Cefiderocol against Multi-Drug and Extensively Drug-Resistant Escherichia coli: An In Vitro Study in Poland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Isolates and Identification
2.2. Phenotypic and Genetic Screening of ESBLs and Carbapenemases
2.3. Antimicrobial Susceptibility Testing
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- De Oliveira, D.; Forde, B.; Kidd, T.; Harris, P.; Schembri, M.; Beatson, S.; Peterson, D.; Walker, M. Antimicrobial resistance in ESKAPE pathogens. Clin. Microbiol. Rev. 2020, 33, e00181-19. [Google Scholar] [CrossRef] [PubMed]
- Shrivastava, S.R.; Shrivastava, P.S.; Ramasamy, J. World Health Organization releases global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. J. Med. Soc. 2018, 32, 76–77. [Google Scholar] [CrossRef]
- Antimicrobial Resistance Surveillance in Europe, 2022–2020 Data (europa.eu). Available online: https://www.ecdc.europa.eu/sites/default/files/documents/Joint-WHO-ECDC-AMR-report2022.pdf. (accessed on 25 November 2022).
- Grundmann, H.; Glasner, C.; Albiger, B.; Aanensen, D.M.; Tomlinson, C.T.; Andrasević, A.T.; Cantón, R.; Carmeli, Y.; Friedrich, A.W.; Giske, C.G.; et al. Occurrence of carbapenemase-producing Klebsiella pneumoniae and Escherichia coli in the European survey of carbapenemase-producing Enterobacteriaceae (EuSCAPE): A prospective, multinational study. Lancet Infect. Dis. 2017, 17, 153–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pitout, J.D.; Laupland, K.B. Extended-spectrum beta-lactamase-producing Enterobacteriaceae: An emerging public-health concern. Lancet Infect. Dis. 2008, 8, 159–166. [Google Scholar] [CrossRef]
- Mokracka, J.; Oszyńska, A.; Kaznowski, A. Increased frequency of integrons and β-lactamase-coding genes among extraintestinal Escherichia coli isolated with a 7-year interval. Antonie Van Leeuwenhoek. 2013, 103, 163–174. [Google Scholar] [CrossRef] [Green Version]
- Majewski, P.; Gutowska, A.; Smith, D.G.E.; Hauschild, T.; Majewska, P.; Hryszko, T.; Gizycka, D.; Kedra, B.; Kochanowicz, J.; Glowiński, J. Plasmid mediated mcr-1.1 colistin-resistance in clinical extraintestinal Escherichia coli strains isolated in Poland. Front. Microbiol. 2021, 12, 547020. [Google Scholar] [CrossRef]
- Stefaniuk, E.M.; Kozińska, A.; Waśko, I.; Baraniak, A.; Tyski, S. Occurrence of beta-lactamases in colistin-resistant Enterobacterales strains in Poland—A pilot study. Pol. J. Microbiol. 2021, 70, 283–288. [Google Scholar] [CrossRef]
- Doi, Y. Treatment options for carbapenem-resistant gram-negative bacterial infections. Clin. Infect. Dis. 2019, 69, S565–S575. [Google Scholar] [CrossRef] [Green Version]
- Ortiz de la Rosa, J.M.; Nordmann, P.; Poirel, L. ESBLs and resistance to ceftazidime/avibactam and ceftolozane/tazobactam combinations in Escherichia coli and Pseudomonas aeruginosa. J. Antimicrob. Chemother. 2019, 74, 1934–1939. [Google Scholar] [CrossRef]
- Hernández-García, M.; Sánchez-López, J.; Martínez-García, L.; Becerra-Aparicio, F.; Morosini, M.I.; Ruiz-Garbajosa, P.; Cantón, R. Emergence of the new KPC-49 variant conferring an ESBL phenotype with resistance to ceftazidime-avibactam in the ST131-H30R1 Escherichia coli high-risk clone. Pathogens 2021, 10, 67. [Google Scholar] [CrossRef]
- Sato, T.; Yamawaki, K. Cefiderocol: Discovery, chemistry, and in vivo profiles of a novel siderophore cephalosporin. Clin. Infect. Dis. 2019, 69, S538–S543. [Google Scholar] [CrossRef] [Green Version]
- European Medicine Company. 2020 Fetcroja. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/fetcroja#overview-section. (accessed on 25 November 2022).
- Compound Summary: Cefiderocol. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Cefiderocol (accessed on 25 November 2022).
