214 | Lilium | Japan | GU227810 | GU227908 | GU228202 | GU228006 | [26] |
C. lineola | CBS 125337 | Apiaceae | Czech | GU227829 | GU227927 | GU228221 | GU228025 | [27] |
CBS 125339 | Apiaceae | Czech | GU227830 | GU227928 | GU228222 | GU228026 | [27] | |
C. liriopes | CBS 119444 | Lirope muscari | Mexico | GU227804 | GU227902 | GU228196 | GU228000 | [28] |
CBS 122747 | Liriope muscari | Mexico | GU227805 | GU227903 | GU228197 | GU228001 | [26] | |
C. phaseolorum | CBS 157.36 | Phaseolus radiatus | Japan | GU227896 | GU227994 | GU228288 | GU228092 | [26] |
CBS 158.36 | Vigna sinensis | Japan | GU227897 | GU227995 | GU228289 | GU228093 | [26] | |
C. rusci | CBS 119206 | Ruscus | Italy | GU227818 | GU227916 | GU228210 | GU228014 | [28] |
C. spaethianum | CBS 167.49 | Hosta sieboldiana | Germany | GU227807 | GU227905 | GU228199 | GU228003 | [27] |
CBS 100063 | Lilium | South Korea | GU227808 | GU227906 | GU228200 | GU228004 | [27] | |
C. spinaciae | CBS 128.57 | Spinacia oleracea | The Netherlands | GU227847 | GU227945 | GU228239 | GU228043 | [26] |
CBS 108.40 | Spinacia oleracea | The Netherlands | GU227848 | GU227946 | GU228240 | GU228044 | [26] | |
C. tofieldiae | CBS 495.85 | Tofieldia calyculata | Switzerland | GU227801 | GU227899 | GU228193 | GU227997 | [29] |
CBS 168.49 | Lupinus polyphyllus | Germany | GU227802 | GU227900 | GU228194 | GU227998 | [27] | |
C. trichellum | CBS 118198 | Hedera | Guatemala | GU227813 | GU227911 | GU228205 | GU228009 | [26] |
CBS 448.90 | Hedera helix | Germany | GU227814 | GU227912 | GU228206 | GU228010 | [26] | |
C. truncatum | CBS 151.35 | Phaseolus lunatus | USA | GU227862 | GU227960 | GU228254 | GU228058 | [26] |
CBS 119189 | Phaseolus lunatus | USA | GU227863 | GU227961 | GU228255 | GU228059 | [26] | |
CBS 710.70 | Phaseolus vulgaris | Brazil | GU227864 | GU227962 | GU228256 | GU228060 | [26] | |
YN1932501 | Camavalia brasiliensis | China | OP616009 | OP649740 | OP649744 | OP649748 | This study | |
YN1932502 | Camavalia brasiliensis | China | OP616010 | OP649741 | OP649745 | OP649749 | This study | |
YN1932503 | Camavalia brasiliensis | China | OP616011 | OP649742 | OP649746 | OP649750 | This study | |
YN1932504 | Camavalia brasiliensis | China | OP616012 | OP649743 | OP649747 | OP649751 | This study | |
C. lindemuthianum (outgroup) | CBS 151.28 | Phaseolus vulgaris | UK | GU227800 | GU227898 | GU228192 | GU227996 | [26] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, M.; Xue, S.-M.; Zhang, M.-Y.; Li, S.-P.; Huang, B.-Z.; Huang, Q.; Liu, Q.-B.; Liao, X.-L.; Li, Y.-Z. Colletotrichum truncatum—A New Etiological Anthracnose Agent of Sword Bean (Canavalia gladiata) in Southwestern China. Pathogens 2022, 11, 1463. https://doi.org/10.3390/pathogens11121463
Shi M, Xue S-M, Zhang M-Y, Li S-P, Huang B-Z, Huang Q, Liu Q-B, Liao X-L, Li Y-Z. Colletotrichum truncatum—A New Etiological Anthracnose Agent of Sword Bean (Canavalia gladiata) in Southwestern China. Pathogens. 2022; 11(12):1463. https://doi.org/10.3390/pathogens11121463
Chicago/Turabian StyleShi, Min, Shi-Ming Xue, Mei-Yan Zhang, Shi-Ping Li, Bi-Zhi Huang, Qi Huang, Qiong-Bo Liu, Xiang-Long Liao, and Yan-Zhong Li. 2022. "Colletotrichum truncatum—A New Etiological Anthracnose Agent of Sword Bean (Canavalia gladiata) in Southwestern China" Pathogens 11, no. 12: 1463. https://doi.org/10.3390/pathogens11121463
APA StyleShi, M., Xue, S. -M., Zhang, M. -Y., Li, S. -P., Huang, B. -Z., Huang, Q., Liu, Q. -B., Liao, X. -L., & Li, Y. -Z. (2022). Colletotrichum truncatum—A New Etiological Anthracnose Agent of Sword Bean (Canavalia gladiata) in Southwestern China. Pathogens, 11(12), 1463. https://doi.org/10.3390/pathogens11121463