Antimicrobial Activity of the Iron-Chelator, DIBI, against Multidrug-Resistant Canine Methicillin-Susceptible Staphylococcus pseudintermedius: A Preliminary Study of Four Clinical Strains
Abstract
:1. Introduction
2. Results
2.1. S. pseudintermedius Identification
2.2. Phenotypic and Genotypic Characterization of S. pseudintermedius Antibiotic Resistance Profiles
2.3. Susceptibility of S. pseudintermedius Strains to DIBI
3. Discussion
4. Materials and Methods
4.1. Identification of S. pseudintermedius Strains
4.2. Antibiotic Susceptibility Testing of S. pseudintermedius Strains
4.3. Genotypic Characterization of Antibiotic Resistance
4.4. In Vitro Susceptibility of Clinical Canine S. pseudintermedius Strains to DIBI
4.5. DIBI Minimum Inhibitory Concentration (MIC) Determinations
5. Conclusions and Future Investigations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Martino, L.; Nocera, F.P.; Mallardo, K.; Nizza, S.; Masturzo, E.; Fiorito, F.; Iovane, G.; Catalanotti, P. An update on microbiological causes of canine otitis externa in Campania Region, Italy. Asian Pac. J. Trop. Biomed. 2016, 6, 384–389. [Google Scholar] [CrossRef] [Green Version]
- Menandro, M.L.; Dotto, G.; Mondin, A.; Martini, M.; Ceglie, L.; Pasotto, D. Prevalence and characterization of methicillin-resistant Staphylococcus pseudintermedius from symptomatic companion animals in Northern Italy: Clonal diversity and novel sequence types. Comp. Immunol. Microbiol. Infect. Dis. 2019, 66, 101331. [Google Scholar] [CrossRef] [PubMed]
- Lord, J.; Millis, N.; Duckett Jones, R.; Johnson, B.; Kania, S.A.; Odoi, A. Patterns of antimicrobial, multidrug and methicillin resistance among Staphylococcus spp. isolated from canine specimens submitted to a diagnostic laboratory in Tennessee, USA: A descriptive study. BMC Vet. Res. 2022, 18, 91. [Google Scholar] [CrossRef]
- Nocera, F.P.; Meroni, G.; Fiorito, F.; De Martino, L.; Martino, P.A. Occurrence and antimicrobial susceptibility patterns of canine Staphylococcus pseudintermedius strains isolated from two different Italian university veterinary hospitals. Vet. Ital. 2020, 56, 263–269. [Google Scholar] [CrossRef]
- Frosini, S.M.; Bond, R.; McCarthy, A.J.; Feudi, C.; Schwarz, S.; Lindsay, J.A.; Loeffler, A. Genes on the Move: In vitro transduction of antimicrobial resistance genes between human and canine staphylococcal pathogens. Microorganisms 2020, 8, 2031. [Google Scholar] [CrossRef] [PubMed]
- De Filippis, A.; Nocera, F.P.; Tafuri, S.; Ciani, F.; Staropoli, A.; Comite, E.; Bottiglieri, A.; Gioia, L.; Lorito, M.; Woo, S.L.; et al. Antimicrobial activity of harzianic acid against Staphylococcus pseudintermedius. Nat. Prod. Res. 2021, 35, 5440–5445. [Google Scholar] [CrossRef]
- Nocera, F.P.; Mancini, S.; Najar, B.; Bertelloni, F.; Pistelli, L.; De Filippis, A.; Fiorito, F.; De Martino, L.; Fratini, F. Antimicrobial activity of some essential oils against methicillin-susceptible and methicillin-resistant Staphylococcus pseudintermedius-associated pyoderma in dogs. Animals 2020, 10, 1782. [Google Scholar] [CrossRef]
- Buommino, E.; Vollaro, A.; Nocera, F.P.; Lembo, F.; Della Greca, M.; De Martino, L.; Catania, M.R. Synergistic effect of abietic acid with oxacillin against methicillin-resistant Staphylococcus pseudintermedius. Antibiotics 2021, 10, 80. [Google Scholar] [CrossRef]
- Wang, C.H.; Hsieh, Y.H.; Powers, Z.M.; Kao, C.Y. Defeating antibiotic-resistant bacteria: Exploring alternative therapies for a post-antibiotic era. Int. J. Mol. Sci. 2020, 21, 1061. [Google Scholar] [CrossRef] [Green Version]
