Prevalence and Antibiotic Resistance in Campylobacter spp. Isolated from Humans and Food-Producing Animals in West Africa: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Results
2.1. Literature Search
2.2. Number of Campylobacter Prevalence Studies Conducted
2.3. Subgroup Analysis of Campylobacter Studies in Animals
2.4. Subgroup Analysis of Campylobacter Studies in Humans
2.5. Antimicrobial Resistance Profile of Campylobacter Species
3. Discussion
4. Materials and Methods
4.1. Study Design and Systematic Review Protocol
4.2. Selection Criteria and Literature Search Strategies
4.3. Data Extraction
4.4. Risk of Bias Assessment
4.5. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Plishka, M.; Sargeant, J.M.; Greer, A.L.; Hookey, S.; Winder, C. The Prevalence of Campylobacter in Live Cattle, Turkey, Chicken, and Swine in the United States and Canada: A Systematic Review and Meta-Analysis. Foodborne Pathog. Dis. 2021, 18, 230–242. [Google Scholar] [CrossRef]
- Galanis, E. Campylobacter and Bacterial Gastroenteritis. CMAJ 2007, 177, 570–571. [Google Scholar] [CrossRef] [Green Version]
- Molina-Flores, B.; Manzano-Baena, P.; Coulibaly, M.D. The Role of Livestock in Food Security, Poverty Reduction and Wealth Creation in West Africa; FAO: Rome, Italy, 2020. [Google Scholar]
- Ngure, F.; Gelli, A.; Becquey, E.; Ganaba, R.; Headey, D.; Huybregts, L.; Pedehombga, A.; Sanou, A.; Traore, A.; Zongo, F.; et al. Exposure to Livestock Feces and Water Quality, Sanitation, and Hygiene (WASH) Conditions among Caregivers and Young Children: Formative Research in Rural Burkina Faso. Am. J. Trop. Med. Hyg. 2019, 100, 998–1004. [Google Scholar] [CrossRef]
- Salihu, M.D.; Junaidu, A.U.; Magaji, A.A.; Abubakar, M.B.; Adamu, A.Y.; Yakubu, A.S. Prevalence of Campylobacter in Poultry Meat in Sokoto, North-Western Nigeria. J. Public Health Epidemiol. 2009, 1, 41–45. [Google Scholar]
- Goualié, B.G.; Akpa, E.E.; Kakou-N’Gazoa, S.E.; Ouattara, H.G.; Niamke, S.L.; Dosso, M. Antimicrobial Resistance and Virulence Associated Genes in Campylobacter Jejuni Isolated from Chicken in Côte d’Ivoire. J. Infect. Dev. Ctries. 2019, 13, 671–677. [Google Scholar] [CrossRef]
- Hodges, L.M.; Carrillo, C.D.; Upham, J.P.; Borza, A.; Eisebraun, M.; Kenwell, R.; Mutschall, S.K.; Haldane, D.; Schleihauf, E.; Taboada, E.N. A Strain Comparison of Campylobacter Isolated from Retail Poultry and Human Clinical Cases in Atlantic Canada. PLoS ONE 2019, 14, e0215928. [Google Scholar] [CrossRef] [Green Version]
- Hlashwayo, D.F.; Sigaúque, B.; Noormahomed, E.V.; Afonso, S.M.S.; Mandomando, I.M.; Bila, C.G. A Systematic Review and Meta-Analysis Reveal That Campylobacter Spp. and Antibiotic Resistance Are Widespread in Humans in Sub-Saharan Africa. PLoS ONE 2021, 16, e0245951. [Google Scholar]
- Thépault, A.; Rose, V.; Queguiner, M.; Chemaly, M.; Rivoal, K. Dogs and Cats: Reservoirs for Highly Diverse Campylobacter Jejuni and a Potential Source of Human Exposure. Animals 2020, 10, 838. [Google Scholar] [CrossRef]
- Endtz, H.P. Campylobacter Infections. In Hunter’s Tropical Medicine and Emerging Infectious Diseases; Elsevier: Amsterdam, The Netherlands, 2020; pp. 507–511. [Google Scholar]
