Simplifying Schistosome Surveillance: Using Molecular Cercariometry to Detect and Quantify Cercariae in Water
Abstract
:1. Introduction
2. Cercariometry Methods Past and Present
3. Trichobilharzia as a Model System for Human Schistosomes
4. Current and Future Applications
5. Cercariometry Challenges
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Horák, P.; Kolářová, L.; Adema, C.M. Biology of the schistosome genus Trichobilharzia. Adv. Parasitol. 2002, 52, 155–233. [Google Scholar] [PubMed]
- Schets, F.M.; Lodder, W.J.; De Roda Husman, A.M. Confirmation of the presence of Trichobilharzia by examination of water samples and snails following reports of cases of cercarial dermatitis. Parasitology 2010, 137, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Soldánová, M.; Selbach, C.; Kalbe, M.; Kostadinova, A.; Sures, B. Swimmer’s itch: Etiology, impact, and risk factors in Europe. Trends Parasitol. 2013, 29, 65–74. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization Department of Communicable Disease Prevention, Control and Eradication. The Control of Schistosomiasis; World Health Organization: Geneva, Switzerland, 1984; p. 114. [Google Scholar]
- World Health Organization. Weekly Epidemiological Record. Wkly. Epidemiol. Rec. 2019, 94, 601–612. [Google Scholar]
- Sturrock, R.F.; Barnish, G.; Upatham, E.S. Snail findings from an experimental mollusciciding programme to control Schistosoma mansoni transmission on St. Lucia. Int. J. Parasitol. 1974, 4, 231–240. [Google Scholar] [CrossRef]
- Hoffman, D.B.J.; Lehman, J.S.J.; Scott, V.C. Control of schistosomiasis: Report of a workshop. Am. J. Trop. Med. Hyg. 1979, 28, 249–259. [Google Scholar] [CrossRef]
- Sturrock, R.F.; Klumpp, R.K.; Ouma, J.H.; Butterworth, A.E.; Fulford, A.J.C.; Kariuki, H.C.; Thiongo, F.W.; Koech, D. Observations on the effects of different chemotherapy strategies on the transmission of Schistosoma mansoni in Machakos District, Kenya, measured by long-term snail sampling and cercariometry. Parasitology 1994, 109, 443–453. [Google Scholar] [CrossRef]
- King, C.H. The evolving schistosomiasis agenda 2007–2017-Why we are moving beyond morbidity control toward elimination of transmission. PLoS Negl. Trop. Dis. 2017, 11, e0005517. [Google Scholar] [CrossRef] [Green Version]
- Braun, L.; Grimes, J.E.T.; Templeton, M.R. The effectiveness of water treatment processes against schistosome cercariae: A systematic review. PLoS Negl. Trop. Dis. 2018, 12, e0006364. [Google Scholar] [CrossRef]
- Champion, T.S.; Connelly, S.; Smith, C.J.; Lamberton, P.H.L. Monitoring schistosomiasis and sanitation interventions-the potential of environmental DNA. WIREs Water 2020, 8, e1491. [Google Scholar] [CrossRef]
- World Health Organization. Schistosomiasis. Available online: https://who.int/news-room/fact-sheets/detail/schistosomiasis (accessed on 25 April 2022).
- Cort, W.W. Studies on schistosome dermatitis XI. Status of knowledge after more than twenty years. Am. J. Hyg. 1950, 52, 251–307. [Google Scholar] [CrossRef] [PubMed]
- Blankespoor, H.D.; Reimink, R.L. The control of swimmer’s itch in Michigan: Past, present, and future. Mich. Acad. 1991, 24, 7–23. [Google Scholar]
- Froelich, K.; Reimink, R.L.; Rudko, S.P.; VanKempen, A.P.; Hanington, P.C. Evaluation of targeted copper sulfate (CuSO4) application for controlling swimmer’s itch at a freshwater recreation site in Michigan. Parasitol. Res. 2019, 118, 1673–1677. [Google Scholar] [CrossRef] [PubMed]
- Blankespoor, C.L.; Reimink, R.L.; Blankespoor, H.D. Efficacy of Praziquantel in treating natural schistosome infections in common mergansers. J. Parasitol. 2001, 87, 424–426. [Google Scholar] [CrossRef]
- Rudko, S.P.; McPhail, B.A.; Reimink, R.L.; Froelich, K.; Turnbull, A.; Hanington, P.C. Non-resident definitive host presence is sufficient to sustain avian schistosome populations. Int. J. Parasitol. 2022, 52, 305–315. [Google Scholar] [CrossRef]
- Stakoe, J. Aquatic Nuisance Control. 2004. Available online: https://www.legislature.mi.gov/documents/2003-2004/publicact/pdf/2004-PA-0246.pdf (accessed on 5 March 2022).