- Soriano, M.C.; Montufar, J.; Blandino-Ortiz, A. Cefiderocol. Rev. Esp. Quimioter. 2022, 35, 31–34. [Google Scholar] [CrossRef]
- Syed, Y.Y. Cefiderocol: A review in serious Gram-negative bacterial infections. Drugs 2021, 81, 1559–1571. [Google Scholar] [CrossRef]
- Zalas-Więcek, P.; Bogiel, T.; Wiśniewski, K.; Gospodarek-Komkowska, E. Diversity of extended-spectrum beta-lactamase-producing Escherichia coli rods. Post. Hig. Med. Dośw. 2017, 71, 214–219. [Google Scholar] [CrossRef]
- Nordmann, P.; Poirel, L.; Dortet, L. Rapid detection of carbapenemase-producing Enterobacteriaceae. Emerg. Infect. Dis. 2012, 18, 1503–1507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, K.; Lim, Y.S.; Yong, D. Evaluation of the Hodge test and the imipenem-EDTA double-disk synergy test for differentiating metallo-beta-lactamase producing isolates of Pseudomonas spp. and Acinetobacter spp. J. Clin. Microbiol. 2003, 41, 4623–4629. [Google Scholar] [CrossRef] [Green Version]
- Doi, Y.; Potoski, B.A.; Adams-Haduch, J.M.; Sidjabat, H.E.; Pasculle, A.W.; Paterson, D.L. Simple disk-based method for detection of Klebsiella pneumoniae carbapenemase-type beta-lactamase by use of a boronic acid compound. J. Clin. Microbiol. 2008, 46, 4083–4086. [Google Scholar] [CrossRef] [Green Version]
- Glupczynski, Y.; Huang, T.D.; Bouchahrouf, W.; Rezende de Castro, R.; Bauraing, C.; Gérard, M.; Verbruggen, A.M.; Deplano, A.; Denis, O.; Bogaerts, P. Rapid emergence and spread of OXA-48-producing carbapenem-resistant Enterobacteriaceae isolates in Belgian hospitals. Int. J. Antimicrob. Agents. 2012, 39, 168–172. [Google Scholar] [CrossRef] [PubMed]
- van Dijk, K.; Voets, G.; Scharringa, J.; Voskuil, S.; Fluit, A.C.; Rottier, W.C.; Leverstein-Van Hall, M.A.; Cohen Stuart, J.W.T. A disc diffusion assay for detection of class A, B and OXA48 carbapenemases in Enterobacteriaceae using phenyl boronic acid, dipicolinic acid, and temocillin. Clin. Microbiol. Infect. 2014, 20, 345–349. [Google Scholar] [CrossRef] [Green Version]
- European Committee on Antimicrobial Susceptibility Testing Breakpoint Tables for Interpretation of MICs and Zone Diameters Version 12.0. 2022. Available online: https://www.eucast.org (accessed on 25 November 2022).
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed]
- European Committee on Antimicrobial Susceptibility Testing Routine and extended internal quality control for MIC determination and disk diffusion as recommended by EUCAST. Version 12.0. 2022. Available online: https://www.eucast.org (accessed on 25 November 2022).
- Ito, A.; Sato, T.; Ota, M.; Takemura, M.; Nishikawa, T.; Toba, S.; Kohira, N.; Miyagawa, S.; Ishibashi, N.; Matsumoto, S.; et al. In vitro antibacterial properties of cefiderocol, a novel siderophore cephalosporin, against Gram-negative bacteria. Antimicrob. Agents Chemother. 2018, 62, e01454-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ito-Horiyama, T.; Ishii, Y.; Ito, A.; Sato, T.; Nakamura, R.; Fukuhara, N.; Tsuji, M.; Yamano, Y.; Yamaguchi, K.; Tateda, K. Stability of novel siderophore cephalosporin s-649266 against clinically relevant carbapenemases. Antimicrob. Agents Chemother. 2016, 60, 4384–4386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hackel, M.A.; Tsuji, M.; Yamano, Y.; Echols, R.; Karlowsky, J.A.; Sahm, D.F. In vitro activity of the siderophore cephalosporin, cefiderocol, against a recent collection of clinically relevant Gram-negative bacilli from North America and Europe, including carbapenem-nonsusceptible isolates (SIDERO-WT-2014 Study). Antimicrob. Agents Chemother. 2017, 61, e00093-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karlowsky, J.A.; Hackel, M.A.; Tsuji, M.; Yamano, Y.; Echols, R.; Sahm, D.F. In vitro activity of cefiderocol, a siderophore cephalosporin, against Gram-negative bacilli isolated by clinical laboratories in North America and Europe in 2015–2016: SIDERO-WT-2015. Int. J. Antimicrob. Agents 2019, 53, 456–466. [Google Scholar] [CrossRef] [PubMed]
