Factors Possibly Associated with Mortality in Intubated COVID-19 Patients: A Retrospective Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Study Design
2.2. Data Collection
2.3. Statistical Analysis
3. Results
Clinical Characteristics and Mortality
4. Discussion
5. Study Limitations
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Li, Q.; Guan, X.; Wu, P.; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.; Leung, K.S.M.; Lau, E.H.Y.; Wong, J.Y.; et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N. Engl. J. 2020, 382, 1199–1207. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Coronavirus Disease 2019 (COVID-19) Situation Report—81. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports (accessed on 22 December 2021).
- BMJ Best Practice. Coronavirus Disease 2019 (COVID-19). Available online: https://bestpractice.bmj.com/topics/en-gb/3000201 (accessed on 22 December 2021).
- Moghadas, S.M.; Vilches, T.N.; Zhang, K.; Wells, C.R.; Shoukat, A.; Singer, B.H.; Meyers, L.A.; Neuzil, K.M.; Langley, J.M.; Fitzpatrick, M.C.; et al. The Impact of Vaccination on Coronavirus Disease 2019 (COVID-19) Outbreaks in the United States. Clin. Infect Dis. 2021, 73, 2257–2264. [Google Scholar] [CrossRef] [PubMed]
- Mehta, O.P.; Bhandari, P.; Raut, A.; Kacimi, S.; Huy, N.T. Coronavirus Disease (COVID-19): Comprehensive Review of Clinical Presentation. Front. Public Health 2021, 8, 582932. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; Qiu, H.; Wan, L.; Ai, Y.; Xue, Z.; Guo, Q.; Deshpande, R.; Zhang, L.; Meng, J.; Tong, C.; et al. Intubation and Ventilation amid the COVID-19 Outbreak: Wuhan’s Experience. Anesthesiology 2020, 132, 1317–1332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, X.; Yu, Y.; Xu, J.; Shu, H.; Xia, J.; Liu, H.; Wu, Y.; Zhang, L.; Yu, Z.; Yu, M.; et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study. Lancet Respir. Med. 2021, 8, 475–481. [Google Scholar] [CrossRef] [Green Version]
- Ruan, Q.; Yang, K.; Wang, W.; Jiang, L.; Song, J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020, 46, 846–848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Z.; McGoogan, J.M. Characteristics of and Important Lessons from the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases from the Chinese Center for Disease Control and Prevention. JAMA 2020, 323, 1239–1242. [Google Scholar] [CrossRef]
- Yoo, K.Y.; Lee, J.U.; Kim, H.S.; Im, W.M. Hemodynamic and Catecholamine Responses to Laryngoscopy and Tracheal Intubation in Patients with Complete Spinal Cord Injuries. Anesthesiology 2021, 95, 647–651. [Google Scholar] [CrossRef]
