Multidrug-Resistant Gram-Negative Bacteria Contaminating Raw Meat Sold in Accra, Ghana
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site, Design and Sampling
2.2. Laboratory Investigations
2.2.1. Sample Preparation and Identification of Bacteria in the Meat Samples
2.2.2. Antimicrobial Susceptibility Testing
2.3. Data Analysis
3. Results
3.1. Spectrum of Bacterial Pathogens Contaminating the Meats
3.2. Antimicrobial Resistance among the Bacterial Contaminants of the Meats
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aning, K.G.; Donkor, E.S.; Omore, A.; Nurah, G.K.; Osafo, E.L.K.; Staal, S. Risk of exposure to marketed milk with antimicrobial drug residues in Ghana. Open Food Sci. J. 2007, 1, 1–5. [Google Scholar] [CrossRef]
- Donkor, E.S.; Newman, M.J.; Tay, S.C.; Dayie, N.T.; Bannerman, E.; Olu-Taiwo, M. Investigation into the risk of exposure to antibiotic residues contaminating meat and egg in Ghana. Food Control 2011, 22, 869–873. [Google Scholar] [CrossRef]
- Smith, R.A.; M’ikanatha, N.M.; Read, A.F. Antibiotic resistance: A primer and call to action. Health Commun. 2015, 30, 309–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donkor, E.S.; Anim-Baidoo, I.; Fei, E.; Collins, A.; Olu-Taiwo, M.; Nana-Adjei, D.; Owusu, E.; Obeng, A.F. Occurrence of antibiotic residues and antibiotic-resistant bacteria in Nile tilapia sold in some markets in Accra, Ghana: Public health implications. J. Food Res. 2018, 7, 129–137. [Google Scholar] [CrossRef]
- Ateba, C.; Mbewe, M.; Bezuidenhout, C. Prevalence of Escherichia coli O157 strains in cattle, pigs and humans in North West province, South Africa. S. Afr. J. Sci. 2008, 104, 7–8. [Google Scholar]
- Landers, T.F.; Cohen, B.; Wittum, T.E.; Larson, E.L. A review of antibiotic use in food animals: Perspective, policy, and potential. Public Health Rep. 2012, 127, 4–22. [Google Scholar] [CrossRef] [Green Version]
- Asiimwe, B.B.; Baldan, R.; Trovato, A.; Cirillo, D.M. Prevalence and molecular characteristics of Staphylococcus aureus, including methicillin resistant strains, isolated from bulk can milk and raw milk products in pastoral communities of South-West Uganda. BMC Infect. Dis. 2017, 17, 422. [Google Scholar] [CrossRef]
- Djeffal, S.; Mamache, B.; Elgroud, R.; Hireche, S.; Bouaziz, O. Prevalence and risk factors for Salmonella spp. contamination in broiler chicken farms and slaughterhouses in the northeast of Algeria. Vet. World 2018, 11, 1102. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Mir, R.A.; Park, S.H.; Kim, D.; Kim, H.-Y.; Boughton, R.K.; Jeong, K.C. Prevalence of extended-spectrum β-lactamases in the local farm environment and livestock: Challenges to mitigate antimicrobial resistance. Crit. Rev. Microbiol. 2020, 46, 1–14. [Google Scholar] [CrossRef]
- Ali, N.H.; Farooqui, A.; Khan, A.; Khan, A.Y.; Kazmi, S.U. Microbial contamination of raw meat and its environment in retail shops in Karachi, Pakistan. J. Infect. Dev. Ctries. 2010, 4, 382–388. [Google Scholar]
