Evaluation of Staphylococcus aureus Colonization in Adult Patients Undergoing Tonsillectomy for Recurrent Tonsillitis
Abstract
:1. Introduction
2. Results
3. Discussion
4. Strengths and Limitations
5. Materials and Methods
5.1. Isolation of Microorganisms and Antibacterial Susceptibility Testing
5.2. Biofilm Growth Using Cristal Violet Assay
5.3. Biofilm Calculation
5.4. Data Analysis
- (1)
- A causative agent of RT—S. aureus strains were isolated only in tonsillar crypts, while no S. aureus was recovered from any site after tonsillectomy;
- (2)
- Predisposition to colonization—S. aureus strains were isolated during and also after tonsillectomy, but S. aureus strains from one individual showed different phenotypes in their biofilm formation profiles;
- (3)
- Parts of patients’ oral microbiomes—S. aureus strains were isolated during and also after tonsillectomy, but S. aureus strains showed no phenotypical changes in biofilm formation.
6. Conclusions
7. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mertz, D.; Frei, R.; Jaussi, B.; Tietz, A.; Stebler, C.; Fluckiger, U.; Widmer, F.A. Throat Swabs Are Necessary to Reliably Detect Carriers of Staphylococcus aureus. Clin. Infect. Dis. 2007, 45, 475–477. [Google Scholar] [CrossRef] [PubMed]
- Chmielowiec-Korzeniowska, A.; Tymczyna, L.; Wlazło, Ł.; Nowakowicz-Dębek, B.; Trawińska, B. Staphylococcus aureus carriage state in healthy adult population and phenotypic and genotypic properties of isolated strains. Postepy Dermatol. Alergol. 2020, 37, 184–189. [Google Scholar] [CrossRef] [PubMed]
- Hanson, B.M.; Kates, A.E.; O’Malley, S.M.; Mills, E.; Herwaldt, L.A.; Torner, J.C.; Dawson, J.D.; Farina, S.A.; Klostermann, C.; Wu, J.Y.; et al. Staphylococcus aureus in the nose and throat of Iowan families. Epidemiol. Infect. 2018, 146, 1777–1784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peacock, S.J.; de Silva, I.; Lowy, F.D. What determines nasal carriage of Staphylococcus aureus? Trends Microbiol. 2001, 9, 605–610. [Google Scholar] [CrossRef]
- Buname, G.; Kiwale, G.A.; Mushi, M.F.; Silago, V.; Rambau, P.; Mshana, S.E. Bacteria Patterns on Tonsillar Surface and Tonsillar Core Tissue among Patients Scheduled for Tonsillectomy at Bugando Medical Centre, Mwanza, Tanzania. Pathogens 2021, 10, 1560. [Google Scholar] [CrossRef]
- Dickinson, A.; Kankaanpää, H.; Silén, S.; Meri, S.; Haapaniemi, A.; Ylikoski, J.; Mäkitie, A. Tonsillar surface swab bacterial culture results differ from those of the tonsillar core in recurrent tonsillitis. Laryngoscope 2020, 130, E791–E794. [Google Scholar] [CrossRef]
- Katkowska, M.; Garbacz, K.; Kopala, W.; Schubert, J.; Bania, J. Genetic diversity and antimicrobial resistance of Staphylococcus aureus from recurrent tonsillitis in children. APMIS 2020, 128, 211–219. [Google Scholar] [CrossRef]
- Sarkar, S.; Sil, A.; Sarkar, S.; Sikder, B. A Comparison of Tonsillar Surface Swabbing, Fine-Needle Aspiration Core Sampling, and Dissected Tonsillar Core Biopsy Culture in Children with Recurrent Tonsillitis. Ear Nose Throat J. 2017, 96, E29–E32. [Google Scholar] [CrossRef] [Green Version]
- Klagisa, R.; Kroica, J.; Kise, L. S. aureus and K. pneumoniae on the Surface and within Core of Tonsils in Adults with Recurrent Tonsillitis. Medicina 2021, 57, 1002. [Google Scholar] [CrossRef]
- Windfuhr, J.P.; Toepfner, N.; Steffen, G.; Waldfahrer, F.; Berner, R. Clinical practice guideline: Tonsillitis II. Surgical management. Eur. Arch. Otorhinolaryngol. 2016, 273, 989–1009. [Google Scholar] [CrossRef]
