A Machine Learning Model for Food Source Attribution of Listeria monocytogenes
Abstract
:1. Introduction
2. Results
2.1. Predictive Model
2.2. Source Attribution of Human Listeriosis Cases
2.3. Important Predictor Genes
3. Discussion
3.1. Source Attribution Model
3.2. Important Top Twenty Predictor Genes
4. Materials and Methods
4.1. Data Description
4.2. Bioinformatics Analysis
4.3. Source Attribution Modeling
4.3.1. Feature Reduction
4.3.2. Machine Learning
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- CDC. CDC Estimates of Foodborne Illness in the United States; CDC: Atlanta, GA, USA, 2018; Volume 68.
- Scallan, E.; Hoekstra, R.M.; Angulo, F.J.; Tauxe, R.V.; Widdowson, M.A.; Roy, S.L.; Jones, J.L.; Griffin, P.M. Foodborne illness acquired in the United States-Major pathogens. Emerg. Infect. Dis. 2011, 17, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Gourama, H. Foodborne Pathogens. In Food Engineering Series; Springer: Berlin/Heidelberg, Germany, 2020; pp. 25–49. [Google Scholar]
- Dewey-Mattia, D.; Manikonda, K.; Hall, A.J.; Wise, M.E.; Crowe, S.J. Surveillance for foodborne disease outbreaks—United States, 2009–2015. MMWR Surveill. Summ. 2018, 67, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Painter, J.A.; Hoekstra, R.M.; Ayers, T.; Tauxe, R.V.; Braden, C.R.; Angulo, F.J.; Griffin, P.M. Attribution of foodborne illnesses, hospitalizations, and deaths to food commodities by using outbreak data, United States, 1998–2008. Emerg. Infect. Dis. 2013, 19, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Filipello, V.; Mughini-Gras, L.; Gallina, S.; Vitale, N.; Mannelli, A.; Pontello, M.; Decastelli, L.; Allard, M.W.; Brown, E.W.; Lomonaco, S. Attribution of Listeria monocytogenes human infections to food and animal sources in Northern Italy. Food Microbiol. 2020, 89, 103433. [Google Scholar] [CrossRef]
- Riley, L.W. Extraintestinal foodborne pathogens. Annu. Rev. Food Sci. Technol. 2020, 11, 275–294. [Google Scholar] [CrossRef] [Green Version]
- CDC. Listeria (Listeriosis)|Listeria|CDC. Available online: https://www.cdc.gov/listeria/index.html (accessed on 4 May 2021).
- Chlebicz, A.; Śliżewska, K. Campylobacteriosis, salmonellosis, yersiniosis, and listeriosis as zoonotic foodborne diseases: A review. Int. J. Environ. Res. Public Health 2018, 15, 863. [Google Scholar] [CrossRef] [Green Version]
- Lomonaco, S.; Nucera, D.; Filipello, V. The evolution and epidemiology of Listeria monocytogenes in Europe and the United States. Infect. Genet. Evol. 2015, 35, 172–183. [Google Scholar] [CrossRef]
- Vivant, A.L.; Garmyn, D.; Piveteau, P. Listeria monocytogenes, a down-to-earth pathogen. Front. Cell. Infect. Microbiol. 2013, 3, 87. [Google Scholar] [CrossRef] [Green Version]
- FDA. Get the Facts about Listeria|FDA. Available online: https://www.fda.gov/animal-veterinary/animal-health-literacy/get-facts-about-listeria# (accessed on 7 May 2022).