- Wassenaar, T.M. Use of antimicrobial agents in veterinary medicine and implications for human health. Crit. Rev. Microbiol. 2005, 31, 155–169. [Google Scholar] [CrossRef] [PubMed]
- Vishnuraj, M.; Kandeepan, G.; Rao, K.; Chand, S.; Kumbhar, V. Occurrence, public health hazards and detection methods of antibiotic residues in foods of animal origin: A comprehensive review. Cogent Food Agric. 2016, 2, 1235458. [Google Scholar] [CrossRef]
- Mund, M.D.; Khan, U.H.; Tahir, U.; Mustafa, B.-E.; Fayyaz, A. Antimicrobial drug residues in poultry products and implications on public health: A review. Int. J. Food Prop. 2017, 20, 1433–1446. [Google Scholar] [CrossRef] [Green Version]
- Antimicrobial resistance: A top ten global health public health threat. EClinicalMedicine 2021, 41, 101221. [CrossRef]
- Newman, M.J.; Frimpong, E.; Donkor, E.S.; Opintan, J.; Asamoah-Adu, A. Resistance to antimicrobial drugs in Ghana. Infect. Drug Resist. 2011, 4, 215–220. [Google Scholar] [PubMed] [Green Version]
- Opintan, J.A.; Newman, M.J.; Arhin, R.E.; Donkor, E.S.; Gyansa-Lutterodt, M.; Mills-Pappoe, W. Laboratory-based nationwide surveillance of antimicrobial resistance in Ghana. Infect. Drug Resist. 2015, 8, 379–389. [Google Scholar] [CrossRef] [Green Version]
- Donkor, E.S.; Badoe, E.V.; Annan, J.A.; Nii-Trebi, N. Colonisation of antibiotic resistant bacteria in a cohort of HIV infected children in Ghana. Pan Afr. Med. J. 2017, 26, 60. [Google Scholar]
- Agyepong, N.; Govinden, U.; Owusu-Ofori, A.; Essack, S.Y. Multidrug-resistant gram-negative bacterial infections in a teaching hospital in Ghana. Antimicrob. Resist. Infect. Control 2018, 7, 37. [Google Scholar] [CrossRef] [Green Version]
- Donkor, E.S.; Kotey, F.C.N.; Dayie, N.T.K.D.; Duodu, S.; Tetteh-Quarcoo, P.B.; Osei, M.-M.; Tette, E. Colonization of HIV-Infected Children with Methicillin-Resistant Staphylococcus aureus. Pathogens 2019, 8, 35. [Google Scholar] [CrossRef] [Green Version]
- Appiah, V.A.; Pesewu, G.A.; Kotey, F.C.N.; Boakye, A.N.; Duodu, S.; Tette, E.; Nyarko, M.Y.; Donkor, E.S. Staphylococcus aureus nasal colonization among children with sickle cell disease at the Children’s Hospital, Accra: Prevalence, risk factors, and antibiotic resistance. Pathogens 2020, 9, 329. [Google Scholar] [CrossRef] [PubMed]
- Anafo, R.B.; Atiase, Y.; Dayie, N.T.K.D.; Kotey, F.C.N.; Tetteh-Quarcoo, P.B.; Duodu, S.; Osei, M.-M.; Alzahrani, K.J.; Donkor, E.S. Methicillin-resistant Staphylococcus aureus (MRSA) infection of diabetic foot ulcers at a tertiary care hospital in Accra, Ghana. Pathogens 2021, 10, 937. [Google Scholar] [CrossRef] [PubMed]
- Anafo, R.B.; Atiase, Y.; Kotey, F.C.N.; Dayie, N.T.K.D.; Tetteh-Quarcoo, P.B.; Duodu, S.; Osei, M.-M.; Alzahrani, K.J.; Donkor, E.S. Methicillin-resistant Staphylococcus aureus (MRSA) nasal carriage among patients with diabetes at the Korle Bu Teaching Hospital. PLoS ONE 2021, 16, e0257004. [Google Scholar] [CrossRef] [PubMed]