- Cavalcanti, V.P.; de Camargo, L.A.; Moura, F.S.; Fernandes, E.J.d.M.; Lamaro-Cardoso, J.; Braga, C.A.d.S.B.; André, M.C.P. Staphylococcus aureus in tonsils of patients with recurrent tonsillitis: Prevalence, susceptibility profile, and genotypic characterization. Braz. J. Infect. Dis. 2019, 23, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Katkowska, M.; Garbacz, K.; Stromkowski, J. Staphylococcus aureus isolated from tonsillectomized adult patients with recurrent tonsillitis. APMIS 2017, 125, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Labordus-van Helvoirt, R.E.M.; van Rijen, M.M.L.; van Wijngaarden, P. Tonsillectomy for persistent MRSA carriage in the throat—Description of three cases. Int. J. Infect. Dis. 2018, 67, 98–101. [Google Scholar] [CrossRef]
- Brook, I.; Foote, P.A. Isolation of methicillin resistant Staphylococcus aureus from the surface and core of tonsils in children. Int. J. Pediatr. Otorhinolaryngol. 2006, 70, 2099–2102. [Google Scholar] [CrossRef] [PubMed]
- Zautner, A.E.; Krause, M.; Stropahl, G.; Holtfreter, S.; Frickmann, H.; Maletzki, C.; Kreikemeyer, B.; Pau, W.H.; Podbielski, A. Intracellular Persisting Staphylococcus aureus Is the Major Pathogen in Recurrent Tonsillitis. PLoS ONE 2010, 5, e9452. [Google Scholar] [CrossRef] [Green Version]
- Archer, N.K.; Mazaitis, M.J.; Costerton, J.W.; Leid, J.G.; Powers, M.E.; Shirtliff, M.E. Staphylococcus aureus biofilms. Virulence 2011, 2, 445–459. [Google Scholar] [CrossRef] [Green Version]
- Lister, J.L.; Horswill, A.R. Staphylococcus aureus biofilms: Recent developments in biofilm dispersal. Front. Cell. Infect. Microbiol. 2014, 4, 178. [Google Scholar] [CrossRef] [Green Version]
- Moormeier, D.E.; Bayles, K.W. Staphylococcus aureus Biofilm: A Complex Developmental Organism. Mol. Microbiol. 2017, 104, 365–376. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Ray, P.; Das, A.; Sharma, M. Role of persisters and small-colony variants in antibiotic resistance of planktonic and biofilm-associated Staphylococcus aureus: An in vitro study. J. Med. Microbiol. 2009, 58, 1067–1073. [Google Scholar] [CrossRef] [Green Version]
- Reagan, R.D.; Doebbeling, N.B.; Pfaller, A.M.; Sheetz, T.C.; Houston, K.A.; Hollis, J.R.; Wenzel, P.R. Elimination of Coincident Staphylococcus aureus Nasal and Hand Carriage with Intranasal Application of Mupirocin Calcium Ointment. Ann. Intern. Med. 1991, 144, 101–106. [Google Scholar] [CrossRef]
- Mody, L.; Kauffman, C.A.; McNeil, S.A.; Galecki, A.T.; Bradley, S.F. Mupirocin-Based Decolonization of Staphylococcus aureus Carriers in Residents of 2 Long-Term Care Facilities: A Randomized, Double-Blind, Placebo-Controlled Trial. Clin. Infect. Dis. 2003, 37, 1467–1474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coates, T.; Bax, R.; Coates, A. Nasal decolonization of Staphylococcus aureus with mupirocin: Strengths, weaknesses and future prospects. J. Antimicrob. Chemother. 2009, 64, 9–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, G.H.; Lu, A.; Yang, Y.H.; Liu, C.Y.; Chang, P.J.; Lee, C.P.; Tsai, Y.T.; Hsu, C.M.; Wu, C.Y.; Shih, W.T.; et al. High Risk of Peritonsillar Abscess in End-Stage Renal Disease Patients: A Nationwide Real-World Cohort Study. Int. J. Environ. Res. Public Health 2021, 18, 6775. [Google Scholar] [CrossRef] [PubMed]
- Ding, M.C.; Tsai, M.S.; Yang, Y.H.; Liu, C.Y.; Tsai, Y.T.; Hsu, C.M.; Wu, C.Y.; Chang, P.J.; Lin, K.M.; Chang, G.H. Patients with comorbid rheumatoid arthritis are predisposed to peritonsillar abscess: Real-world evidence. Eur. Arch. Otorhinolaryngol. 2021, 278, 4035–4042. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.L.; Tsai, M.S.; Lee, T.J.; Wang, Y.T.; Liu, C.Y.; Yang, Y.H.; Tsai, Y.T.; Hsu, C.M.; Wu, C.Y.; Chang, P.J.; et al. Type 2 Diabetes Mellitus Increases Peritonsillar Abscess Susceptibility: Real-World Evidence. Clin. Exp. Otorhinolaryngol. 2021, 14, 347–354. [Google Scholar] [CrossRef]
