Evaluation of a Lateral Flow Assay for Rapid Detection of African Swine Fever Virus in Multiple Sample Types
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Lateral Flow Assay
3.2. Clinical Samples from Experimentally Infected Animals
3.3. Clinical Samples from Field Outbreaks
3.4. Nucleic Acid Extraction and Real-Time Reverse Transcription-Polymerase Chain Reaction
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sánchez-Vizcaíno, J.; Mur, L.; Gomez-Villamandos, J.C.; Carrasco, L. An update on the epidemiology and pathology of African swine fever. J. Comp. Pathol. 2015, 152, 9–21. [Google Scholar] [CrossRef]
- Wang, T.; Sun, Y.; Qiu, H.-J. African swine fever: An unprecedented disaster and challenge to china. Infect. Dis. Poverty 2018, 7, 111. [Google Scholar] [CrossRef]
- OIE-World Organisation for Animal Health. African Swine Fever Report. May 10–23, 2019. Available online: /www.oie.int/en/disease/african-swine-fever/ (accessed on 17 November 2021).
- Roger, F.; Ratovonjato, J.; Vola, P.; Uilenberg, G. Ornithodoros porcinus ticks, bushpigs, and African swine fever in madagascar. Exp. Appl. Acarol. 2001, 25, 263–269. [Google Scholar] [PubMed]
- WAHID. Office International des Epizooties–World Animal Health Information Database (Wahid) Interface. Available online: https://www.oie.int/en/document/asf_situation_report_3/ (accessed on 19 January 2022).
- Sánchez Botija, C. Reservorios del virus de la paste porcina Africana. Investigation del virus de la ppa en las arthropodos mediante la prueba de la hemadsocion. Bull. Off. Int. Epizootiol. 1963, 60, 895–899. [Google Scholar]
- Plowright, W.; Thomson, G.; Neser, J.; Coetzer, J.; Thomson, G.; Tustin, R. African Swine Fever. Infectious Diseases of Livestock, with Special Reference to Southern Africa; Coetzer, J.A.W., Thomson, G.R., Tutsin, R.C., Eds.; Oxford University Press: Cape Town, South Africa, 1994. [Google Scholar]
- Seifert, H.S. Tropical Animal Health; Springer Science & Business Media: New York, NY, USA, 1996. [Google Scholar]
- OIE-WAHIS. 2021. Available online: https://wahis.Oie.Int/#/report-info?Reportid=36844 (accessed on 18 November 2021).
- Dixon, L.; Escribano, J.; Martins, C.; Rock, D.; Salas, M.; Wilkinson, P. Virus taxonomy. Viiith report of the ictv; Fauquet, C., Mayo, M., Maniloff, J., Desselberger, U., Ball, L., Eds.; Elsevier: London, UK, 2005; pp. 135–143. [Google Scholar]
- EFSA Panel on Animal Health and Welfare. Scientific opinion on African swine fever. EFSA J. 2014, 12, 3628. [Google Scholar] [CrossRef]
- Montgomery, R.E. On a form of swine fever occurring in british east Africa (kenya colony). J. Comp. Pathol. Ther. 1921, 34, 159–191. [Google Scholar] [CrossRef] [Green Version]
- Penrith, M.-L.; Vosloo, W. Review of African swine fever: Transmission, spread and control. J. S. Afr. Vet. Assoc. 2009, 80, 58–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jurado, C.; Fernandez-Carrion, E.; Mur, L.; Rolesu, S.; Laddomada, A.; Sánchez-Vizcaíno, J.M. Why is African swine fever still present in sardinia? Transbound. Emerg. Dis. 2018, 65, 557–566. [Google Scholar]
- FAO. African Swine Fever Situation in Asia Update. 2019. Available online: http://www.Fao.Org/ag/againfo/programmes/en/empres/asf/situation_update.Html (accessed on 17 November 2021).