- Dayie, N.T.K.D.; Osei, M.-M.; Opintan, J.A.; Tetteh-Quarcoo, P.B.; Kotey, F.C.N.; Ahenkorah, J.; Adutwum-Ofosu, K.K.; Egyir, B.; Donkor, E.S. Nasopharyngeal carriage and antimicrobial susceptibility profile of Staphylococcus aureus among children under five years in Accra. Pathogens 2021, 10, 136. [Google Scholar] [CrossRef] [PubMed]
- Addae-Nuku, D.S.; Kotey, F.C.N.; Dayie, N.T.K.D.; Osei, M.M.; Tette, E.M.; Debrah, P.; Donkor, E.S. Multidrug-Resistant Bacteria in Hospital Wastewater of the Korle Bu Teaching Hospital in Accra, Ghana. Environ. Health Insights 2022, 16, 11786302221130613. [Google Scholar] [CrossRef]
- Anning, A.S.; Baah, E.; Buabeng, S.D.; Baiden, B.G.; Aboagye, B.; Opoku, Y.K.; Afutu, L.L.; Ghartey-Kwansah, G. Prevalence and antimicrobial resistance patterns of microbes isolated from individuals attending private diagnostic centre in Cape Coast Metropolis of Ghana. Sci. Rep. 2022, 12, 14282. [Google Scholar] [CrossRef]
- Dayie, N.T.K.D.; Bannah, V.; Dwomoh, F.P.; Kotey, F.C.N.; Donkor, E.S. Distribution and antimicrobial resistance profiles of bacterial aetiologies of childhood otitis media in Accra, Ghana. Microbiol. Insights 2022, 15, 11786361221104446. [Google Scholar] [CrossRef]
- Dayie, N.T.K.D.; Sekoh, D.N.; Tetteh-Quarcoo, P.B.; Dayie, A.D.; Osei, M.M.; Kotey, F.C.N.; Donkor, E.S. Staphylococcus aureus nasopharyngeal carriage and antimicrobial resistance among adults with sickle cell disease at the Korle Bu Teaching Hospital in Accra, Ghana. Microbiol. Insights 2022, 15, 11786361221133959. [Google Scholar] [CrossRef]
- Kotey, F.C.N.; Awugah, S.A.; Dayie, N.T.K.D.; Tetteh-Quarcoo, P.B.; Duodu, S.; Osei, M.-M.; Bentum, J.N.; Nyarko, M.Y.; Neizer, M.L.; Alsharif, K.F.; et al. High prevalence of methicillin-resistant Staphylococcus aureus carriage among infants at the Children’s Hospital, Accra, Ghana. J. Infect. Dev. Ctries. 2022, 16, 1450–1457. [Google Scholar] [CrossRef]
- Donkor, E.S.; Newman, M.J.; Yeboah-Manu, D. Epidemiological aspects of non-human antibiotic usage and resistance: Implications for the control of antibiotic resistance in Ghana. Trop. Med. Int. Health 2011, 17, 462–468. [Google Scholar] [CrossRef]
- Ghana Statistical Service. 2010 Population and Housing Census. June 2012. Available online: https://www2.statsghana.gov.gh/docfiles/2010_District_Report/Northern/Tamale%20Metropolitan.pdf (accessed on 17 February 2021).
- Soriyi, I.; Agbogli, H.; Dongdem, J. A pilot microbial assessment of beef sold in the Ashaiman market, a suburb of Accra, Ghana. Afr. J. Food Agric. Nutr. Dev. 2008, 8, 91–103. [Google Scholar] [CrossRef]
- M100; Performance Standard for Antimicrobial Susceptibility Testing. 31st ed. Clinical and Laboratory Standards Institute (CLSI): Wayne, PA, USA, 2021.
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krumperman, P.H. Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of fecal contamination of foods. Appl. Environ. Microbiol 1983, 46, 165–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Addo, K.; Adjei, V.; Mensah, G.; Jackson-Sillah, D. Microbial Quality and Antibiotic Residues in Raw Beef from Selected Abattoirs in Accra, Ghana. Int. J. Trop. Dis. Health 2014, 6, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Adzitey, F. Prevalence of Escherichia coli and Salmonella spp. in beef samples sold at Tamale Metropolis 2015, Ghana. Int. J. Meat Sci. 2015, 5, 8–13. [Google Scholar] [CrossRef] [Green Version]