- Narayanan, J.; Mull, B.J.; Brant, S.V.; Loker, E.S.; Collinson, J.; Secor, W.E.; Hill, V.R. Real-time PCR and sequencing assays for rapid detection and identification of avian schistosomes in environmental samples. Appl. Environ. Microbiol. 2015, 81, 4207–4215. [Google Scholar] [CrossRef] [Green Version]
- Horák, P.; Dvořák, J.; Kolářová, L.; Trefil, L. Trichobilharzia regenti, a pathogen of the avian and mammalian central nervous systems. Parasitology 1999, 119, 577–581. [Google Scholar] [CrossRef]
- Macháček, T.; Leontovyč, R.; Šmídová, B.; Majer, M.; Vondráček, O.; Petrásek, T.; Horák, P. Mechanisms of the host immune response and helminth-induced pathology during Trichobilharzia regenti (Schistosomatidae) neuroinvasion in mice. PLoS Pathog. 2022, 18, e1010302. [Google Scholar] [CrossRef]
- Muhoho, N.D.; Katsumata, T.; Kimura, E.; Migwi, D.K.; Mutua, W.R.; Kiliku, F.M.; Habe, S.; Aoki, Y. Cercarial density in the river of an endemic area of schistosomiasis haematobia in Kenya. Am. J. Trop. Med. Hyg. 1997, 57, 162–167. [Google Scholar] [CrossRef] [Green Version]
- Born-Torrijos, A.; Poulin, R.; Raga, J.A.; Holzer, A.S. Estimating trematode prevalence in snail hosts using a single-step duplex PCR: How badly does cercarial shedding underestimate infection rates? Parasit. Vectors 2014, 7, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Rudko, S.P.; Reimink, R.L.; Froelich, K.; Gordy, M.A.; Blankespoor, C.L.; Hanington, P.C. Use of qPCR-based cercariometry to assess swimmer’s itch in recreational lakes. EcoHealth 2018, 15, 827–839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rudko, P.S.; Turnbull, A.; Reimink, L.R.; Froelich, K.; Hanington, C.P. Species-specific qPCR assays allow for high-resolution population assessment of four species avian schistosome that cause swimmer’s itch in recreational lakes. Int. J. Parasitol. Parasites Wildl. 2019, 9, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Gordy, M.A.; Kish, L.; Tarrabain, M.; Hanington, P.C. A comprehensive survey of larval digenean trematodes and their snail hosts in central Alberta, Canada. Parasitol. Res. 2016, 115, 3867–3880. [Google Scholar] [CrossRef] [PubMed]
- Curtis, L.A.; Hubbard, K.M. Trematode infections in a gastropod host misrepresented by observing shed cercariae. J. Exp. Mar. Biol. Ecol. 1990, 143, 131–137. [Google Scholar] [CrossRef]
- Ouma, J.H.; Sturrock, R.F.; Klumpp, R.K.; Kariuki, H.C. A comparative evaluation of snail sampling and cercariometry to detect Schistosoma mansoni transmission in a large-scale, longitudinal field-study in Machakos, Kenya. Parasitology 1989, 99, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Rowan, W.B. A simple device for determining population density of Schistosoma mansoni cercariae in infected waters. J. Parasitol. 1957, 43, 696–697. [Google Scholar] [CrossRef]
- Sandt, D.G. Direct filtration for recovery of Schistosoma mansoni cercariae in the field. Bull. World Health Organ. 1973, 48, 27–34. [Google Scholar]
- Théron, A. A differential filtration technique for the measurement of schistosome cercarial densities in standing waters. Bull. World Health Organ. 1979, 57, 971–975. [Google Scholar]
- Kloos, H.; Gardiner, C.H.; Selim, A.; Higashi, G.I. Laboratory and field evaluation of a direct filtration technique for recovery of schistosome cercariae. Am. J. Trop. Med. Hyg. 1982, 31, 122–127. [Google Scholar] [CrossRef]
- Sato, K.; Noda, S.; Miguwe, D.K. Epidemiological studies on Schistosoma haematobium infection in coastal area, Kenya-cercarial density at water contact points and identification of species of cercariae. Trop. Med. 1985, 27, 197–202. [Google Scholar]
- Upatham, E.S. Dispersion of St. Lucian Schistosoma mansoni cercariae in natural standing and running waters determined by cercaria counts and mouse exposure. Ann. Trop. Med. Parasitol. 1974, 68, 343–352. [Google Scholar] [CrossRef] [PubMed]