- Halasa, T.; Botner, A.; Mortensen, S.; Christensen, H.; Toft, N.; Boklund, A. Control of African swine fever epidemics in industrialized swine populations. Vet. Microbiol. 2016, 197, 142–150. [Google Scholar] [CrossRef]
- EFSA Panel on Animal Health and Welfare. Scientific opinion on African swine fever. EFSA J. 2010, 8, 1556. [Google Scholar] [CrossRef]
- Callaway, E. Pig fever sweeps across russia. Nature 2012, 488, 565–566. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Cordón, P.J.; Vidaña, B.; Neimanis, A.; Núñez, A.; Wikström, E.; Gavier-Widén, D. 4. Pathology of African swine fever. In Understanding and Combatting African Swine Fever; Wageningen Academic Publishers: Wageningen, The Netherlands, 2021; pp. 87–139. [Google Scholar]
- Stear, M. Oie manual of diagnostic tests and vaccines for terrestrial animals (mammals, birds and bees) 5th edn. Volumes 1 & 2. World organization for animal health 2004. Isbn 92 9044 622 6.€ 140. Parasitology 2005, 130, 727. [Google Scholar]
- Fu, J.; Zhang, Y.; Cai, G.; Meng, G.; Shi, S. Rapid and sensitive rpa-cas12a-fluorescence assay for point-of-care detection of African swine fever virus. PLoS ONE 2021, 16, e0254815. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Sun, A.; Wan, B.; Du, Y.; Wu, Y.; Zhang, A.; Jiang, D.; Ji, P.; Wei, Z.; Zhuang, G. Development of a directly visualized recombinase polymerase amplification–sybr green i method for the rapid detection of African swine fever virus. Front. Microbiol. 2020, 11, 602709. [Google Scholar] [CrossRef]
- Ren, M.; Mei, H.; Zhou, M.; Fu, Z.F.; Han, H.; Bi, D.; Peng, F.; Zhao, L. Development of a super-sensitive diagnostic method for African swine fever using crispr techniques. Virol. Sin. 2021, 36, 220–230. [Google Scholar] [CrossRef]
- Fan, X.; Li, L.; Zhao, Y.; Liu, Y.; Liu, C.; Wang, Q.; Dong, Y.; Wang, S.; Chi, T.; Song, F.; et al. Clinical validation of two recombinase-based isothermal amplification assays (rpa/raa) for the rapid detection of African swine fever virus. Front. Microbiol. 2020, 11, 1696. [Google Scholar] [CrossRef]
- Zhai, Y.; Ma, P.; Fu, X.; Zhang, L.; Cui, P.; Li, H.; Yan, W.; Wang, H.; Yang, X. A recombinase polymerase amplification combined with lateral flow dipstick for rapid and specific detection of African swine fever virus. J. Virol. Methods 2020, 285, 113885. [Google Scholar] [CrossRef] [PubMed]
- Miao, F.; Zhang, J.; Li, N.; Chen, T.; Wang, L.; Zhang, F.; Mi, L.; Zhang, J.; Wang, S.; Wang, Y.; et al. Rapid and sensitive recombinase polymerase amplification combined with lateral flow strip for detecting African swine fever virus. Front. Microbiol. 2019, 10, 1004. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Shi, Z.; Ma, Y.; Wang, L.; Cao, L.; Luo, J.; Wan, Y.; Song, R.; Yan, Y.; Yuan, K.; et al. Lamp assay coupled with crispr/cas12a system for portable detection of African swine fever virus. Transbound. Emerg. Dis. 2021. [Google Scholar] [CrossRef]