- Adzitey, F. Incidence and antimicrobial susceptibility of Escherichia coli isolated from beef (meat muscle, liver and kidney) samples in Wa Abattoir, Ghana. Cogent Food Agric. 2020, 6, 1718269. [Google Scholar] [CrossRef]
- Yar, D.D.; Kwenin, W.K.J.; Zanu, W.K.; Balali, G.I.; Adepa, E.K.; Gyapong, F. Microbial quality of frozen chicken parts from three import countries into the Kumasi Metropolis of Ghana. Microbiol. Res. J. Int. 2020, 31, 43–53. [Google Scholar] [CrossRef]
- Dsani, E.; Afari, E.A.; Danso-Appiah, A.; Kenu, E.; Kaburi, B.B.; Egyir, B. Antimicrobial resistance and molecular detection of extended spectrum β-lactamase producing Escherichia coli isolates from raw meat in Greater Accra region, Ghana. BMC Microbiol. 2020, 20, 253. [Google Scholar] [CrossRef]
- Çakır, E. Ozon Gazı Uygulanmış Koyun Sütü Örneklerinin Fizikokimyasal ve Mikrobiyolojik Özelliklerinde Meydana Gelen Değişimlerin Belirlenmesi. Master’s Thesis, Necmettin Erbakan University, Konya, Turkey, 2018. [Google Scholar]
- Ekici, G.; Dümen, E. Escherichia coli and food safety. In The Universe of Escherichia coli; IntechOpen: London, UK, 2019. [Google Scholar]
- Adzitey, F.; Ayum, T.G.; Ayim, A.G.; Addy, S. Microbial quality of chevon and mutton sold in Tamale Metropolis of Northern Ghana. J. Appl. Sci. Environ. Manag. 2010, 14, 53–55. [Google Scholar]
- Koffi-Nevry, R.; Koussemon, M.; Coulibaly, S.O. Bacteriological quality of beef offered for retail sale in Cote d’Ivoire. Am. J. Food Technol. 2011, 6, 835–842. [Google Scholar] [CrossRef] [Green Version]
- Abass, A.; Adzitey, F.; Huda, N. Escherichia coli of ready-to-eat (RTE) meats origin showed resistance to antibiotics used by farmers. Antibiotics 2020, 9, 869. [Google Scholar] [CrossRef]
- Saud, B.; Paudel, G.; Khichaju, S.; Bajracharya, D.; Dhungana, G.; Awasthi, M.S.; Shrestha, V. Multidrug-resistant bacteria from raw meat of buffalo and chicken, Nepal. Vet. Med. Int. 2019, 2019, 7960268. [Google Scholar] [CrossRef] [Green Version]
- Elmonir, W.; Abd El-Aziz, N.K.; Tartor, Y.H.; Moustafa, S.M.; Abo Remela, E.M.; Eissa, R.; Saad, H.A.; Tawab, A.A. Emergence of Colistin and Carbapenem Resistance in Extended-Spectrum β-Lactamase Producing Klebsiella pneumoniae Isolated from Chickens and Humans in Egypt. Biology 2021, 10, 373. [Google Scholar] [CrossRef] [PubMed]
- Kirbis, A.; Krizman, M. Spread of antibiotic resistant bacteria from food of animal origin to humans and vice versa. Procedia Food Sci. 2015, 5, 148–151. [Google Scholar] [CrossRef] [Green Version]
- Duedu, K.O.; Offei, G.; Codjoe, F.S.; Donkor, E.S. Multidrug resistant enteric bacterial pathogens in a psychiatric hospital in Ghana: Implications for control of nosocomial infections. Int. J. Microbiol. 2017, 2017, 9509087. [Google Scholar] [CrossRef] [PubMed]