- Douafer, H.; Andrieu, V.; Phanstiel IV, O.; Brunel, J.M. Antibiotic adjuvants: Make antibiotics great again! J. Med. Chem. 2019, 62, 8665–8681. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, J.; Castro, I.; Calabuig, E.; Salavert, M. Non-antibiotic treatment for infectious diseases. Rev. Esp. Quimioter. 2017, 1, 66–71. [Google Scholar]
- Holbein, B.E.; Ang, M.T.C.; Allan, D.S.; Chen, W.; Lehmann, C. Iron-withdrawing anti-infectives for new host-directed therapies based on iron dependence, the Achilles’ heel of antibiotic-resistant microbes. Environ. Chem. Lett. 2021, 19, 2789–2808. [Google Scholar] [CrossRef]
- Ang, M.T.C.; Gumbau-Brisa, R.; McDonald, R.; Ferguson, M.J.; Holbein, B.E.; Bierenstiel, M. DIBI, a 3-hydroxypyrin-4-one chelator iron-binding polymer with enhanced antimicrobial activity. MedChemComm 2018, 9, 1206–1212. [Google Scholar] [CrossRef] [PubMed]
- Parquet, M.D.C.; Savage, K.A.; Allan, D.S.; Davison, R.J.; Holbein, B.E. Novel iron-chelator DIBI inhibits Staphylococcus aureus growth, suppresses experimental MRSA infection in mice and enhances the activities of diverse antibiotics in vitro. Front. Microbiol. 2018, 9, 1811. [Google Scholar] [CrossRef] [Green Version]
- Parquet, M.D.C.; Savage, K.A.; Allan, D.S.; Ang, M.T.C.; Chen, W.; Logan, S.M.; Holbein, B.E. Antibiotic-resistant Acinetobacter baumannii is susceptible to the novel iron-sequestering anti-infective DIBI in vitro and in experimental pneumonia in mice. Antimicrob. Agents Chemother. 2019, 63, e00855-1. [Google Scholar] [CrossRef] [Green Version]
- Savage, K.A.; Parquet, M.D.C.; Allas, D.S.; Davison, P.J.; Holbein, B.E.; Lilly, E.A.; Fidel, P.L., Jr. Iron restriction to clinical isolates of Candida albicans by the novel chelator DIBI inhibits growth and increases sensitivity to azoles in vitro and in vivo in a murine model experimental vaginitis. Antimicrob. Agents Chemother. 2018, 6, e02576-17. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.T.; Amador, S.; McGonagle, C.J.; Needle, D.; Gibson, R.; Andam, C.P. Population genomics of Staphylococcus pseudintermedius in companion animals in the United States. Commun. Biol. 2020, 3, 282. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Ripa, L.; Simón, C.; Ceballos, S.; Ortega, C.; Zarazaga, M.; Torres, C.; Gómez-Sanz, E.S. pseudintermedius and S. aureus lineages with transmission ability circulate as causative agents of infections in pets for years. BMC Vet. Res. 2021, 17, 42. [Google Scholar] [CrossRef]
- Holmstrom, T.; Adib David, L.; da Motta, C.C.; Hebert dos Santos, T.; da Silva Coelho, I.; de Mattos de Oliveira Coelho, S.; Araújo de Melo, D.; Moreira Soares de Souza, M. Methicillin-resistant Staphylococcus pseudintermedius: An underestimated risk at pet clinic. Braz. J. Vet. Med. 2021, 42, e107420. [Google Scholar] [CrossRef]
- Haenni, M.; de Moraes, N.A.; Châtre, P.; Médaille, C.; Moodley, A.; Madec, J.Y. Characterisation of clinical canine meticillin-resistant and meticillin-susceptible Staphylococcus pseudintermedius in France. J. Glob. Antimicrob. Resist. 2014, 2, 119–123. [Google Scholar] [CrossRef] [PubMed]
- Moodley, A.; Damborg, P.; Nielsen, S.S. Antimicrobial resistance in methicillin susceptible and methicillin resistant Staphylococcus pseudintermedius of canine origin: Literature review from 1980 to 2013. Vet. Microbiol. 2014, 171, 337–341. [Google Scholar] [CrossRef]
- Nocera, F.P.; Parisi, A.; Corrente, M.; De Martino, L. Evidence of new sequence types of methicillin-resistant Staphylococcus pseudintermedius in Italy. Pol. J. Vet. Sci. 2020, 23, 465–468. [Google Scholar] [CrossRef]