- Chen, L.; Wen, K.; Chen, F.-E.; Trick, A.Y.; Liu, H.; Shao, S.; Yu, W.; Hsieh, K.; Wang, Z.; Shen, J.; et al. Portable magnetofluidic device for point-of-need detection of African swine fever. Anal. Chem. 2021, 93, 10940–10946. [Google Scholar] [CrossRef] [PubMed]
- Tran, D.H.; Tran, H.T.; Le, U.P.; Vu, X.D.; Trinh, T.B.N.; Do, H.D.K.; Than, V.T.; Bui, L.M.; Vu, V.V.; Nguyen, T.L.; et al. Direct colorimetric lamp assay for rapid detection of African swine fever virus: A validation study during an outbreak in vietnam. Transbound. Emerg. Dis. 2021, 68, 2595–2602. [Google Scholar] [CrossRef]
- Tao, D.; Liu, J.; Nie, X.; Xu, B.; Tran-Thi, T.-N.; Niu, L.; Liu, X.; Ruan, J.; Lan, X.; Peng, G.; et al. Application of crispr-cas12a enhanced fluorescence assay coupled with nucleic acid amplification for the sensitive detection of African swine fever virus. ACS Synth. Biol. 2020, 9, 2339–2350. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ji, P.; Fan, H.; Dang, L.; Wan, W.; Liu, S.; Li, Y.; Yu, W.; Li, X.; Ma, X.; et al. Crispr/cas12a technology combined with immunochromatographic strips for portable detection of African swine fever virus. Commun. Biol. 2020, 3, 62. [Google Scholar] [CrossRef] [Green Version]
- Carrio, A.; Sampedro, C.; Sanchez-Lopez, J.L.; Pimienta, M.; Campoy, P. Automated low-cost smartphone-based lateral flow saliva test reader for drugs-of-abuse detection. Sensors 2015, 15, 29569–29593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magambo, K.A.; Kalluvya, S.E.; Kapoor, S.W.; Seni, J.; Chofle, A.A.; Fitzgerald, D.W.; Downs, J.A. Utility of urine and serum lateral flow assays to determine the prevalence and predictors of cryptococcal antigenemia in hiv-positive outpatients beginning antiretroviral therapy in mwanza, tanzania. J. Int. AIDS Soc. 2014, 17, 19040. [Google Scholar] [CrossRef] [PubMed]
- Schramm, E.C.; Staten, N.R.; Zhang, Z.; Bruce, S.S.; Kellner, C.; Atkinson, J.P.; Kyttaris, V.C.; Tsokos, G.C.; Petri, M.; Connolly, E.S.; et al. A quantitative lateral flow assay to detect complement activation in blood. Anal. Biochem. 2015, 477, 78–85. [Google Scholar] [CrossRef] [Green Version]
- Ang, S.H.; Rambeli, M.; Thevarajah, T.M.; Alias, Y.B.; Khor, S.M. Bioelectronics. Quantitative, single-step dual measurement of hemoglobin a1c and total hemoglobin in human whole blood using a gold sandwich immunochromatographic assay for personalized medicine. Biosens. Bioelectron. 2016, 78, 187–193. [Google Scholar] [CrossRef]
- Afonso, C.L.; Alcaraz, C.; Brun, A.; Sussman, M.D.; Onisk, D.V.; Escribano, J.M.; Rock, D.L. Characterization of p30, a highly antigenic membrane and secreted protein of African swine fever virus. Virology 1992, 189, 368–373. [Google Scholar] [CrossRef]