- Nishikimi, M.; Rasul, R.; Sison, C.P.; Jafari, D.; Shoaib, M.; Shinozaki, K.; Li, T.; Hayashida, K.; Rolston, D.M.; Hirsch, J.S.; et al. Intubated COVID-19 predictive (ICOP) score for early mortality after intubation in patients with COVID-19. Sci. Rep. 2021, 11, 21124. [Google Scholar] [CrossRef]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Zhang, F.; Xiong, Y.; Wei, Y.; Hu, Y.; Wang, F.; Li, G.; Liu, K.; Du, R.; Wang, C.Y.; Zhu, W. Obesity predisposes to the risk of higher mortality in young COVID-19 patients. J. Med. Virol. 2020, 92, 2536–2542. [Google Scholar] [CrossRef] [PubMed]
- Deng, M.; Qi, Y.; Deng, L.; Wang, H.; Xu, Y.; Li, Z.; Meng, Z.; Tang, J.; Dai, Z. Obesity as a Potential Predictor of Disease Severity in Young COVID-19 Patients: A Retrospective Study. Obesity 2020, 28, 1815–1825. [Google Scholar] [CrossRef] [PubMed]
- Seong, J.; Kang, J.Y.; Sun, J.S.; Kim, K.W. Hypothalamic inflammation and obesity: A mechanistic review. Arch. Pharmacal Res. 2019, 42, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Hu, J.; Zhu, C. Obesity aggravates COVID-19: A systematic review and meta-analysis. J. Med. Virol. 2021, 93, 257–261. [Google Scholar] [CrossRef]
- Balderas-Vargas, N.A.; Legorreta-Soberanis, J.; Paredes-Solís, S.; Flores-Moreno, M.; Santos, F.R.S.L.; Andersson, N. Occult renal failure and associated factors in patients with chronic conditions. Gac Med. Mex. 2020, 156, 11–16. [Google Scholar] [CrossRef]
- Li, C.; Ye, J.; Chen, Q.; Hu, W.; Wang, L.; Fan, Y.; Lu, Z.; Chen, J.; Chen, Z.; Chen, S.; et al. Elevated Lactate Dehydrogenase (LDH) level as an independent risk factor for the severity and mortality of COVID-19. Aging 2020, 12, 15670–15681. [Google Scholar] [CrossRef]
- Zhu, B.; Feng, X.; Jiang, C.; Mi, S.; Yang, L.; Zhao, Z.; Zhang, Y.; Zhang, L. Correlation between white blood cell count at admission and mortality in COVID-19 patients: A retrospective study. BMC Infect. Dis. 2021, 21, 574. [Google Scholar] [CrossRef]
- Yokomichi, A.; Rodrigues, V.; Moroz, A.; Bertanha, M.; Ribeiro, S.; Deffune, E.; Moraes, M.L. Detection of factor VIII and D-dimer biomarkers for venous thromboembolism diagnosis using electrochemistry immunosensor. Talanta 2020, 219, 121241. [Google Scholar] [CrossRef]
- Liao, D.; Zhou, F.; Luo, L.; Xu, M.; Wang, H.; Xia, J.; Gao, Y.; Cai, L.; Wang, Z.; Yin, P.; et al. Haematological characteristics and risk factors in the classifcation and prognosis evaluation of COVID-19: A retrospective cohort study. Lancet Haematol. 2020, 7, e671–e678. [Google Scholar] [CrossRef]
- Lin, C.; Chen, Y.; Chen, B.; Zheng, K.; Luo, X.; Lin, F. D-Dimer Combined with Fibrinogen Predicts the Risk of Venous Thrombosis in Fracture Patients. Emerg. Med. Int. 2020, 2020, 1930405. [Google Scholar] [CrossRef]
- Tita-Nwa, F.; Bos, A.; Adjei, A.; Ershler, W.B.; Longo, D.L.; Ferrucci, L. Correlates of D-dimer in older persons. Aging Clin. Exp. Res. 2010, 22, 20–23. [Google Scholar] [CrossRef] [PubMed]