- Kazmierczak, K.M.; Tsuji, M.; Wise, M.G.; Hackel, M.; Yamano, Y.; Echols, R.; Sahm, D.F. In vitro activity of cefiderocol, a siderophore cephalosporin, against a recent collection of clinically relevant carbapenem-non-susceptible Gram-negative bacilli, including serine carbapenemase- and metallo-β-lactamase-producing isolates (SIDERO-WT-2014 Study). Int. J. Antimicrob. Agents 2019, 53, 177–184. [Google Scholar] [CrossRef]
- Wong, P.H.P.; von Krosigk, M.; Roscoe, D.L.; Lau, T.T.Y.; Yousefi, M.; Bowie, W.R. Antimicrobial co-resistance patterns of gram-negative bacilli isolated from bloodstream infections: A longitudinal epidemiological study from 2002–2011. BMC Infect. Dis. 2014, 14, 393. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Jin, L.; Sun, S.; Yin, Y.; Wang, R.; Chen, F.; Wang, X.; Zhang, Y.; Hou, J.; Zhang, Y.; et al. Occurrence of high levels of cefiderocol resistance in carbapenem-resistant Escherichia coli before its approval in China: A report from China CRE-Network. Microbiol. Spectr. 2022, 10, e0267021. [Google Scholar] [CrossRef]
- Kohira, N.; Hackel, M.A.; Ishioka, Y.; Kuroiwa, M.; Sahm, D.; Sato, T.; Maki, H.; Yamano, Y. Reduced susceptibility mechanism to cefiderocol, a siderophore cephalosporin, among clinical isolates from a global surveillance programme (SIDERO-WT-2014). J. Glob. Antimicrob. Resist. 2020, 22, 738–741. [Google Scholar] [CrossRef]
- Simner, P.J.; Mostafa, H.H.; Bergman, Y.; Ante, M.; Tekle, T.; Adebayo, A.; Beisken, S.; Dzintars, K.; Tamma, P.D. Progressive development of cefiderocol resistance in Escherichia coli during therapy is associated with an increase in blaNDM-5 copy number and gene expression. Clin. Infect. Dis. 2022, 75, 47–54. [Google Scholar] [CrossRef]
- Fröhlich, C.; Sørum, V.; Tokuriki, N.; Johnsen, P.J.; Samuelsen, Ø. Evolution of β-lactamase-mediated cefiderocol resistance. J. Antimicrob. Chemother. 2022, 77, 2429–2436. [Google Scholar] [CrossRef]
- Morris, C.P.; Bergman, Y.; Tekle, T.; Fissel, J.A.; Tamma, P.D.; Simner, P.J. Cefiderocol antimicrobial susceptibility testing against multidrug-resistant Gram-negative bacilli: A comparison of disk diffusion to broth microdilution. J. Clin. Microbiol. 2020, 59, e01649-20. [Google Scholar] [CrossRef] [PubMed]
- EUCAST Warnings Concerning Antimicrobial Susceptibility Testing Products or Procedures. Available online: https://www.eucast.org/ast-of-bacteria/warnings (accessed on 25 November 2022).
Resistance Profile (n) | CFDC | |||||
---|---|---|---|---|---|---|
DD Method—Diameter Range (mm) | S | MIC50 (µg/mL) | MIC90 (µg/mL) | MIC Range (µg/mL) | S | |
n (%) | n (%) | |||||
All | 13–35 | 98 (94.2%) | 0.19 | 0.75 | <0.016–4 | 99 (95.2%) |
ESBL-positive (89) | 16–35 | 86 (96.6%) | 0.19 | 0.5 | 0.016–4 | 86 (96.6%) |
CR (20) | 13–35 | 17 (85.0%) | 0.38 | 2 | 0.016–4 | 18 (90.0%) |
VIM-positive (16) | 13–33 | 14 (87.5%) | 0.5 | 1.5 | 0.016–4 | 15 (93.7%) |
DD method—Zone Diameter (mm) | S | MIC Value | S | |||
n | n | |||||
NDM-positive (1) | 14 | 0 | 4 | 0 | ||
CTX-M-1 and VIM-positive (1) | 24 | 1 | 0.5 | 1 | ||
CTX-M-9 and OXA-48-positive (1) | 35 | 1 | <0.016 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zalas-Więcek, P.; Płachta, K.; Gospodarek-Komkowska, E. Cefiderocol against Multi-Drug and Extensively Drug-Resistant Escherichia coli: An In Vitro Study in Poland. Pathogens 2022, 11, 1508. https://doi.org/10.3390/pathogens11121508
Zalas-Więcek P, Płachta K, Gospodarek-Komkowska E. Cefiderocol against Multi-Drug and Extensively Drug-Resistant Escherichia coli: An In Vitro Study in Poland. Pathogens. 2022; 11(12):1508. https://doi.org/10.3390/pathogens11121508
Chicago/Turabian StyleZalas-Więcek, Patrycja, Katarzyna Płachta, and Eugenia Gospodarek-Komkowska. 2022. "Cefiderocol against Multi-Drug and Extensively Drug-Resistant Escherichia coli: An In Vitro Study in Poland" Pathogens 11, no. 12: 1508. https://doi.org/10.3390/pathogens11121508
APA StyleZalas-Więcek, P., Płachta, K., & Gospodarek-Komkowska, E. (2022). Cefiderocol against Multi-Drug and Extensively Drug-Resistant Escherichia coli: An In Vitro Study in Poland. Pathogens, 11(12), 1508. https://doi.org/10.3390/pathogens11121508