- Liu, L.; Luo, Y.; Accensi, F.; Ganges, L.; Rodriguez, F.; Shan, H.; Ståhl, K.; Qiu, H.J.; Belák, S. Pre-clinical evaluation of a real-time pcr assay on a portable instrument as a possible field diagnostic tool: Experiences from the testing of clinical samples for African and classical swine fever viruses. Transbound. Emerg. Dis. 2017, 64, e31–e35. [Google Scholar] [CrossRef]
- Daigle, J.; Onyilagha, C.; Truong, T.; Le, V.P.; Nga, B.T.T.; Nguyen, T.L.; Clavijo, A.; Ambagala, A. Rapid and highly sensitive portable detection of African swine fever virus. Transbound. Emerg. Dis. 2021, 68, 952–959. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, Q.; Guo, J.; Li, D.; Wang, L.; Wang, X.; Xing, G.; Deng, R.; Zhang, G. An isothermal molecular point of care testing for African swine fever virus using recombinase-aided amplification and lateral flow assay without the need to extract nucleic acids in blood. Front. Cell. Infect. Microbiol. 2021, 11, 131. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Liu, R.; Zhang, X.; Li, F.; Wang, J.; Zhang, J.; Liu, X.; Wang, L.; Zhang, J.; Wu, X.; et al. Replication and virulence in pigs of the first African swine fever virus isolated in china. Emerg. Microbes Infect. 2019, 8, 438–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dixon, L.K.; Stahl, K.; Jori, F.; Vial, L.; Pfeiffer, D.U. African swine fever epidemiology and control. Annu. Rev. Anim. Biosci. 2020, 8, 221–246. [Google Scholar] [CrossRef] [Green Version]
- Sastre, P.; Gallardo, C.; Monedero, A.; Ruiz, T.; Arias, M.; Sanz, A.; Rueda, P. Development of a novel lateral flow assay for detection of African swine fever in blood. BMC Vet. Res. 2016, 12, 206. [Google Scholar] [CrossRef] [Green Version]
- Deutschmann, P.; Pikalo, J.; Beer, M.; Blome, S. Lateral flow assays for the detection of African swine fever virus antigen are not fit for field diagnosis of wild boar carcasses. Transbound. Emerg. Dis. 2021, 1–5. [Google Scholar] [CrossRef]
- Goonewardene, K.; Chung, C.J.; Goolia, M.; Blakemore, L.; Fabian, A.; Mohamed, F.; Nfon, C.; Clavijo, A.; Dodd, K.A.; Ambagala, A. Evaluation of oral fluid as an aggregate sample for early detection of African swine fever virus using four independent pen-based experimental studies. Transbound. Emerg. Dis. 2021, 68, 2867–2877. [Google Scholar] [CrossRef]
- Adedeji, A.J.; Luka, P.D.; Atai, R.B.; Olubade, T.A.; Hambolu, D.A.; Ogunleye, M.A.; Muwanika, V.B.; Masembe, C. First-time presence of African swine fever virus genotype ii in nigeria. Microbiol. Resour. Announc. 2021, 10, e00350-21. [Google Scholar] [CrossRef]
- Onyilagha, C.; Nash, M.; Perez, O.; Goolia, M.; Clavijo, A.; Richt, J.A.; Ambagala, A. Meat exudate for detection of African swine fever virus genomic material and anti-asfv antibodies. Viruses 2021, 13, 1744. [Google Scholar] [CrossRef] [PubMed]