- Gahamanyi, N.; Mboera, L.E.G.; Matee, M.I.; Mutangana, D.; Komba, E.V.G. Prevalence, Risk Factors, and Antimicrobial Resistance Profiles of Thermophilic Campylobacter Species in Humans and Animals in Sub-Saharan Africa: A Systematic Review. Int. J. Microbiol. 2020, 2020, 2092478. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; Fang, L.; Xu, C.; Zhang, Q. Antibiotic Resistance Trends and Mechanisms in the Foodborne Pathogen, Campylobacter. Anim. Health Res. Rev. 2017, 18, 87–98. [Google Scholar] [CrossRef] [Green Version]
- Thomas, K.M.; de Glanville, W.A.; Barker, G.C.; Benschop, J.; Buza, J.J.; Cleaveland, S.; Davis, M.A.; French, N.P.; Mmbaga, B.T.; Prinsen, G.; et al. Prevalence of Campylobacter and Salmonella in African Food Animals and Meat: A Systematic Review and Meta-Analysis. Int. J. Food Microbiol. 2020, 315, 108382. [Google Scholar] [CrossRef]
- Hlashwayo, D.F.; Sigaúque, B.; Bila, C.G. Epidemiology and Antimicrobial Resistance of Campylobacter Spp. in Animals in Sub-Saharan Africa: A Systematic Review. Heliyon 2020, 6, e03537. [Google Scholar] [CrossRef]
- Coulidiaty, A.G.V.; Sanou, A.; Houngbedji, C.A.; Djibougou, D.A.; Dicko, A.; Kobo, G.; Bonfoh, B. Prevalence and Sensitivity to Antibiotics of Campylobacter Spp. in Chicken, Farmers and Soil in Bobo-Dioulasso, Burkina Faso. PAMJ-One Health 2021, 4, 8. [Google Scholar]
- Dekker, D.; Eibach, D.; Boahen, K.G.; Akenten, C.W.; Pfeifer, Y.; Zautner, A.E.; May, J. Fluoroquinolone-Resistant Salmonella Enterica, Campylobacter Spp., and Arcobacter Butzleri from Local and Imported Poultry Meat in Kumasi, Ghana. Foodborne Pathog. Dis. 2019, 16, 352–358. [Google Scholar] [CrossRef] [Green Version]
- Kunadu, A.P.H.; Otwey, R.Y.; Mosi, L. Microbiological Quality and Salmonella Prevalence, Serovar Distribution and Antimicrobial Resistance Associated with Informal Raw Chicken Processing in Accra, Ghana. Food Control 2020, 118, 107440. [Google Scholar] [CrossRef]
- Sackey, B.A.; Mensah, P.; Collison, E.; Sakyi-Dawson, E. Campylobacter, Salmonella, Shigella and Escherichia Coli in Live and Dressed Poultry from Metropolitan Accra. Int. J. Food Microbiol. 2001, 71, 21–28. [Google Scholar] [CrossRef]
- Njoga, E.O.; Nwankwo, I.O.; Ugwunwarua, J.C. Epidemiology of Thermotolerant Campylobacter Infection in Poultry in Nsukka Agricultural Zone, Nigeria. Int. J. One Health 2019, 5, 92–98. [Google Scholar] [CrossRef] [Green Version]
- Karikari, A.B.; Obiri-Danso, K.; Frimpong, E.H.; Krogfelt, K.A. Multidrug Resistant Campylobacter in Faecal and Carcasses of Commercially Produced Poultry. Afr. J. Microbiol. Res. 2017, 11, 271–277. [Google Scholar]
- Nwankwo, I.O.; Faleke, O.O.; Salihu, M.D.; Magaji, A.A.; Musa, U.; Garba, J. Epidemiology of Campylobacter Species in Poultry and Humans in the Four Agricultural Zones of Sokoto State, Nigeria. J. Public Health Epidemiol. 2016, 8, 184–190. [Google Scholar]
- Kouglenou, S.D.; Agbankpe, A.J.; Dougnon, V.; Djeuda, A.D.; Deguenon, E.; Hidjo, M.; Baba-Moussa, L.; Bankole, H. Prevalence and Susceptibility to Antibiotics from Campylobacter Jejuni and Campylobacter Coli Isolated from Chicken Meat in Southern Benin, West Africa. BMC Res. Notes 2020, 13, 305. [Google Scholar] [CrossRef]