- Senska, G.; Atay, H.; Pütter, C.; Dost, P. Long-Term Results from Tonsillectomy in Adults. Dtsch. Arztebl. Int. 2015, 112, 849–855. [Google Scholar] [CrossRef] [Green Version]
- Witsell, D.L.; Orvidas, L.J.; Stewart, M.G.; Hannley, M.T.; Weaver, E.M.; Yueh, B.; Smith, T.L.; Orvidas, L.J. TO TREAT Study Investigators. Quality of life after tonsillectomy in adults with recurrent or chronic tonsillitis. Otolaryngol. Head Neck Surg. 2008, 138, S1–S8. [Google Scholar] [CrossRef]
- Klagisa, R.; Kroica, J.; Kise, L. Punch Biopsy Needle. Patent Aplication No. LVP2020000055; Izgudrojumi, Preču Zīmes un Dizainparaugi; Patent Office of the Republic of Latvia: Riga, Latvia, 2021; Volume 5, p. 315, 20 May 2021. [Google Scholar]
- Brandwein, M.; Steinberg, D.; Meshner, S. Microbial biofilms and the human skin microbiome. Npj Biofilms Microbiomes 2016, 2, 3. [Google Scholar] [CrossRef] [Green Version]
- Neopane, P.; Nepal, H.P.; Shrestha, R.; Uehara, O.; Abiko, Y. In vitro biofilm formation by Staphylococcus aureus isolated from wounds of hospital-admitted patients and their association with antimicrobial resistance. Int. J. Gen. Med. 2018, 11, 25–32. [Google Scholar] [CrossRef]
- Peeters, E.; Nelis, H.J.; Coenye, T. Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates. J. Microbiol. Methods 2008, 72, 157–165. [Google Scholar] [CrossRef] [Green Version]
- Grossman, A.B.; Burgin, D.J.; Rice, K.C. Quantification of Staphylococcus aureus Biofilm Formation by Crystal Violet and Confocal Microscopy. Methods Mol. Biol. 2021, 2341, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Stepanović, S.; Vuković, D.; Hola, V.; Bonaventura, G.D.; Djukić, S.; Ćirković, I.; Ruzicka, F. Quantification of biofilm in microtiter plates: Overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS 2007, 115, 891–899. [Google Scholar] [CrossRef] [PubMed]
- Senobar Tahaei, S.A.; Stájer, A.; Barrak, I.; Ostorházi, E.; Szabó, D.; Gajdács, M. Correlation Between Biofilm-Formation and the Antibiotic Resistant Phenotype in Staphylococcus aureus Isolates: A Laboratory-Based Study in Hungary and a Review of the Literature. Infect. Drug Resist. 2021, 14, 1155–1168. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, J.; Ji, Y. Environmental factors modulate biofilm formation by Staphylococcus aureus. Sci. Prog. 2020, 103, 36850419898659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anonymous; The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 10.0. 2020, volume 34–38, pp. 84–87. Available online: https://www.eucast.org/ast_of_bacteria/previous_versions_of_documents/ (accessed on 12 February 2022).
- Reisner, A.; Krogfelt, K.A.; Klein, B.M.; Zechner, E.L.; Molin, S. In Vitro Biofilm Formation of Commensal and Pathogenic Escherichia coli Strains: Impact of Environmental and Genetic Factors. J. Bacteriol. 2006, 188, 3572–3581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
N | Sex | Age | Place of Residence | Microorganisms | S. aureus Biofilm Production | ||||
---|---|---|---|---|---|---|---|---|---|
During TE | After TE | ||||||||
Tonsillar Crypts | Throat | Nasal Cavity | Armpits | ||||||
1 | M | 35 | Bauska | S. aureus + oral flora | 1C weak | 0 | 0 | 0 | Causative agent |
2 | M | 21 | Saulkrasti | S. aureus | 2C weak | 0 | 2N moderate | 0 | Predisposition to colonization |
3 | F | 27 | Jurmala | S. aureus + Candida spp. | 3C weak | 3T strong | 0 | 0 | Predisposition to colonization |
4 | F | 25 | Riga | S. aureus + oral flora | 4C weak | 4T weak | 0 | 0 | Part of patients’ oral microbiome |
5 | M | 23 | Babite | S. aureus + oral flora | 5C weak | 5T weak | 5N weak | 5A weak | Part of patients’ oral microbiome |