- Tignon, M.; Gallardo, C.; Iscaro, C.; Hutet, E.; Van der Stede, Y.; Kolbasov, D.; De Mia, G.M.; Le Potier, M.-F.; Bishop, R.P.; Arias, M.; et al. Development and inter-laboratory validation study of an improved new real-time pcr assay with internal control for detection and laboratory diagnosis of African swine fever virus. J. Virol. Methods 2011, 178, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Duvigneau, J.C.; Hartl, R.T.; Groiss, S.; Gemeiner, M. Quantitative simultaneous multiplex real-time pcr for the detection of porcine cytokines. J. Immunol. Methods 2005, 306, 16–27. [Google Scholar] [CrossRef]
A | |||||||
ASFV Georgia 2007/1, Pig 134 | Ct Value (Run 1) | Ct Value (Run 2) | PenCheck (Run 1) | PenCheck (Run 2) | ASFV Titer (TCID50/mL) | ||
ASFV | β-Actin | ASFV | β-Actin | ||||
Neat | 19.22 | 23.43 | 20.08 | 23.12 | Pos | Pos | 108.87 |
10−1 | 22.63 | 24.67 | 22.66 | 24.88 | Pos | Pos | 107.80 |
10−2 | 25.64 | 26.01 | 25.57 | 26.34 | Neg | Neg | 106.71 |
10−3 | 28.24 | 25.23 | 27.88 | 25.95 | Neg | Neg | nd |
10−4 | 30.89 | 26.34 | 31.21 | 26.29 | Neg | Neg | nd |
B | |||||||
ASFV Nigeria RV502, Pig 2 | Ct Value (Run 1) | Ct Value (Run 2) | PenCheck (Run 1) | PenCheck (Run 2) | ASFV Titer (TCID50/mL) | ||
ASFV | β-Actin | ASFV | β-Actin | ||||
Neat | 19.42 | 22.22 | 18.66 | 22.02 | Pos | Pos | 109.1 |
10−1 | 22.01 | 24.63 | 22.01 | 24.54 | Pos | Pos | 107.89 |
10−2 | 25.11 | 26.90 | 24.82 | 26.61 | Neg | Neg | 106.80 |
10−3 | 27.71 | 27.36 | 27.23 | 27.16 | Neg | Neg | 104.87 |
10−4 | 29.52 | 26.71 | 29.09 | 26.54 | Neg | Neg | 103.87 |
C | |||||||
Sample | Ct Value | PenCheck | |||||
ASFV Malta’78 | nd | Pos | |||||
ASFV OURT/88/3 | nd | Pos | |||||
ASFV Malawi LIL 18/2 | nd | Pos | |||||
CSFV Kanagawa, P2, DPI 42 | 16.0 | Neg | |||||
CSFV Kanagawa, P4, DPI 42 | 19.4 | Neg | |||||
CSFV Diepholz, P3, DPI 8-2 | 22.1 | Neg | |||||
CSFV Diepholz, P1, DPI 12–6 | 22.1 | Neg | |||||
CSFV Diepholz, P2, DPI 12–6 | 20.5 | Neg | |||||
CSFV Diepholz, P3, DPI 12–6 | 21.1 | Neg | |||||
CSFV Diepholz, P4, DPI 12–6 | 22.2 | Neg | |||||
CSFV Koslov, P5, DPI 6–8, Spleen | 16.4 | Neg | |||||
CSFV Koslov, P7, DPI 6–8, Spleen | 18.4 | Neg | |||||
CSFV Koslov, P8, DPI 6–8, Spleen | 17.6 | Neg | |||||
Vesicular Stomatitis Virus-NJ | 15.01 | Neg | |||||
Vesicular Stomatitis Virus-IN | 15.29 | Neg | |||||
Foot-and-mouth Disease Virus OUKG 11/01 | 12.36 | Neg | |||||
Foot-and-mouth disease virus A24 Cruzeiro | 11.99 | Neg | |||||
Swine Vesicular Disease Virus UK27/72 | 11.61 | Neg | |||||
Seneca Valley Virus | 12.7 | Neg | |||||
D | |||||||
PenCheck: ASFV Georgia 2007/1 | |||||||
Pig 140, DPI-12 (Ct: 23.6) | Pig 141, DPI-12 (Ct: 19.9) | Pig 145, DPI-12 (Ct: 21.0) | Clean Blood (Ct: 0.0) | ||||