- Kagambèga, A.; Thibodeau, A.; Soro, D.K.; Barro, N.; Fravalo, P. Detection of Campylobacter Sp. from Poultry Feces in Ouagadougou, Burkina Faso. Food Nutr. Sci. 2021, 12, 107–114. [Google Scholar] [CrossRef]
- Karikari, A.B.; Saba, C.K.S.; Kpordze, S.W. Biotyping of Multidrug Resistant Campylobacter Jejuni from Poultry and Humans in Northern Region of Ghana. Res. Sq. 2020, 11, 18. [Google Scholar] [CrossRef]
- Salihu, M.D.; Junaidu, A.U.; Magaji, A.A.; Yakubu, Y. Prevalence and Antimicrobial Resistance of Thermophilic Campylobacter Isolates from Commercial Broiler Flocks in Sokoto, Nigeria. Res. J. Vet. Sci. 2012, 5, 51–58. [Google Scholar] [CrossRef] [Green Version]
- Bernadette, G.G.; Souleymane, B.; Laure, K.M.-P. Antimicrobial Resistance and Virulence Factors of Campylobacter Coli Isolated from Chicken in Côte d’Ivoire. Annu. Res. Rev. Biol. 2020, 35, 86–92. [Google Scholar] [CrossRef]
- Ofukwu, R.A.; Okoh, A.E.J.; Akwuobu, C.A. Prevalence of Campylobacter Jejuni in Duck Faeces around Drinking Water Sources in Makurdi, North-Central Nigeria. Sokoto J. Vet. Sci. 2008, 7, 26–30. [Google Scholar]
- Goualié, B.G.; Ouattara, H.G.; Akpa, E.E.; Guessends, N.K.; Bakayoko, S.; Niamké, S.L.; Dosso, M. Occurrence of Multidrug Resistance in Campylobacter from Ivorian Poultry and Analysis of Bacterial Response to Acid Shock. Food Sci. Biotechnol. 2014, 23, 1185–1191. [Google Scholar] [CrossRef]
- Kagambèga, A.; Thibodeau, A.; Trinetta, V.; Soro, D.K.; Sama, F.N.; Bako, É.; Bouda, C.S.; Wereme N’Diaye, A.; Fravalo, P.; Barro, N. Salmonella Spp. and Campylobacter Spp. in Poultry Feces and Carcasses in Ouagadougou, Burkina Faso. Food Sci. Nutr. 2018, 6, 1601–1606. [Google Scholar] [CrossRef] [Green Version]
- Hamali, H.; Fallah, S.; Joozani, R.J.; Zare, P.; Noorsaadat, G. Detection of Campylobacter Spp. in Sheep Aborted Fetuses by PCR. Trends Life Sci 2014, 3, 49–56. [Google Scholar]
- Salihu, M.D.; Abdulkadir, J.U.; Oboegbulem, S.I.; Egwu, G.O.; Magaji, A.A.; Lawal, M.; Hassan, Y. Isolation and Prevalence of Campylobacter Species in Cattle from Sokoto State, Nigeria. Vet. Ital. 2009, 45, 501–505. [Google Scholar]
- Mshelia, G.D.; Amin, J.D.; Egwu, G.O.; Woldehiwet, Z.; Murray, R.D. The Prevalence of Bovine Venereal Campylobacteriosis in Cattle Herds in the Lake Chad Basin of Nigeria. Trop. Anim. Health Prod. 2012, 44, 1487–1489. [Google Scholar] [CrossRef]
- Mai, H.M.; Irons, P.C.; Kabir, J.; Thompson, P.N. Prevalence of Bovine Genital Campylobacteriosis and Trichomonosis of Bulls in Northern Nigeria. Acta Vet. Scand. 2013, 55, 56. [Google Scholar] [CrossRef] [Green Version]
- Ngulukun, S.S.; Oboegbulem, S.I.; Fagbamila, I.O.; Bertu, W.; Odugbo, M.O. Prevalence and Molecular Characterization of Thermophilic Campylobacter Species Isolated from Cattle in Plateau State, Nigeria. Niger. Vet. J. 2011, 32, 349–356. [Google Scholar]
- Karikari, A.B.; Obiri-Danso, K.; Frimpong, E.H.; Krogfelt, K.A. Antibiotic Resistance of Campylobacter Recovered from Faeces and Carcasses of Healthy Livestock. Biomed Res. Int. 2017, 2017, 4091856. [Google Scholar] [CrossRef] [Green Version]