- Prentice, M.A.; Ouma, J.H. Field comparison of mouse immersion and cercariometry for assessing the transmission potential of water containing cercariae of Schistosoma mansoni. Ann. Trop. Med. Parasitol. 1984, 78, 169–172. [Google Scholar] [CrossRef] [PubMed]
- Kimura, E.; Uga, S.; Migwi, D.K.; Mutua, W.R.; Kiliku, F.M.; Muhoho, N.D. Hourly change in cercarial densities of Schistosoma haematobium and S. bovis at different depths in the water and distances from the shore of a dam in Kwale District, Kenya. Ann. Trop. Med. Parasitol. 1994, 45, 112–114. [Google Scholar]
- Sato, M.O.; Rafalimanantsoa, A.; Ramarokoto, C.; Rahetilahy, A.M.; Ravoniarimbinina, P.; Kawai, S.; Minamoto, T.; Sato, M.; Kirinoki, M.; Rasolofo, V.; et al. Usefulness of environmental DNA for detecting Schistosoma mansoni occurrence sites in Madagascar. J. Infect. Dis. 2018, 76, 130–136. [Google Scholar] [CrossRef] [Green Version]
- Klock, J.W. A method for the direct quantitative recovery of Schistosoma mansoni cercariae from natural waters of Puerto Rico. Bull. World Health Organ. 1961, 25, 738–740. [Google Scholar]
- Sandt, D.G. Evaluation of an overlay technique for the recovery of Schistosoma mansoni cercariae. Bull. World Health Organ. 1972, 47, 125–127. [Google Scholar]
- Barrett, P.D.; Ellison, I.R. A continuous flow centrifuge for testing the presence of Bilharzia cercariae in water. Cent. Afr. J. Med. 1965, 11, 338–340. [Google Scholar]
- Olivier, L.J. A continuous-flow centrifuge for concentration of schistosome cercariae. Am. J. Trop. Med. Hyg. 1966, 15, 875–881. [Google Scholar] [CrossRef]
- Butler, J.M.J.; Ferguson, F.F.; Palmer, J.R. New field device for quantitative recovery of Schistosoma mansoni cercariae. Public Health Rep. 1967, 82, 250–252. [Google Scholar] [CrossRef] [Green Version]
- Worrell, C.; Xiao, N.; Vidal, J.E.; Chen, L.; Zhong, B.; Remais, J. Field detection of Schistosoma japonicum cercariae in environmental water samples by quantitative PCR. Appl. Environ. Microbiol. 2011, 77, 2192–2195. [Google Scholar] [CrossRef] [Green Version]
- Sengupta, M.E.; Hellström, M.; Kariuki, H.C.; Olsen, A.; Thomsen, P.F.; Mejer, H.; Willerslev, E.; Mwanje, M.T.; Madsen, H.; Kristensen, T.K.; et al. Environmental DNA for improved detection and environmental surveillance of schistosomiasis. PNAS 2019, 116, 8931–8940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alzaylaee, H.; Collins, R.A.; Shechonge, A.; Ngatunga, B.P.; Morgan, E.R.; Genner, M.J. Environmental DNA-based xenomonitoring for determining Schistosoma presence in tropical freshwaters. Parasit. Vectors 2020, 13, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Kane, R.A.; Stothard, J.R.; Rollinson, D.; Leclipteux, T.; Evraerts, J.; Standley, C.J.; Allan, F.; Betson, M.; Kaba, R.; Mertens, P.; et al. Detection and quantification of schistosome DNA in freshwater snails using either fluorescent probes in real-time PCR or oligochromatographic dipstick assays targeting the ribosomal intergenic spacer. Acta. Trop. 2013, 128, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Hertel, J.; Hamburger, J.; Haberl, B.; Haas, W. Detection of bird schistosomes in lakes by PCR and filter-hybridization. Exp. Parasitol. 2002, 101, 57–63. [Google Scholar] [CrossRef]
- Aoki, Y.; Sato, K.; Muhoho, N.D.; Noda, S.I.; Kimura, E. Cercariometry for detection of transmission sites for schistosomiasis. Parasitol. Int. 2003, 52, 403–408. [Google Scholar] [CrossRef]
- Prentice, M.A. A field-evolved differential filtration method for recovery of schistosome cercariae. Ann. Trop. Med. Parasitol. 1984, 78, 117–127. [Google Scholar] [CrossRef]