Run 1 | Neg | Pos | Pos | Neg | |||
Run 2 | Neg | Pos | Pos | Neg | |||
Run 3 | Neg | Pos | Pos | Neg | |||
Run 4 | Neg | Pos | Pos | Neg | |||
Run 5 | Neg | Pos | Pos | Neg | |||
Run 6 | Neg | Pos | Pos | Neg | |||
Run 7 | Neg | Pos | Pos | Neg | |||
Run 8 | Neg | Pos | Pos | Neg | |||
Run 9 | Neg | Pos | Pos | Neg | |||
Run 10 | Neg | Pos | Pos | Neg |
DPI 2 | DPI 4 | DPI 5 | DPI 6 | |||||||||||||||||||||||||||
Pig # | Temp. | Ct | PenCheck | Temp. | Ct | PenCheck | Temp. | Ct | PenCheck | Temp. | Ct | PenCheck | ||||||||||||||||||
Pig 138 | na | 38.1 | Neg | 40.8 | 21.6 | Pos | 40.6 | 21.1 | Pos | 40.8 | 20.6 | Pos | ||||||||||||||||||
DPE 8 | DPE 9 | DPE 10 | DPE 11 | DPE 12 | DPE 13 | DPE 14 | DPE 15 | DPE 16 | DPE 17 | |||||||||||||||||||||
Pig # | Temp. | Ct | PenCheck | Temp. | Ct | PenCheck | Temp. | Ct | PenCheck | Temp. | Ct | PenCheck | Temp. | Ct | PenCheck | Temp. | Ct | PenCheck | Temp. | Ct | PenCheck | Temp. | Ct | PenCheck | Temp. | Ct | PenCheck | Temp. | Ct | PenCheck |
Pig 126 | 39.7 | na | na | 39.7 | 0.0 | Neg | 40.0 | na | na | 40.4 | 28.9 | Neg | 40.9 | na | na | 40.5 | 20.1 | Pos | 41.3 | na | na | |||||||||
Pig 129 | 39.8 | na | na | 39.6 | 0.0 | Neg | 40.0 | na | na | 40.1 | 0.0 | Neg | 39.9 | na | na | 41.6 | 25.3 | Neg | 41.2 | na | na | 41.6 | 20.9 | Pos | 41.6 | na | na | 40.7 | ||
Pig 130 | 39.4 | na | na | 39.3 | na | na | 38.7 | na | na | 39.6 | 0.0 | Neg | 39.5 | na | na | 41.0 | 27.9 | Neg | 41.1 | na | na | 41.5 | 19.1 | Pos | 40.6 | na | na | 41.7 | 20.9 | Neg |
Pig 132 | 39.6 | na | na | 38.9 | 0.0 | Neg | 39.0 | na | na | 39.9 | 24.2 | Neg | 41.4 | na | na | 41.3 | 19.8 | Pos | ||||||||||||
Pig 133 | 39.5 | na | na | 39.1 | na | na | 39.7 | na | na | 39.7 | na | na | 39.8 | na | na | 39.8 | 0.0 | Neg | 39.6 | na | na | 39.9 | 0.0 | Neg | 39.7 | na | na | 40.1 | 0.0 | Neg |
Pig 134 | 39.5 | na | na | 39.6 | na | na | 39.6 | na | na | 39.8 | 30.7 | Neg | 41.5 | na | na | 41.7 | 19.0 | Pos | 42.2 | na | na | 42.0 | 22.4 | Neg | 41.6 | 21.6 | Neg | |||
Pig 139 | 39.9 | 0.0 | Neg | 39.6 | na | na | 40.2 | 31.9 | Neg | 40.4 | na | na | 41.2 | 20.6 | Pos | 41.6 | na | na | 41.3 | 21.0 | Pos | |||||||||
Pig 140 | 39.5 | na | na | 38.8 | na | na | 39.3 | na | na | 39.7 | na | na | 39.5 | 23.6 | Neg | 41.3 | na | na | 41.4 | 20.3 | Pos | |||||||||
Pig 141 | 40.0 | 0.0 | Neg | 39.3 | na | na | 40.7 | 26.2 | Neg | 40.6 | na | na | 41.4 | 19.9 | Pos | 41.0 | 19.8 | Pos | na | na | na | |||||||||
Pig 144 | 39.6 | na | na | 39.0 | na | na | 39.2 | 0.0 | Neg | 40.0 | na | na | 41.5 | 23.7 | Neg | 41.1 | na | na | 41.1 | 21.6 | Pos | |||||||||
Pig 145 | 39.6 | na | na | 39.1 | na | na | 39.9 | 35.5 | Neg | 40.5 | na | na | 41.0 | 21.0 | Pos | 40.5 | ||||||||||||||
Pig 146 | 39.5 | na | na | 38.8 | na | na | 39.8 | 24.9 | Neg | 41.4 | na | na | 40.8 | 19.7 | Pos | 41.0 | na | na | 40.8 | 21.7 | Pos | 41.3 |