- Salihu, M.D.; Yakubu, Y. Prevalence and Antibiotic Resistance of Thermophilic Campylobacter Spp. Isolates from Raw Beef, Mutton and Camel Meat in Sokoto, Nigeria. Res. Opin. Anim. Vet. Sci. 2011, 1, 401–405. [Google Scholar]
- Mai, H.M.; Irons, P.C.; Kabir, J.; Thompson, P.N. Herd-Level Risk Factors for Campylobacter Fetus Infection, Brucella Seropositivity and within-Herd Seroprevalence of Brucellosis in Cattle in Northern Nigeria. Prev. Vet. Med. 2013, 111, 256–267. [Google Scholar] [CrossRef]
- Gwimi, P.B.; Faleke, O.O.; Salihu, M.D.; Magaji, A.A.; Abubakar, M.B.; Nwankwo, I.O.; Ibitoye, E.B. Prevalence of Campylobacter Species in Fecal Samples of Pigs and Humans from Zuru Kebbi State, Nigeria. Int. J. One Health 2015, 1, 1–5. [Google Scholar] [CrossRef]
- Adekunle, O.C.; Coker, A.O.; Kolawole, D.O. Incidence, Isolation and Characterization of Campylobacter Species in Osogbo. Biol. Med. 2009, 1, 24–27. [Google Scholar]
- Lääveri, T.; Pakkanen, S.H.; Antikainen, J.; Riutta, J.; Mero, S.; Kirveskari, J.; Kantele, A. High Number of Diarrhoeal Co-Infections in Travellers to Benin, West Africa. BMC Infect. Dis. 2014, 14, 81. [Google Scholar] [CrossRef] [Green Version]
- Bonkoungou, I.J.O.; Haukka, K.; Österblad, M.; Hakanen, A.J.; Traoré, A.S.; Barro, N.; Siitonen, A. Bacterial and Viral Etiology of Childhood Diarrhea in Ouagadougou, Burkina Faso. BMC Pediatr. 2013, 13, 36. [Google Scholar] [CrossRef] [Green Version]
- Sangaré, L.; Nikiéma, A.K.; Zimmermann, S.; Sanou, I.; Congo-Ouédraogo, M.; Diabaté, A.; Guissou, P.I. Campylobacter Spp. Epidemiology and Antimicrobial Susceptibility in a Developing Country, Burkina Faso (West Africa). Afr. J. Clin. Exp. Microbiol. 2012, 13, 110–117. [Google Scholar] [CrossRef] [Green Version]
- Sawadogo, S.; Diarra, B.; BIsseye, C.; Compaore, T.R.; Djigma, F.W.; Ouermi, D.; Ouattara, A.S.; Simpore, J. Molecular Diagnosis of Shigella, Salmonella and Campylobacter by Multiplex Real-Time PCR in Stool Culture Samples in Ouagadougou (Burkina Faso). Sudan J. Med. Sci. 2017, 12, 163. [Google Scholar] [CrossRef] [Green Version]
- Zimmermann, M.; Kotloff, K.; Nasrin, D.; Roose, A.; Levine, M.M.; Rheingans, R.; Farag, T.; Walker, D.; Pecenka, C. Household Costs of Diarrhea by Etiology in 7 Countries, the Global Enterics Mulitcenter Study (GEMS). Open Forum Infect. Dis. 2019, 6, ofz150. [Google Scholar] [CrossRef] [Green Version]
- Langendorf, C.; Le Hello, S.; Moumouni, A.; Gouali, M.; Mamaty, A.-A.; Grais, R.F.; Weill, F.-X.; Page, A.-L. Enteric Bacterial Pathogens in Children with Diarrhea in Niger: Diversity and Antimicrobial Resistance. PLoS ONE 2015, 10, e0120275. [Google Scholar] [CrossRef] [Green Version]
- Karikari, A.B.; Obiri-Danso, K.; Frimpong, E.H.; Krogfelt, K.A. Antibiotic Resistance in Campylobacter Isolated from Patients with Gastroenteritis in a Teaching Hospital in Ghana. Open J. Med. Microbiol. 2017, 7, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Krumkamp, R.; Sarpong, N.; Schwarz, N.G.; Adlkofer, J.; Loag, W.; Eibach, D.; Hagen, R.M.; Adu-Sarkodie, Y.; Tannich, E.; May, J. Correction: Gastrointestinal Infections and Diarrheal Disease in Ghanaian Infants and Children: An Outpatient Case-Control Study. PLoS Negl. Trop. Dis. 2015, 9, e0003728. [Google Scholar] [CrossRef] [Green Version]