- Chirollo, C.; Nocera, F.P.; Piantedosi, D.; Fatone, G.; Della Valle, G.; De Martino, L.; Cortese, L. Data on before and after the traceability system of Veterinary antimicrobial prescriptions in small animals at the University Veterinary Teaching Hospital of Naples. Animals 2021, 11, 913. [Google Scholar] [CrossRef] [PubMed]
- Nocera, F.P.; Ambrosio, M.; Fiorito, F.; Cortese, L.; De Martino, L. On Gram-positive- and Gram- negative-bacteria-associated canine and feline skin infections: A 4-year retrospective study of the University Veterinary Microbiology Diagnostic Laboratory of Naples, Italy. Animals 2021, 11, 1603. [Google Scholar] [CrossRef]
- Meroni, G.; Soares Filipe, J.F.; Drago, L.; Martino, P.A. Investigation on antibiotic-resistance, biofilm formation and virulence factors in multi drug resistant and non multi drug resistant Staphylococcus pseudintermedius. Microorganisms 2019, 7, 702. [Google Scholar] [CrossRef] [Green Version]
- Coraça-Huber, D.C.; Dichtl, S.; Steixner, S.; Nogler, M.; Weiss, G. Iron chelation destabilizes bacterial biofilms and potentiates the antimicrobial activity of antibiotics against coagulase-negative Staphylococci. Pathog. Dis. 2018, 76, fty052. [Google Scholar] [CrossRef] [PubMed]
- Woods, C.W.; Huang, V.; VanDenBerg, C.M.; Pennington, L.; Thomas, K.; Keenan, L.; Lemus, S.; Cordes, B.; Robbins, E.; Harrison, A.; et al. Clinical Evaluation of DIBI, an Iron-Sequestering Anti-Infective Polymer in Canine Otitis Externa Natural Infection; Midwestern University College of Pharmacy-Glendale Campus: Glendale, AZ, USA, 2022; to be submitted. [Google Scholar]
- Sasaki, T.; Tsubakishita, S.; Tanaka, Y.; Sakusabe, A.; Ohtsuka, M.; Hirotaki, S.; Hirotaki, S.; Kawakami, T.; Fukata, T.; Hiramatsu, K. Multiplex-PCR method for species identification of coagulase-positive staphylococci. J. Clin. Microbiol. 2010, 48, 765–769. [Google Scholar] [CrossRef] [Green Version]
- Kmieciak, W.; Szewczyk, E.M.; Ciszewski, M. Searching for beta-haemolysin hlb gene in Staphylococcus pseudintermedius with species-specific primers. Curr. Microbiol. 2016, 73, 148–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CLSI. Performance Standard for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 3rd ed.; Clinical Laboratory and Standards Institute: Wayne, PA, USA, 2015. [Google Scholar]
- EUCAST. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 7.1. 2017. Available online: http://www.eucast.org (accessed on 10 March 2017).
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multi-drug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [Green Version]
- Chovanová, R.; Mikulášová, M.; Vaverková, Š. Modulation of mecA gene expression by essential oil from Salvia sclarea and synergism with oxacillin in methicillin resistant Staphylococcus epidermidis carrying different types of staphylococcal chromosomal cassette mec. Int. J. Microbiol. 2016, 2016, 6475837. [Google Scholar] [CrossRef] [Green Version]
- Ullah, F.; Malik, S.A.; Ahmed, J.; Ullah, F.; Shah, S.M.; Ayaz, M.; Hussain, S.; Khatoon, L. Investigation of the genetic basis of tetracycline resistance in Staphylococcus aureus from Pakistan. Trop. J. Pharm. Res. 2012, 11, 925–931. [Google Scholar] [CrossRef] [Green Version]
- Sutcliffe, J.; Tait-Kamradt, A.; Wondrack, L. Streptococcus pneumoniae and Streptococcus pyogenes resistant to macrolides but sensitive to clindamycin: A common resistance pattern mediated by an efflux system. Antimicrob. Agents Chemother. 1996, 40, 1817–1824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zou, L.K.; Wang, H.N.; Zeng, B.; Li, J.N.; Li, X.T.; Zhang, A.Y.; Zhou, Y.S.; Yang, X.; Xu, C.W.; Xia, Q.Q. Erythromycin resistance and virulence genes in Enterococcus feacalis from swine in China. New Microbiol. 2011, 34, 73–80. [Google Scholar] [PubMed]