A | ||||||||||||||||||||||
DPI 0 | DPI 1 | DPI 2 | DPI 3 | DPI 4 | DPI 5 | DPI 6 | ||||||||||||||||
Sample | Pig # | Temp. | Ct | PenCheck | Temp | Ct | PenCheck | Temp | Ct | PenCheck | Temp | Ct | PenCheck | Temp | Ct | PenCheck | Temp | Ct | PenCheck | Temp | Ct | PenCheck |
Temperature | Pig 1 | 39.5 | na | na | 39.3 | na | na | 39.5 | na | na | 39.6 | na | na | 40.6 | na | na | 41.3 | na | na | na | na | na |
Pig 2 | 39.9 | na | na | 39.5 | na | na | 39.9 | na | na | 40.6 | na | na | 41.3 | na | na | 41.6 | na | na | 41.2 | na | na | |
Whole blood | Pig 1 | na | 0.00 | Neg | na | 0.00 | Neg | na | 0.00 | Neg | na | 30.81 | Neg | na | 21.10 | Pos | na | 19.37 | Pos | na | na | na |
Pig 2 | na | 0.00 | Neg | na | 0.00 | Neg | na | 0.00 | Neg | na | 0.00 | Neg | na | 27.12 | Pos | na | 21.07 | Pos | na | 20.86 | Pos | |
Nasal swab | Pig 1 | na | 0.00 | Neg | na | 35.40 | Neg | na | 0.00 | Neg | na | 31.80 | Neg | na | 29.35 | Neg | na | 22.58 | Neg | na | 25.76 | Neg |
Pig 2 | na | 0.00 | Neg | na | 0.00 | Neg | na | 0.00 | Neg | na | 0.00 | Neg | na | 35.39 | Neg | na | 27.50 | Neg | na | 24.26 | Neg | |
Oral swab | Pig 1 | na | 0.00 | Neg | na | 0.00 | Neg | na | 0.00 | Neg | na | 0.00 | Neg | na | 31.82 | Neg | na | 28.85 | Neg | na | 25.09 | Neg |
Pig 2 | na | 0.00 | Neg | na | 0.00 | Neg | na | 0.00 | Neg | na | 0.00 | Neg | na | 34.64 | Neg | na | 31.07 | Neg | na | 24.04 | Neg | |
Rectal swab | Pig 1 | na | 0.00 | Neg | na | 0.00 | Neg | na | 0.00 | Neg | na | 0.00 | Neg | na | 29.21 | Neg | na | 26.82 | Neg | na | 26.46 | Neg |
Pig 2 | na | 0.00 | Neg | na | 0.00 | Neg | na | 0.00 | Neg | na | 0.00 | Neg | na | na | Neg | na | 29.48 | Neg | na | 24.32 | Neg | |
Serum | Pig 1 | na | 0.00 | Neg | na | 0.00 | Neg | na | 0.00 | Neg | na | 0.00 | Neg | na | 21.01 | Pos | na | na | na | na | na | na |
Pig 2 | na | 0.00 | Neg | na | 0.00 | Neg | na | 0.00 | Neg | na | 0.00 | Neg | na | 30.43 | Neg | na | na | na | na | 18.74 | Pos | |
B | ||||||||||||||||||||||
Sample | Ct Value | PenCheck | ||||||||||||||||||||
ASFV | β-Actin | |||||||||||||||||||||
Pig 1: SMLN-Right | 17.12 | 18.76 | Positive | |||||||||||||||||||
Pig 2: SMLN-Right | 19.94 | 18.97 | Positive | |||||||||||||||||||
Pig 1: SMLN-Left | 17.14 | 18.83 | Positive | |||||||||||||||||||
Pig 2: SMLN-Left | 20.01 | 18.81 | Positive | |||||||||||||||||||
Pig 1: SILN-Right | 18.07 | 20.30 | Positive | |||||||||||||||||||
Pig 2: SILN-Right | 21.11 | 21.24 | Positive | |||||||||||||||||||
Pig 1: SILN-Left | 17.98 | 20.14 | Positive | |||||||||||||||||||
Pig 2: SILN-Left | 21.93 | 21.95 | Positive | |||||||||||||||||||
Pig 1: Tonsil | 17.51 | 19.23 | Positive | |||||||||||||||||||
Pig 2: Tonsil | 22.05 | 20.96 | Positive | |||||||||||||||||||