- Ogbomon, E.O.; Whong, C.M.Z.; Doko, M.H.I.; Magaji, S.N.; Addai, T.I.; Orukotan, Y.F. Prevalence of Campylobacter Spp. among Diarrhoeic HIV-Patients in Kaduna, Nigeria. Int. J. Appl. Microb. Biotech. Res. 2019, 7, 70–78. [Google Scholar]
- Forson, A.O.; Adjei, D.N.; Olu-Taiwo, M.; Quarchie, M.N.; Asmah, H.R. Characterization of Campylobacter Associated Gastric Enteritis among Patients with Human Immunodeficiency Virus (HIV) in a Hospital in Accra, Ghana. PLoS ONE 2020, 15, e0240242. [Google Scholar] [CrossRef]
- Falodun, O.I.; Adesola, E.A.; Ademola, E.A.; Bakarey, S.A. Faecal Carriage and Antibiotics Resistance Patterns of Campylobacter Species from HIV/AIDS Patients in Ibadan, Southwest Nigeria. South Asian J. Res. Microbiol. 2020, 7, 39–46. [Google Scholar] [CrossRef]
- Schroeder, L.F.; Amukele, T. Medical Laboratories in Sub-Saharan Africa That Meet International Quality Standards. Am. J. Clin. Pathol. 2014, 141, 791–795. [Google Scholar] [CrossRef] [Green Version]
- Sahin, O.; Kassem, I.I.; Shen, Z.; Lin, J.; Rajashekara, G.; Zhang, Q. Campylobacter in Poultry: Ecology and Potential Interventions. Avian Dis. 2015, 59, 185–200. [Google Scholar] [CrossRef]
- Rukambile, E.; Sintchenko, V.; Muscatello, G.; Kock, R.; Alders, R. Infection, Colonization and Shedding of Campylobacter and Salmonella in Animals and Their Contribution to Human Disease: A Review. Zoonoses Public Health 2019, 66, 562–578. [Google Scholar] [CrossRef] [PubMed]
- Newell, D.G.; Mughini-Gras, L.; Kalupahana, R.S.; Wagenaar, J.A. Campylobacter Epidemiology—Sources and Routes of Transmission for Human Infection. In Campylobacter; Elsevier: Amsterdam, The Netherlands, 2017; pp. 85–110. [Google Scholar]
- Aarestrup, F.M.; Wegener, H.C.; McDermott, P.F. Transmission of Antibiotic Resistance from Food Animals to Humans. In Campylobacter, Third Edition; American Society of Microbiology: Washington, DC, USA, 2008; pp. 645–665. [Google Scholar]
- Zenebe, T.; Zegeye, N.; Eguale, T. Prevalence of Campylobacter Species in Human, Animal and Food of Animal Origin and Their Antimicrobial Susceptibility in Ethiopia: A Systematic Review and Meta-Analysis. Ann. Clin. Microbiol. Antimicrob. 2020, 19, 61. [Google Scholar] [CrossRef]
- Diriba, K.; Awulachew, E.; Anja, A. Prevalence and Associated Factor of Campylobacter Species among Less than 5-Year-Old Children in Ethiopia: A Systematic Review and Meta-Analysis. Eur. J. Med. Res. 2021, 26, 2. [Google Scholar] [CrossRef]
- Lv, R.; Wang, K.; Feng, J.; Heeney, D.D.; Liu, D.; Lu, X. Detection and Quantification of Viable but Non-Culturable Campylobacter Jejuni. Front. Microbiol. 2019, 10, 2920. [Google Scholar] [CrossRef] [PubMed]
- Limmathurotsakul, D.; Jamsen, K.; Arayawichanont, A.; Simpson, J.A.; White, L.J.; Lee, S.J.; Wuthiekanun, V.; Chantratita, N.; Cheng, A.; Day, N.P.J.; et al. Defining the True Sensitivity of Culture for the Diagnosis of Melioidosis Using Bayesian Latent Class Models. PLoS ONE 2010, 5, e12485. [Google Scholar] [CrossRef]