- Arnold, C.E.; Bordin, A.; Lawhon, S.D.; Libal, M.C.; Bernstein, L.R.; Cohen, N.D. Antimicrobial activity of gallium maltolate against Staphylococcus aureus and methicillin-resistant S. aureus and Staphylococcus pseudintermedius: An in vitro study. Vet. Microbiol. 2012, 155, 389–394. [Google Scholar] [CrossRef] [PubMed]
Strain | Key Antibiotic Resistance | mecA Gene Detection | erm and tet Genes | DIBI MIC µg/mL |
---|---|---|---|---|
3 | AMC, AMP, CD E, P, S, SXT, TE | - | ermB, tetK, tetM | 2 |
7 | AMC, AMP, E, CN, P, S, SXT, TE, TOB | - | ermB, tetK, tetM | 2 |
8 | AMC, AMP, P, SXT, TE | - | tetK, tetM | 2 |
18 | AMC, AMP, E, IMI, P, S, TE | - | ermB, tetK, tetM | 2 |
Gene | Primer Sequences (5′–3′ Sense and Antisense) | Amplicon Size (bp) | Amplification Program | Reference |
---|---|---|---|---|
nuc | F: TRGGCAGTAGGATTCGTTAA R: CTTTTGTGCTYCMTTTTGG | 926 | 94 °C 5 min; 94 °C 30 s, 58 °C 60 s, 72 °C 90 s, for 30 cycles; 72 °C 5 min. | [28] |
hlb | F: GACGAAAATCAAGCGGAA R: TCTAAATACTCTGGCGCAC | 734 | 94 °C 2:30 min; 94 °C 30 s, 56 °C 30 s, 72 °C 1 min, for 30 cycles; 72 °C 10 min. | [29] |
Gene | Primer Sequences (5′–3′ Sense and Antisense) | Amplicon Size (bp) | Amplification Programs | References |
---|---|---|---|---|
mecA | F: TCCACCCTCAAACAGGTGAA R: TGGAACTTGTTGAGCAGAGGT | 139 bp | 94 °C 5 min; 94 °C 30 s, 55 °C 40 s, 72 °C 30 s, for 30 cycles; 72 °C 5 min | [33] |
tetK | F: GTAGCGACAATAGGTAATAGT R: GTAGTGACAATAAACCTCCTA | 360 bp | 94 °C 15 s; 94 °C 1 min, 52 °C 1 min, 72 °C 90 s, for 30 cycles; 72 °C 5 min | |
tetM | F: AGTTTTAGCTCATGTTGATG R: TCCGACTATTTAGACGACGG | 1862 bp | [34] | |
ermA | F: TCTAAAAGCATGTAAAAGAA R: CTTCGATAGTTTATTAATATTAGT | 645 bp | 94 °C 2 min; 94 °C 1 min, 55 °C 1 min, 72 °C 90 s, for 30 cycles; 72 °C 5 min | |
ermB | F: GAAAAGGTACTCAACCAAATA R: AGTAACGGTACTTAAATTGTTTAC | 639 bp | [35,36] | |
ermC | F: TCAAAACATAATATAGATAAA R: GCTAATATTGTTTAAATCGTCAAT | 642 bp |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nocera, F.P.; Iovane, G.; De Martino, L.; Holbein, B.E. Antimicrobial Activity of the Iron-Chelator, DIBI, against Multidrug-Resistant Canine Methicillin-Susceptible Staphylococcus pseudintermedius: A Preliminary Study of Four Clinical Strains. Pathogens 2022, 11, 656. https://doi.org/10.3390/pathogens11060656
Nocera FP, Iovane G, De Martino L, Holbein BE. Antimicrobial Activity of the Iron-Chelator, DIBI, against Multidrug-Resistant Canine Methicillin-Susceptible Staphylococcus pseudintermedius: A Preliminary Study of Four Clinical Strains. Pathogens. 2022; 11(6):656. https://doi.org/10.3390/pathogens11060656
Chicago/Turabian StyleNocera, Francesca Paola, Giuseppe Iovane, Luisa De Martino, and Bruce E. Holbein. 2022. "Antimicrobial Activity of the Iron-Chelator, DIBI, against Multidrug-Resistant Canine Methicillin-Susceptible Staphylococcus pseudintermedius: A Preliminary Study of Four Clinical Strains" Pathogens 11, no. 6: 656. https://doi.org/10.3390/pathogens11060656
APA StyleNocera, F. P., Iovane, G., De Martino, L., & Holbein, B. E. (2022). Antimicrobial Activity of the Iron-Chelator, DIBI, against Multidrug-Resistant Canine Methicillin-Susceptible Staphylococcus pseudintermedius: A Preliminary Study of Four Clinical Strains. Pathogens, 11(6), 656. https://doi.org/10.3390/pathogens11060656