Pig 1: Spleen | 18.40 | 19.57 | Positive | |||||||||||||||||||
Pig 2: Spleen | 17.73 | 19.00 | Positive |
A | ||||
Ct Value | PenCheck | |||
Country | Sample Type | ASFV | B-Actin | |
Ghana (38) | Whole blood (17) | 16.13 | 19.79 | Pos |
22.46 | 25.69 | Neg | ||
29.87 | 23.78 | Pos | ||
18.14 | 19.85 | Pos | ||
19.85 | 21.49 | Pos | ||
39.38 | 21.86 | Neg | ||
29.76 | 23.88 | Pos | ||
20.14 | 21.74 | Pos | ||
20.93 | 22.39 | Pos | ||
37.86 | 24.90 | Neg | ||
39.00 | 26.03 | Pos | ||
36.30 | 25.16 | Neg | ||
38.85 | 25.45 | Neg | ||
35.38 | 26.39 | Neg | ||
20.96 | 22.41 | Pos | ||
22.50 | 22.76 | Pos | ||
20.67 | 24.80 | Pos | ||
Plasma (1) | 22.66 | 21.30 | Pos | |
Spleen (20) | 19.32 | 18.95 | Pos | |
25.93 | 18.82 | Pos | ||
33.91 | 30.63 | Pos | ||
39.15 | 18.21 | Pos | ||
26.00 | 18.38 | Pos | ||
20.04 | 20.08 | Pos | ||
38.99 | 31.68 | Pos | ||
18.62 | 18.36 | Pos | ||
35.25 | 31.68 | Pos | ||
23.33 | 23.76 | Pos | ||
34.55 | 33.24 | Pos | ||
26.06 | 19.86 | Pos | ||
24.19 | 23.24 | Pos | ||
31.11 | 29.04 | Neg | ||
38.45 | 31.18 | Pos | ||
26.20 | 19.02 | Pos | ||
32.39 | 28.85 | Pos | ||
20.77 | 19.56 | Pos | ||
19.47 | 19.95 | Pos | ||
26.13 | 21.05 | Pos | ||
Nigeria (12) | Spleen (12) | 22.74 | 21.83 | Pos |
22.21 | 21.70 | Pos | ||
19.94 | 21.11 | Pos | ||
23.25 | 22.13 | Pos | ||
19.25 | 25.44 | Pos | ||
19.85 | 20.91 | Pos | ||
20.99 | 21.60 | Pos | ||
22.51 | 20.26 | Pos | ||
18.74 | 20.56 | Pos | ||
23.81 | 26.57 | Pos | ||
23.04 | 26.09 | Pos | ||
26.72 | 21.40 | Pos | ||
B | ||||
ASFV Real-Time PCR-Negative Samples (No Ct Value) | PenCheck | |||
Negative | Positive | |||
179 | 178 (99.4%) | 1 (0.6%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Onyilagha, C.; Nguyen, K.; Luka, P.D.; Hussaini, U.; Adedeji, A.; Odoom, T.; Ambagala, A. Evaluation of a Lateral Flow Assay for Rapid Detection of African Swine Fever Virus in Multiple Sample Types. Pathogens 2022, 11, 138. https://doi.org/10.3390/pathogens11020138
Onyilagha C, Nguyen K, Luka PD, Hussaini U, Adedeji A, Odoom T, Ambagala A. Evaluation of a Lateral Flow Assay for Rapid Detection of African Swine Fever Virus in Multiple Sample Types. Pathogens. 2022; 11(2):138. https://doi.org/10.3390/pathogens11020138
Chicago/Turabian StyleOnyilagha, Chukwunonso, Kelvin Nguyen, Pam D. Luka, Ularamu Hussaini, Adeyinka Adedeji, Theophilus Odoom, and Aruna Ambagala. 2022. "Evaluation of a Lateral Flow Assay for Rapid Detection of African Swine Fever Virus in Multiple Sample Types" Pathogens 11, no. 2: 138. https://doi.org/10.3390/pathogens11020138
APA StyleOnyilagha, C., Nguyen, K., Luka, P. D., Hussaini, U., Adedeji, A., Odoom, T., & Ambagala, A. (2022). Evaluation of a Lateral Flow Assay for Rapid Detection of African Swine Fever Virus in Multiple Sample Types. Pathogens, 11(2), 138. https://doi.org/10.3390/pathogens11020138