- Cantero, G.; Correa-Fiz, F.; Ronco, T.; Strube, M.; Cerdà-Cuéllar, M.; Pedersen, K. Characterization of Campylobacter Jejuni and Campylobacter Coli Broiler Isolates by Whole-Genome Sequencing. Foodborne Pathog. Dis. 2018, 15, 145–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steinbrueckner, B.; Haerter, G.; Pelz, K.; Kist, M. Routine Identification of Campylobacter Jejuni and Campylobacter Coli from Human Stool Samples. FEMS Microbiol. Lett. 1999, 179, 227–232. [Google Scholar] [CrossRef] [Green Version]
- Sheppard, S.K.; Maiden, M.C.J. The Evolution of Campylobacter Jejuni and Campylobacter Coli. Cold Spring Harb. Perspect. Biol. 2015, 7, a018119. [Google Scholar] [CrossRef] [Green Version]
- Ayandiran, T.O.; Falgenhauer, L.; Schmiedel, J.; Chakraborty, T.; Ayeni, F.A. High resistance to tetracycline and ciprofloxacin in bacteria isolated from poultry farms in Ibadan, Nigeria. J. Infect. Dev. Ctries. 2018, 12, 462–470. [Google Scholar] [CrossRef] [Green Version]
- Mougey, E.B.; Saunders, M.; Franciosi, J.P.; Gomez-Suarez, R.A. Comparative Effectiveness of Intravenous Azithromycin versus Erythromycin Stimulating Antroduodenal Motility in Children. J. Pediatr. Gastroenterol. Nutr. 2022, 74, 25–32. [Google Scholar] [CrossRef]
- Asuming-Bediako, N.; Parry-Hanson Kunadu, A.; Abraham, S.; Habib, I. Campylobacter at the Human-Food Interface: The African Perspective. Pathogens 2019, 8, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Feye, K.M.; Shi, Z.; Pavlidis, H.O.; Kogut, M.; Ashworth, A.J.; Ricke, S.C. A Historical Review on Antibiotic Resistance of Foodborne Campylobacter. Front. Microbiol. 2019, 10, 1509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paintsil, E.K.; Ofori, L.A.; Akenten, C.W.; Fosu, D.; Ofori, S.; Lamshöft, M.; May, J.; Danso, K.O.; Krumkamp, R.; Dekker, D. Antimicrobial Usage in Commercial and Domestic Poultry Farming in Two Communities in the Ashanti Region of Ghana. Antibiotics 2021, 10, 800. [Google Scholar] [CrossRef]
- Dekker, D.; Wolters, M.; Mertens, E.; Boahen, K.G.; Krumkamp, R.; Eibach, D.; Schwarz, N.G.; Adu-Sarkodie, Y.; Rohde, H.; Christner, M.; et al. Antibiotic Resistance and Clonal Diversity of Invasive Staphylococcus Aureus in the Rural Ashanti Region, Ghana. BMC Infect. Dis. 2016, 16, 720. [Google Scholar] [CrossRef] [Green Version]
- Dong, L.T.; Espinoza, H.V.; Espinoza, J.L. Emerging Superbugs: The Threat of Carbapenem Resistant Enterobacteriaceae. AIMS Microbiol. 2020, 6, 176–182. [Google Scholar] [CrossRef]
- Sarkar, D.J.; Mukherjee, I.; Shakil, N.A.; Rana, V.S.; Kaushik, P.; Debnath, S. Antibiotics in Agriculture: Use and Impact. Ind. J. Ethnophytopharm. 2018, 4, 4–19. [Google Scholar]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Hunter, J.P.; Saratzis, A.; Sutton, A.J.; Boucher, R.H.; Sayers, R.D.; Bown, M.J. In Meta-Analyses of Proportion Studies, Funnel Plots Were Found to Be an Inaccurate Method of Assessing Publication Bias. J. Clin. Epidemiol. 2014, 67, 897–903. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Harrer, M.; Cuijpers, P.; Furukawa, T.A.; Ebert, D.D. Doing Meta-Analysis with R: A Hands-On Guide; Chapmann & Hall/CRC Press: Boca Raton, FL, USA; London, UK; Chapmann & Hall/CRC Press: London, UK, 2021. [Google Scholar]
- QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. 2021. Available online: http://www.qgis.org (accessed on 15 November 2021).