- Tetteh-Quarcoo, P.B.; Donkor, E.S.; Attah, S.K.; Duedu, K.O.; Afutu, E.; Boamah, I.; Olu-Taiwo, M.; Anim-Baidoo, I.; Ayeh-Kumi, P.F. Microbial carriage of cockroaches in a tertiary hospital in Ghana: Public health implications. Environ. Health Insights 2013, 7, 59–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Futagbi, G.; Koduah, N.A.G.; Ampah, B.R.; Mattah, P.A.D.; Billah, M.; Futse, J.E.; Donkor, E.S. Microbial carriage and contamination of mangoes by the Oriental Fruit Fly. Open Public Health J. 2017, 10, 267–275. [Google Scholar] [CrossRef]
- Obeng-Nkrumah, N.; Labi, A.K.; Blankson, H.; Awuah-Mensah, G.; Oduro-Mensah, D.; Anum, J.; Teye, J.; Kwashie, S.D.; Bako, E.; Ayeh-Kumi, P.F.; et al. Household cockroaches carry CTX-M-15-, OXA-48- and NDM-1-producing enterobacteria, and share beta-lactam resistance determinants with humans. BMC Microbiol. 2019, 19, 272. [Google Scholar] [CrossRef] [PubMed]
- Donkor, E.S. Nosocomial pathogens: An in-depth analysis of the vectorial potential of cockroaches. Trop. Med. Infect. Dis. 2019, 4, 14. [Google Scholar] [CrossRef] [Green Version]
- Obeng-Nkrumah, N.; Labi, A.K.; Acquah, M.E.; Donkor, E.S. Bloodstream infections in patients with malignancies: Implications for antibiotic treatment in a Ghanaian tertiary setting. BMC Res. Notes 2015, 8, 742. [Google Scholar] [CrossRef] [Green Version]
- Tette, E.M.; Neizer, M.; Nyarko, M.Y.; Sifah, E.K.; Nartey, E.T.; Donkor, E.S. Changing patterns of disease and mortality at the Children’s Hospital, Accra: Are Infections Rising? PLoS ONE 2016, 11, e0150387. [Google Scholar] [CrossRef] [Green Version]
- Donkor, E.S.; Jamrozy, D.; Mills, R.O.; Dankwah, T.; Amoo, P.K.; Egyir, B.; Badoe, E.V.; Twasam, J.; Bentley, S.D. A genomic infection control study for Staphylococcus aureus in two Ghanaian hospitals. Infect. Drug Resist. 2018, 11, 1757–1765. [Google Scholar] [CrossRef] [PubMed]
- Donkor, E.S.; Kotey, F.C.N. Methicillin-resistant Staphylococcus aureus (MRSA) in the oral cavity: Its implications for dental care and MRSA surveillance. Infect. Dis. Res. Treat. 2020, 13, 1178633720976581. [Google Scholar]
Number of Individual Bacterial Contaminants Per Sample | Number of Samples | |||
---|---|---|---|---|
All Meat Types | Beef | Goat | Chicken | |
One | 16 (5.9%) | 0 (0.0%) | 1 (1.1%) | 15 (16.7%) |
Two | 225 (83.3%) | 85 (94.4%) | 77 (85.6%) | 63 (70.0%) |
Three | 24 (8.9%) | 4 (4.4%) | 12 (13.3%) | 8 (8.9%) |
Four | 5 (1.9%) | 1 (1.1%) | 0 (0.0%) | 4 (4.4%) |
Isolated Bacterium | Total Number (n, %) * | Distribution of the Bacterium Across the Meat Types # | ||
---|---|---|---|---|
Beef (n, %) | Goat (n, %) | Chicken (n, %) | ||
Escherichia coli | 262 (47.0%) | 80 (30.5%) | 80 (30.5%) | 102 (38.9%) |
Aeromonas hydrophila | 117 (21.0%) | 42 (35.9%) | 62 (53.0%) | 13 (11.1%) |
Vibrio cholerae | 20 (3.6%) | 10 (50.0%) | 10 (50.0%) | 0 (0.0%) |
Aeromonas veronii | 19 (3.4%) | 12 (63.1%) | 7 (36.8%) | 0 (0.0%) |
Klebsiella pneumoniae | 18 (3.2%) | 4 (22.2%) | 3 (16.7%) | 11 (61.1%) |