6 | M | 50 | Riga | S. aureus+ Staphylococcus epidermidis | 6C moderate | 0 | 0 | 0 | Causative agent |
7 | F | 35 | Marupe | S. aureus + oral flora | 7C strong | 0 | 0 | 0 | Causative agent |
8 | M | 24 | Salaspils | S. aureus | 8C moderate | 0 | 0 | 0 | Causative agent |
9 | F | 33 | Riga | S. aureus + Streptococcus pneumoniae + oral flora | 9C weak | 0 | 0 | 0 | Causative agent |
10 | F | 31 | Riga | S. aureus + Klebsiella pneumoniae + Candida spp. + oral flora | 10C weak | 0 | 0 | 0 | Causative agent |
11 | M | 35 | Riga | S. aureus | 11C moderate | 0 | 11N non—producer | 0 | Predisposition to colonization |
12 | M | 24 | Riga | S. aureus | 12C weak | 0 | 0 | 0 | Causative agent |
13 | M | 33 | Saulkrasti | S. aureus + Neisseria subflava + Haemophilus influenzae + Streptococcus anginosus + Prevotella intermedia + oral flora | 13C weak | 0 | 0 | 0 | Causative agent |
14 | F | 23 | Ozolnieki | S. aureus | 14C moderate | 0 | 0 | 0 | Causative agent |
15 | F | 31 | Rezekne | S. aureus + oral flora + Streptococcus agalactiae | 15C moderate | 0 | 15N non—producer | 0 | Predisposition to colonization |
16 | F | 28 | Riga | S. aureus | 16C non—producer | 0 | 0 | 0 | Causative agent |
Antibiotics | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
FOX | CRO | P | AMP | AMS | AUG | CIP | AK | E | CD | C | ||
S.aureusstrains | 1C | S | S | R | R | S | S | I | S | S | S | S |
2C | S | S | S | S | S | S | I | S | S | S | S | |
2N | S | S | R | R | S | S | I | S | S | S | S | |
3C | S | S | R | R | S | S | I | S | S | S | S | |
3T | S | S | S | S | S | S | I | S | S | S | S | |
4C | R | R | R | R | R | R | I | S | S | S | S | |
4T | S | S | R | R | S | S | I | S | S | S | S | |
5C | S | S | R | R | S | S | I | S | S | S | S | |
5T | S | S | S | S | S | S | I | S | S | S | S | |
5N | S | S | S | S | S | S | I | S | S | S | S | |
5A | S | S | S | S | S | S | I | S | S | S | S | |
6C | S | S | R | R | S | S | I | S | S | S | S | |
7C | S | S | R | R | S | S | I | S | S | S | S | |
8C | S | S | R | R | S | S | I | S | S | S | S | |
9C | S | S | R | R | S | S | I | S | S | S | S | |
10C | S | S | R | R | S | S | I | S | S | S | S | |
11C | S | S | S | S | S | S | I | S | S | S | S | |
11N | S | S | S | S | S | S | I | S | S | S | S | |
12C | S | S | R | R | S | S | I | S | S | S | S | |
13C | S | S | R | R | S | S | I | S | S | I | S | |
14C | S | S | S | S | S | S | I | S | S | S | S | |
15C | S | S | R | R | S | S | I | S | S | S | S | |
15N | S | S | R | R | S | S | I | S | S | S | S | |
16C | S | S | S | S | S | S | I | S | S | S | S |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klagisa, R.; Racenis, K.; Broks, R.; Kise, L.; Kroiča, J. Evaluation of Staphylococcus aureus Colonization in Adult Patients Undergoing Tonsillectomy for Recurrent Tonsillitis. Pathogens 2022, 11, 427. https://doi.org/10.3390/pathogens11040427
Klagisa R, Racenis K, Broks R, Kise L, Kroiča J. Evaluation of Staphylococcus aureus Colonization in Adult Patients Undergoing Tonsillectomy for Recurrent Tonsillitis. Pathogens. 2022; 11(4):427. https://doi.org/10.3390/pathogens11040427
Chicago/Turabian StyleKlagisa, Renata, Karlis Racenis, Renars Broks, Ligija Kise, and Juta Kroiča. 2022. "Evaluation of Staphylococcus aureus Colonization in Adult Patients Undergoing Tonsillectomy for Recurrent Tonsillitis" Pathogens 11, no. 4: 427. https://doi.org/10.3390/pathogens11040427
APA StyleKlagisa, R., Racenis, K., Broks, R., Kise, L., & Kroiča, J. (2022). Evaluation of Staphylococcus aureus Colonization in Adult Patients Undergoing Tonsillectomy for Recurrent Tonsillitis. Pathogens, 11(4), 427. https://doi.org/10.3390/pathogens11040427