Variables | Included Studies | Sample Size | Pooled Prevalence (95% CI) | I2 (%) | p Value |
---|---|---|---|---|---|
Country | |||||
Nigeria | 13 | 5702 | 34 (21–51) | 99 | <0.01 |
Ghana | 6 | 1917 | 21(14–30) | 94 | <0.01 |
Burkina Faso | 3 | 355 | 27 (5–73) | 98 | <0.01 |
Cote d’Ivoire | 3 | 791 | 74 (52–88) | 97 | <0.01 |
Benin | 1 | 256 | 33 (27–39) | - | - |
Study setting a | |||||
Market | 13 | 2367 | 37 (23–52) | 97 | <0.01 |
Farm | 10 | 3955 | 31 (18–47) | 99 | <0.01 |
Abattoir | 6 | 2670 | 33 (15–57) | 99 | <0.01 |
Veterinary clinic | 1 | 473 | 11 (6–17) | - | - |
Type of Sample a | |||||
Carcasses | 13 | 3353 | 35 (21–53) | 98 | <0.01 |
Rectal swab | 7 | 2930 | 33 (17–54) | 98 | <0.01 |
Feces | 7 | 1719 | 32 (19–50) | 97 | <0.01 |
Preputial scraping | 3 | 1122 | 20 (12–31) | 92 | <0.01 |
Diagnostic method | |||||
Culture and biochemistry | 16 | 5970 | 32 (21–47) | 99 | <0.01 |
Culture and PCR | 5 | 1399 | 54 (28–78) | 98 | <0.01 |
PCR only | 3 | 1106 | 22 (12–36) | 88 | <0.01 |
Culture and latex agglutination | 1 | 346 | 43 (38–48) | - | - |
Culture and MALDI-TOF MS | 1 | 200 | 11 (7–16) | - | - |
Campylobacter species | |||||
C. jejuni | 22 | 3075 | 52 (42–63) | 96 | <0.01 |
C. coli | 17 | 2512 | 30 (22–40) | 95 | <0.01 |
C. lari | 7 | 1420 | 12 (6–22) | 84 | <0.01 |
C. fetus | 5 | 434 | 8 (1–46) | 93 | <0.01 |
C. hyointestinalis | 4 | 505 | 4 (2–7) | 39 | 0.18 |
C. jejuni subsp.doylei | 3 | 320 | 5 (1–21) | 80 | <0.01 |
C. upsaliensis | 2 | 292 | 12 (2–49) | 89 | <0.01 |
C. sputorum | 1 | 36 | 6 (1–20) | - | - |
Variables | Included Studies | Sample Size | Pooled Prevalence (95% CI) | I2 (%) | p Value |
---|---|---|---|---|---|
Country | |||||
Nigeria | 4 | 1182 | 22 (5–58) | 98 | <0.01 |
Ghana | 3 | 1576 | 27(13–36) | 97 | <0.01 |
Burkina Faso | 3 | 1729 | 2 (2–3) | 0 | 0.45 |
Benin | 1 | 45 | 1 (0–2) | - | - |
Gambia | 1 | 1933 | 9 (8–10) | - | - |
Niger | 1 | 350 | 11 (8–15) | - | - |
Study setting | |||||
Hospital | 11 | 6620 | 10 (5–18) | 98 | <0.01 |
Community | 2 | 195 | 14 (0–96) | 92 | <0.01 |
Study design | |||||
Cross sectional | 8 | 2618 | 19 (7–42) | 99 | |
Case control | 4 | 2264 | 2(0–19) | 96 | |
Retrospective | 1 | 1933 | 9 (8–10) | - | - |
Age range | |||||
Adults only (>15) | 4 | 515 | 33 (13–62) | 96 | <0.01 |
<13 years | 1 | 1234 | 20 (17–22) | - | - |