- Barber, K.E.; Mkoji, G.M.; Loker, E. PCR-RFLP analysis of the ITS2 region to identify Schistosoma haematobium and S. bovis from Kenya. Am. J. Trop. Med. Hyg. 2000, 62, 434–440. [Google Scholar] [CrossRef] [Green Version]
- Théron, A. Cercariometry and the epidemiology of schistosomiasis. Parasitol. Today 1986, 2, 61–63. [Google Scholar] [CrossRef]
- Brackett, S. Studies on schistosome dermatitis VI. Notes on the behavior of schistosome cercariae. Am. J. Hyg. 1940, 31, 64–73. [Google Scholar] [CrossRef]
- Hamburger, J.; He-Na Xin, X.Y.; Ramzy, R.M.; Jourdane, J.; Ruppel, A. A polymerase chain reaction assay for detecting snails infected with Bilharzia parasites (Schistosoma mansoni) from very early prepatency. Am. J. Trop. Med. Hyg. 1998, 59, 872–876. [Google Scholar] [CrossRef]
- Hamburger, J.; Yu-Xin, X.; Ramzy, R.M.; Jourdane, J.; Ruppel, A. Development and laboratory evaluation of a polymerase chain reaction for monitoring Schistosoma mansoni infestation of water. Am. J. Trop. Med. Hyg. 1998, 59, 468–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abath, F.G.C.; do Vale Gomes, A.L.; Melo, F.L.; Barbosa, C.S.; Werkhauser, R.P. Molecular approaches for the detection of Schistosoma mansoni: Possible applications in the detection of snail infection, monitoring of transmission sites, and diagnosis of human infection. Mem. Inst. Oswaldo. Cruz. 2006, 101, 145–148. [Google Scholar] [CrossRef] [PubMed]
- USEPA. Method 1611: Enterococci in Water by TaqMan® Quantitative Polymerase Chain Reaction (qPCR) Assay; U.S. Environmental Protection Agency: Washington, DC, USA, 2012; p. 56.
- Wymer, L.J.; Brenner, K.P.; Martinson, J.W.; Stutts, W.R.; Schaub, S.A.; Dufour, A.P. The EMPACT Beaches Project: Results from a Study on Microbiological Monitoring in Recreational Waters; U.S. Environmental Protection Agency: Cincinnati, OH, USA, 2005; pp. 1–85.
- Zhang, Q.; Gallard, J.; Wu, B.; Hardwood, V.J.; Sadowsky, M.J.; Hamilton, K.A.; Ahmed, W. Synergy between quantitative microbial source tracking (qMST) and quantitative microbial risk assessment (QMRA): A review and prospectus. Environ. Int. 2019, 130, 104703. [Google Scholar] [CrossRef] [PubMed]
- Brant, S.V.; Loker, E.S. Molecular systematics of the avian schistosome genus Trichobilharzia (Trematoda: Schistosomatidae) in North America. J. Parasitol. 2009, 95, 941–963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, N.E.; Blair, D.; Brant, S.V. Diversity of Trichobilharzia in New Zealand with a new species and a redescription, and their likely contribution to cercarial dermatitis. Parasitology 2022, 149, 380–395. [Google Scholar] [CrossRef]
- Cort, W.W. Schistosome dermatitis in the United States (Michigan). JAMA 1928, 90, 1027–1029. [Google Scholar] [CrossRef]
- Cort, W.W. Further observations on schistosome dermatitis in the United States (Michigan). JAMA 1928, 68, 388. [Google Scholar] [CrossRef]
- Jarcho, S.; van Burkalow, A. A geographical study of “swimmer’s itch” in the United States and Canada. Geogr. Rev. 1952, 42, 212–226. [Google Scholar] [CrossRef]
- Levy, G.F.; Folstad, J.W. Swimmer’s itch. Environ. Sci. Policy Sustain. Dev. 1969, 11, 14–21. [Google Scholar] [CrossRef]
- Keas, B.E.; Blankespoor, H.D. The prevalence of cercariae from Stagnicola emarginata (Lymnaeidae) over 50 years in northern Michigan. J. Parasitol. 1997, 83, 536–540. [Google Scholar] [CrossRef]
- Lindblade, K.A. The epidemiology of cercarial dermatitis and its association with limnological characteristics of a northern Michigan lake. J. Parasitol. 1998, 84, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Verbrugge, L.M.; Rainey, J.J.; Reimink, R.L.; Blankespoor, H.D. Prospective study of swimmer’s itch incidence and severity. J. Parasitol. 2004, 90, 697–704. [Google Scholar] [CrossRef] [PubMed]