Serratia plymuthica | 14 (2.5%) | 1 (7.1%) | 2 (14.3%) | 11 (78.6%) |
Pantoea spp. | 13 (2.3%) | 1 (7.7%) | 1 (7.7%) | 11 (84.6%) |
Moellerella wisconsensis | 10 (1.8%) | 7 (70.0%) | 3 (30.0%) | 0 (0.0%) |
Acinetobacter baumannii | 9 (1.6%) | 1 (11.1%) | 1 (11.1%) | 7 (77.8%) |
Vibrio spp. | 9 (1.6%) | 4 (44.4%) | 4 (44.4%) | 1 (11.1%) |
Enterobacter cloacae | 7 (1.3%) | 2 (28.6%) | 0 (0.0%) | 5 (71.4%) |
Vibrio alginolyticus | 6 (1.1%) | 1 (16.7%) | 3 (50.0%) | 2 (33.3%) |
Pseudomonas luteola | 6 (1.1%) | 3 (50.0%) | 3 (50.0%) | 0 (0.0%) |
Proteus mirabilis | 6 (1.1%) | 4 (66.7%) | 0 (0.0%) | 2 (33.3%) |
Salmonella enteritidis | 6 (1.1%) | 2 (33.3%) | 2 (33.3%) | 2 (33.3%) |
Citrobacter koseri | 5 (0.9%) | 3 (60.0%) | 1 (20.0%) | 1 (20.0%) |
Yersinia enterolytica | 5 (0.9%) | 0 (0.0%) | 0 (0.0%) | 5 (100.0%) |
Shigella flexneri | 3 (0.5%) | 0 (0.0%) | 0 (0.0%) | 3 (100.0%) |
Enterobacter aerogenes | 3 (0.5%) | 2 (66.7%) | 1 (33.3%) | 0 (0.0%) |
Citrobacter freundii | 3 (0.5%) | 2 (66.7%) | 1 (33.3%) | 0 (0.0%) |
Rahnella aqualitis | 2 (0.4%) | 0 (0.0%) | 0 (0.0%) | 2 (100.0%) |
Serratia odorifera | 2 (0.4%) | 0 (0.0%) | 0 (0.0%) | 2 (100.0%) |
Citrobacter youngae | 2 (0.4%) | 1 (50.0%) | 1 (50.0%) | 0 (0.0%) |
Klebsiella oxytoca | 2 (0.4%) | 2 (100.0%) | 0 (0.0%) | 0 (0.0%) |
Providencia rettgeri | 2 (0.4%) | 1 (50.0%) | 1 (50.0%) | 0 (0.0%) |
Acinetobacter iwoffi | 1 (0.2%) | 1 (100.0%) | 0 (0.0%) | 0 (0.0%) |
Serratia rubidaea | 1 (0.2%) | 1 (100.0%) | 0 (0.0%) | 0 (0.0%) |
Kluyvera spp. | 1 (0.2%) | 0 (0.0%) | 1 (100.0%) | 0 (0.0%) |
Pasteurella multocida | 1 (0.2%) | 0 (0.0%) | 1 (100.0%) | 0 (0.0%) |
Yersinia ruckeri | 1 (0.2%) | 0 (0.0%) | 1 (100.0%) | 0 (0.0%) |
Stenotrophomonas maltophilia | 1 (0.2%) | 0 (0.0%) | 1 (100.0%) | 0 (0.0%) |
Pasteurella pneumotropica | 1 (0.2%) | 0 (0.0%) | 0 (0.0%) | 1 (100.0%) |
Total | 558 (100%) | 186 (33.3%) | 191 (34.2%) | 181 (32.4%) |
Organisms/Antibiotics | AMP | AMC | CEFU | CEFT | CFTZ | CEFP | CIP | TMS | ERT | MEM |
---|---|---|---|---|---|---|---|---|---|---|
All Bacteria (n = 558) | 83.3 | 36 | 9.1 | 2.2 | 2.2 | 2.3 | 5.7 | 19.5 | 1.3 | 1.3 |
All E. coli (n = 262) | 81.3 | 25.2 | 7.6 | 2.7 | 2.7 | 3.1 | 9.5 | 26.3 | 1.1 | 1.1 |
Beef E. coli (n = 80) | 78.8 | 42.5 | 3.8 | 0 | 0 | 1.3 | 10 | 28.8 | 1.3 | 1.3 |
Goat E. coli (n = 80) | 77.5 | 23.8 | 6.3 | 0 | 0 | 0 | 11.3 | 12.5 | 0 | 0 |
Chicken E. coli (n = 102) | 86.3 | 12.7 | 11.8 | 6.9 | 6.9 | 6.9 | 7.8 | 26.5 | 2 | 2 |
All A. hydrophila (n = 117) | 94 | 62.4 | 10.3 | 0 | 0 | 0 | 3.4 | 6 | 0 | 0 |
Beef A. hydrophila (n = 42) | 100 | 88.1 | 2.4 | 0 | 0 | 0 | 3.2 | 1.6 | 0 | 0 |
Goat A. hydrophila (n = 62) | 88.7 | 53.2 | 17.7 | 0 | 0 | 0 | 3.2 | 3.2 | 0 | 0 |
Beef A. hydrophila (n = 13) | 100 | 23.1 | 0 | 0 | 0 | 0 | 0 | 30.8 | 0 | 0 |
All V. cholerae (n = 20) | 90 | 0 | 0 | 0 | 0 | 0 | 0 | 25 | 0 | 0 |
Beef V. cholerae (n = 10) | 100 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Goat V. cholerae (n = 10) | 80 | 0 | 0 | 0 | 0 | 0 | 0 | 50 | 0 | 0 |