<5 years | 4 | 3268 | 4 (2–8) | 93 | <0.01 |
All ages | 4 | 1798 | 9 (1–47) | 99 | <0.01 |
Diagnostic method | |||||
Culture and biochemistry | 6 | 2278 | 22 (7–51) | 99 | <0.01 |
PCR only | 4 | 3412 | 7 (3–15) | 97 | <0.01 |
Culture and PCR | 3 | 1125 | 4 (0–63) | 99 | <0.01 |
Campylobacter species | |||||
C. coli | 7 | 397 | 47 (25–69) | 91 | <0.01 |
C. jejuni | 6 | 565 | 42 (26–59) | 86 | <0.01 |
C. lari | 3 | 249 | 12 (4–28) | 81 | <0.01 |
C. upsaliensis | 3 | 243 | 11 (3–33) | 87 | <0.01 |
C. fetus | 2 | 165 | 13 (9–20) | 0 | 0.61 |
C. hyointestinalis | 2 | 139 | 6 (3–11) | 0 | 0.75 |
C. jejuni subsp.doylei | 1 | 35 | 3 (0–18) | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paintsil, E.K.; Ofori, L.A.; Adobea, S.; Akenten, C.W.; Phillips, R.O.; Maiga-Ascofare, O.; Lamshöft, M.; May, J.; Obiri Danso, K.; Krumkamp, R.; et al. Prevalence and Antibiotic Resistance in Campylobacter spp. Isolated from Humans and Food-Producing Animals in West Africa: A Systematic Review and Meta-Analysis. Pathogens 2022, 11, 140. https://doi.org/10.3390/pathogens11020140
Paintsil EK, Ofori LA, Adobea S, Akenten CW, Phillips RO, Maiga-Ascofare O, Lamshöft M, May J, Obiri Danso K, Krumkamp R, et al. Prevalence and Antibiotic Resistance in Campylobacter spp. Isolated from Humans and Food-Producing Animals in West Africa: A Systematic Review and Meta-Analysis. Pathogens. 2022; 11(2):140. https://doi.org/10.3390/pathogens11020140
Chicago/Turabian StylePaintsil, Ellis Kobina, Linda Aurelia Ofori, Sarah Adobea, Charity Wiafe Akenten, Richard Odame Phillips, Oumou Maiga-Ascofare, Maike Lamshöft, Jürgen May, Kwasi Obiri Danso, Ralf Krumkamp, and et al. 2022. "Prevalence and Antibiotic Resistance in Campylobacter spp. Isolated from Humans and Food-Producing Animals in West Africa: A Systematic Review and Meta-Analysis" Pathogens 11, no. 2: 140. https://doi.org/10.3390/pathogens11020140
APA StylePaintsil, E. K., Ofori, L. A., Adobea, S., Akenten, C. W., Phillips, R. O., Maiga-Ascofare, O., Lamshöft, M., May, J., Obiri Danso, K., Krumkamp, R., & Dekker, D. (2022). Prevalence and Antibiotic Resistance in Campylobacter spp. Isolated from Humans and Food-Producing Animals in West Africa: A Systematic Review and Meta-Analysis. Pathogens, 11(2), 140. https://doi.org/10.3390/pathogens11020140