- Han, H.; Yang, L.; Liu, R.; Liu, F.; Wu, K.L.; Li, J.; Liu, X.H.; Zhu, C.L. Prominent changes in blood coagulation of patients with SARS-CoV-2 infection. Clin. Chem. Lab. Med. 2020, 58, 1116–1120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, N.; Li, D.; Wang, X.; Sun, Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J. Thromb. Haemost. JTH 2020, 18, 844–847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sui, J.; Noubouossie, D.F.; Gandotra, S.; Cao, L. Elevated Plasma Fibrinogen Is Associated with Excessive Inflammation and Disease Severity in COVID-19 Patients. Front. Cell. Infect. Microbiol. 2021, 11, 734005. [Google Scholar] [CrossRef]
- Göker, H.; Aladağ Karakulak, E.; Demiroğlu, H.; Ayaz Ceylan, Ç.M.; Büyükaşik, Y.; Inkaya, A.Ç.; Aksu, S.; Sayinalp, N.; Haznedaroğlu, I.C.; Uzun, Ö.; et al. The effects of blood group types on the risk of COVID-19 infection and its clinical outcome. Turk. J. Med. Sci. 2020, 50, 679–683. [Google Scholar] [CrossRef]
- Canizalez-Román, A.; Campos-Romero, A.; Castro-Sánchez, J.A.; López-Martínez, M.A.; Andrade-Muñoz, F.J.; Cruz-Zamudio, C.K.; Ortíz-Espinoza, T.G.; León-Sicairos, N.; Gaudrón Llanos, A.M.; Velázquez-Román, J.; et al. Blood Groups Distribution and Gene Diversity of the ABO and Rh (D) Loci in the Mexican Population. BioMed Res. Int. 2018, 2018, 1925619. [Google Scholar] [CrossRef] [Green Version]
- Yupari, A.I.; Bardales, A.L.; Rodriguez, A.J.; Barros, S.S.; Rodríguez, D.A. COVID-19 mortality risk factors in hospitalized patients: A logistic regression model. Rev. De La Fac. De Med. Hum. 2021, 21, 19–27. [Google Scholar] [CrossRef]
Age, Years | 57.7 ± 12.8 |
---|---|
Gender, n (%) | |
Male | 58 (73.4) |
Female | 21 (26.6) |
Comorbidities, n (%) | |
SAH | 37 (46.8) |
DM2 | 35 (44.3) |
Prediabetes | 2 (2.5) |
CKD | 3 (3.8) |
Smoker, n (%) | 22 (27.8) |
SBP, mm Hg | 134.5 ± 25.9 |
DBP, mm Hg | 76.5 ± 14.0 |
HR, bpm | 101.7 ± 19.9 |
RR, bpm | 33.2 ± 8.6 |
SpO2, % | 71.03 ± 16.1 |
Weight, kg | 86.6 ± 23.9 |
Survivors (n = 13) | Non-Survivors (n = 66) | p | |
---|---|---|---|
Age, years | 48.5 ± 13.5 | 59.5 ± 12.0 | 0.011 * |
Gender, n (%) | 0.473 | ||
Male | 9 (69.2) | 49 (74.2) | |
Female | 4 (30.8) | 17 (25.8) | |
Blood group, n (%) | 0.591 | ||
A | 9 (69.2) | 39 (59.1) | |
O | 4 (30.8) | 25 (37.9) | |
AB | 0 (0) | 2 (3.0) | |
SBP, mm Hg | 135.6 ± 22.3 | 134.2 ± 26.7 | 0.856 |
DBP, mm Hg | 80.2 ± 10.9 | 75.5 ± 14.2 | 0.296 |
HR, bpm | 96.9 ± 16.3 | 102.7 ± 20.5 | 0.632 |
BF, bpm | 32.6 ± 9.5 | 33.3 ± 8.5 | 0.768 |
SpO2, % | 75.8 ± 10.3 | 70.1 ± 16.9 | 0.566 |
Weight, kg | 90.9 ± 22.3 | 85.7 ± 24.3 | 0.514 |
CRP, mg/mL | 154 ± 107.8 | 151.9 ± 98.1 | 0.509 |
Obesity, n (%) | 0.03 * | ||
Overweight | 5 (38.4) | 7 (10.6) | |
Grade 1 obesity | 0 (0) | 11 (16.7) | |
Grade 2 obesity | 2 (15.4) | 5 (7.5) | |