- McPhail, B.A.; Rudko, S.P.; Turnbull, A.; Gordy, M.A.; Reimink, R.L.; Clyde, D.; Froelich, K.; Brant, S.V.; Hanington, P.C. Evidence of a putative novel species of avian schistosome infecting Planorbella Trivolvis. J. Parasitol. 2021, 107, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Sckrabulis, J.P.; Flory, A.R.; Raffel, T.R. Direct onshore wind predicts daily swimmer’s itch (avian schistosome) incidence at a Michigan beach. Parasitology 2020, 147, 431–440. [Google Scholar] [CrossRef]
- Bass, D.; Stentiford, G.D.; Littlewood, D.T.J.; Hartikainen, H. Diverse applications of environmental DNA methods in parasitology. Trends Parasitol. 2015, 31, 499–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huver, J.R.; Koprivnikar, J.; Johnson, P.T.J.; Whyard, S. Development and application of an eDNA method to detect and quantify a pathogenic parasite in aquatic ecosystems. Ecol. Appl. 2015, 25, 991–1002. [Google Scholar] [CrossRef]
- Barnes, M.A.; Turner, C.R.; Jerde, C.L.; Renshaw, M.A.; Chadderton, W.L.; Lodge, D.M. Environmental conditions influence eDNA persistence in aquatic systems. Environ. Sci. Technol. 2014, 48, 1819–1827. [Google Scholar] [CrossRef]
- McManus, D.P.; Gordon, C.; Weerakoon, K.G.A.D. Testing of water samples for environmental DNA as a surveillance tool to assess the risk of schistosome infection in a locality. J. Infect. Dis. 2018, 76, 128–129. [Google Scholar] [CrossRef] [Green Version]
- Sturrock, R.F. Snail collection to detect schistosome transmission sites. Parasitol. Today 1986, 2, 59–61. [Google Scholar] [CrossRef]
- Rudko, S.P.; Reimink, R.L.; Peter, B.; White, J.; Hanington, P.C. Democratizing water monitoring: Implementation of a community-based qPCR monitoring program for recreational water hazards. PLoS ONE 2020, 15, e0229701. [Google Scholar] [CrossRef]
- Inobaya, M.T.; Olveda, R.M.; Chau, T.N.P.; Olveda, D.U.; Ross, A.G.P. Prevention and control of schistosomiasis: A current perspective. Res. Rep. Trop. Med. 2014, 5, 65–75. [Google Scholar] [CrossRef] [Green Version]
- Sah, V.K.; Wang, L.; Min, X.; Rizal, R.; Feng, Z.; Ke, Z.; Deng, M.; Li, L.; Li, H. Human schistosomiasis: A diagnostic imaging focused review of a neglected disease. Radiol. Infect. Dis. 2015, 2, 150–157. [Google Scholar] [CrossRef] [Green Version]
- Leighton, B.J.; Zervos, S.; Webster, J.M. Ecological factors in schistosome transmission, and an environmentally benign method for controlling snails in a recreational lake with a record of schistosome dermatitis. Parasitol. Int. 2000, 49, 9–17. [Google Scholar] [CrossRef]
- Horák, P.; Kolářová, L.; Dvořák, J. Trichobilharzia regenti n. sp. (Schistosomatidae, Bilharziellinae), a new nasal schistosome from Europe. Parasite 1998, 5, 349–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McPhail, B.A.; Froelich, K.; Reimink, R.L.; Hanington, P.C. Simplifying Schistosome Surveillance: Using Molecular Cercariometry to Detect and Quantify Cercariae in Water. Pathogens 2022, 11, 565. https://doi.org/10.3390/pathogens11050565
McPhail BA, Froelich K, Reimink RL, Hanington PC. Simplifying Schistosome Surveillance: Using Molecular Cercariometry to Detect and Quantify Cercariae in Water. Pathogens. 2022; 11(5):565. https://doi.org/10.3390/pathogens11050565
Chicago/Turabian StyleMcPhail, Brooke A., Kelsey Froelich, Ronald L. Reimink, and Patrick C. Hanington. 2022. "Simplifying Schistosome Surveillance: Using Molecular Cercariometry to Detect and Quantify Cercariae in Water" Pathogens 11, no. 5: 565. https://doi.org/10.3390/pathogens11050565
APA StyleMcPhail, B. A., Froelich, K., Reimink, R. L., & Hanington, P. C. (2022). Simplifying Schistosome Surveillance: Using Molecular Cercariometry to Detect and Quantify Cercariae in Water. Pathogens, 11(5), 565. https://doi.org/10.3390/pathogens11050565