All A. veronii (n = 19) | 100 | 100 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Beef A. veronii (n = 12) | 100 | 100 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Goat A. veronii (n = 7) | 100 | 100 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
All K. pneumoniae (n = 18) | 94.4 | 11.1 | 5.6 | 5.6 | 5.6 | 5.6 | 0 | 27.8 | 0 | 0 |
Beef K. pneumoniae (n = 4) | 75 | 0 | 0 | 0 | 0 | 0 | 0 | 25 | 0 | 0 |
Goat K. pneumoniae (n = 3) | 100 | 0 | 0 | 0 | 0 | 0 | 0 | 66.7 | 0 | 0 |
Chicken K. pneumoniae (n = 11) | 100 | 18.2 | 9.1 | 9.1 | 9.1 | 9.1 | 0 | 18.2 | 0 | 0 |
Bacteria/Meat Types | MDR Prevalence | MAR Index |
---|---|---|
All Bacteria (from all meat types) (n = 558) | 14.9% (n = 83) | 0.12 ± 0.09 |
All Bacteria from Beef (n = 186) | 11.3% (n = 21) | 0.11 ± 0.08 |
All Bacteria from Goat (n = 191) | 14.7% (n = 28) | 0.11 ± 0.07 |
All Bacteria from Chicken (n = 181) | 18.8% (n = 34) | 0.13 ± 0.12 |
All E. coli (n = 262) | 18.7% (n = 49) | 0.11 ± 0.10 |
Beef E. coli (n = 80) | 18.8% (n = 15) | 0.12 ± 0.09 |
Goat E. coli (n = 80) | 18.8% (n = 15) | 0.10 ± 0.08 |
Chicken E. coli (n = 102) | 18.6% (n = 19) | 0.12 ± 0.12 |
All A. hydrophilia (n = 117) | 11.1% (n = 13) | 0.13 ± 0.05 |
Beef A. hydrophilia (n = 42) | 7.1% (n = 3) | 0.14 ± 0.03 |
Goat A. hydrophilia (n = 62) | 14.5% (n = 9) | 0.12 ± 0.06 |
Chicken A. hydrophilia (n = 13) | 7.7% (n = 1) | 0.11 ± 0.05 |
All V. cholerae (n = 20) | 0.0% (n = 0) | 0.08 ± 0.04 |
Beef V. cholerae (n = 10) | 0.0% (n = 0) | 0.09 ± 0.03 |
Goat V. cholerae (n = 10) | 0.0% (n = 0) | 0.08 ± 0.05 |
All A. veronii (n = 19) | 0.0% (n = 0) | 0.14 ± 0.00 |
Beef A. veronii (n = 12) | 0.0% (n = 0) | 0.14 ± 0.00 |
Goat A. veronii (n = 7) | 0.0% (n = 0) | 0.14 ± 0.00 |
All K. pneumoniae (n = 18) | 5.6% (n = 1) | 0.12 ± 0.10 |
Beef K. pneumoniae (n = 4) | 0.0% (n = 0) | 0.11 ± 0.04 |
Goat K. pneumoniae (n = 3) | 0.0% (n = 0) | 0.12 ± 0.04 |
Chicken K. pneumoniae (n = 11) | 9.1% (n = 1) | 0.12 ± 0.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baah, D.A.; Kotey, F.C.N.; Dayie, N.T.K.D.; Codjoe, F.S.; Tetteh-Quarcoo, P.B.; Donkor, E.S. Multidrug-Resistant Gram-Negative Bacteria Contaminating Raw Meat Sold in Accra, Ghana. Pathogens 2022, 11, 1517. https://doi.org/10.3390/pathogens11121517
Baah DA, Kotey FCN, Dayie NTKD, Codjoe FS, Tetteh-Quarcoo PB, Donkor ES. Multidrug-Resistant Gram-Negative Bacteria Contaminating Raw Meat Sold in Accra, Ghana. Pathogens. 2022; 11(12):1517. https://doi.org/10.3390/pathogens11121517
Chicago/Turabian StyleBaah, Deric A., Fleischer C. N. Kotey, Nicholas T. K. D. Dayie, Francis S. Codjoe, Patience B. Tetteh-Quarcoo, and Eric S. Donkor. 2022. "Multidrug-Resistant Gram-Negative Bacteria Contaminating Raw Meat Sold in Accra, Ghana" Pathogens 11, no. 12: 1517. https://doi.org/10.3390/pathogens11121517
APA StyleBaah, D. A., Kotey, F. C. N., Dayie, N. T. K. D., Codjoe, F. S., Tetteh-Quarcoo, P. B., & Donkor, E. S. (2022). Multidrug-Resistant Gram-Negative Bacteria Contaminating Raw Meat Sold in Accra, Ghana. Pathogens, 11(12), 1517. https://doi.org/10.3390/pathogens11121517