Grade 3 obesity | 3 (23.1) | 10 (24.2) | |
DM2, n (%) | 6 (46.1) | 28 (42.4) | 0.519 |
SAH, n (%) | 4 (30.7) | 33 (50.0) | 0.167 |
D-Dimer, ng/mL | 469.4 ± 263.2 | 2039 ± 1750.2 | 0.007 * |
Leukocytes, ×103 cells/µL | 14.2 ± 3.8 | 14.9 ±6.2 | 0.899 |
Fibrinogen, mg/dL | 907.2 ± 250 | 807.7 ± 270 | 0.146 |
PT, seconds | 13.3 ± 1.3 | 13.8 ± 2.1 | 0.668 |
PTT, seconds | 31.3 ± 9.0 | 34.5 ± 13.7 | 0.582 |
LDH, U/L | 374.4 ± 129 | 514.0 ±122 | 0.026 * |
INR | 1.2 ± 0.12 | 1.26 ± 0.18 | 0.586 |
Age ˂ 58 Years | Age ≥ 58 Years | |||
---|---|---|---|---|
Fibrinogen (mg/dL) | ||||
r | p | r | p | |
CRP (mg/mL) | 0.692 | ˂0.001 * | 0.310 | 0.070 |
D-Dimer (ng/mL) | −0.270 | 0.157 | −0.357 | 0.035 * |
LDH (U/L) | ||||
Leukocytes (×103 cells/µL) | 0.388 | 0.034 * | 0.381 | 0.024 * |
BMI (kg/m2) | −0.052 | 0.784 | 0.322 | 0.050 * |
Variable | Logistic Regression | Logistic Regression (Adjusted) | ||
---|---|---|---|---|
OR (95% IC) | p | OR (95% IC) | p | |
Age ≥58 years | 16.4 (1.14–235.58) | 0.039 * | 10.83 (1.22–95.79) | 0.032 * |
SAH | 1.6 (0.221–11.55) | 0.642 | --- | --- |
DM2 | 1.4 (0.207–8.98) | 0.748 | --- | --- |
High D-dimer levels | 6.4 (1.01–42.72) | 0.050 * | 3.4 (0.73–15.65) | 0.199 |
High CRP levels | 0.25 (0.038–1.63) | 0.148 | --- | --- |
High LDH levels | 9.2 (1.055–79.56) | 0.045 * | 4.13 (0.744–22.96) | 0.105 |
High Fibrinogen | 5.4 (0.35–83.52) | 0.230 | --- | --- |
High Leukocytes | 0.66 (0.086–5.06) | 0.689 | --- | --- |
BMI > 25 kg/m2 | 0.129 (0.015–1.08) | 0.059 | --- | --- |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramírez-Plascencia, L.E.; Vázquez-León, A.P.; Villaseñor-Magaña, A.; Correa-Valdéz, M.; Carrillo-Ibarra, S.; Sifuentes-Franco, S. Factors Possibly Associated with Mortality in Intubated COVID-19 Patients: A Retrospective Study. Pathogens 2022, 11, 235. https://doi.org/10.3390/pathogens11020235
Ramírez-Plascencia LE, Vázquez-León AP, Villaseñor-Magaña A, Correa-Valdéz M, Carrillo-Ibarra S, Sifuentes-Franco S. Factors Possibly Associated with Mortality in Intubated COVID-19 Patients: A Retrospective Study. Pathogens. 2022; 11(2):235. https://doi.org/10.3390/pathogens11020235
Chicago/Turabian StyleRamírez-Plascencia, Lilia Esther, Ana Paulina Vázquez-León, Almendra Villaseñor-Magaña, Marisela Correa-Valdéz, Sandra Carrillo-Ibarra, and Sonia Sifuentes-Franco. 2022. "Factors Possibly Associated with Mortality in Intubated COVID-19 Patients: A Retrospective Study" Pathogens 11, no. 2: 235. https://doi.org/10.3390/pathogens11020235
APA StyleRamírez-Plascencia, L. E., Vázquez-León, A. P., Villaseñor-Magaña, A., Correa-Valdéz, M., Carrillo-Ibarra, S., & Sifuentes-Franco, S. (2022). Factors Possibly Associated with Mortality in Intubated COVID-19 Patients: A Retrospective Study. Pathogens, 11(2), 235. https://doi.org/10.3390/pathogens11020235