- Lopez-Valladares, G.; Danielsson-Tham, M.L.; Tham, W. Implicated food products for listeriosis and changes in serovars of Listeria monocytogenes affecting humans in recent decades. Foodborne Pathog. Dis. 2018, 15, 387–397. [Google Scholar] [CrossRef]
- Heredia, N.; García, S. Animals as sources of food-borne pathogens: A review. Anim. Nutr. 2018, 4, 250–255. [Google Scholar] [CrossRef]
- Maćkiw, E.; Korsak, D.; Kowalska, J.; Felix, B.; Stasiak, M.; Kucharek, K.; Postupolski, J. Incidence and genetic variability of Listeria monocytogenes isolated from vegetables in Poland. Int. J. Food Microbiol. 2021, 339, 109023. [Google Scholar] [CrossRef]
- Marik, C.M.; Zuchel, J.; Schaffner, D.W.; Strawn, L.K. Growth and survival of Listeria monocytogenes on intact fruit and vegetable surfaces during postharvest handling: A systematic literature review. J. Food Prot. 2020, 83, 108–128. [Google Scholar] [CrossRef]
- Matthews, K.; Kniel, K.; Montville, T. Food Microbiology: An Introduction; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Batz, M.B.; Doyle, M.P.; Morris, J.G.; Painter, J.; Singh, R.; Tauxe, R.V.; Taylor, M.R.; Wong, D.M.; Food Attribution Working Group. Attributing illness to food. Emerg. Infect. Dis. 2005, 11, 993–999. [Google Scholar] [CrossRef]
- Hoffmann, S.; Maculloch, B.; Batz, M. Economic burden of major foodborne illnesses acquired in the United States. In Economic Cost of Foodborne Illnesses in the United States; EIB-140; U.S. Department of Agriculture, Economic Research Service: Washington, DC, USA, 2015; pp. 1–74. ISBN 9781634836661. Available online: https://www.ers.usda.gov/publications/pub-details/?pubid=43987 (accessed on 7 May 2022).
- Franz, E.; Gras, L.M.; Dallman, T. Significance of whole genome sequencing for surveillance, source attribution and microbial risk assessment of foodborne pathogens. Curr. Opin. Food Sci. 2016, 8, 74–79. [Google Scholar] [CrossRef]
- Pires, S.M.; Evers, E.G.; Van Pelt, W.; Ayers, T.; Scallan, E.; Angulo, F.J.; Havelaar, A.; Hald, T.; Schroeter, A.; Brisabois, A.; et al. Attributing the human disease burden of foodborne infections to specific sources. Foodborne Pathog. Dis. 2009, 6, 417–424. [Google Scholar] [CrossRef] [Green Version]
- Todd, E.C.D.; Notermans, S. Surveillance of listeriosis and its causative pathogen, Listeria monocytogenes. Food Control 2011, 22, 1484–1490. [Google Scholar] [CrossRef]
- de Knegt, L.V.; Pires, S.M.; Löfström, C.; Sørensen, G.; Pedersen, K.; Torpdahl, M.; Nielsen, E.M.; Hald, T. Application of molecular typing results in source attribution models: The case of multiple locus variable number tandem repeat analysis (MLVA) of Salmonella isolates obtained from integrated surveillance in Denmark. Risk Anal. 2016, 36, 571–588. [Google Scholar] [CrossRef]
- Mughini-Gras, L.; Kooh, P.; Augustin, J.C.; David, J.; Fravalo, P.; Guillier, L.; Jourdan-Da-Silva, N.; Thébault, A.; Sanaa, M.; Watier, L.; et al. Source attribution of foodborne diseases: Potentialities, hurdles, and future expectations. Front. Microbiol. 2018, 9, 1983. [Google Scholar] [CrossRef]
- Dingle, K.E.; Colles, F.M.; Wareing, D.R.A.; Ure, R.; Fox, A.J.; Bolton, F.E.; Bootsma, H.J.; Willems, R.J.L.; Urwin, R.; Maiden, M.C.J. Multilocus sequence typing system for Campylobacter jejuni. J. Clin. Microbiol. 2001, 39, 14–23. [Google Scholar] [CrossRef] [Green Version]
- Munck, N.; Njage, P.M.K.; Leekitcharoenphon, P.; Litrup, E.; Hald, T. Application of whole-genome sequences and machine learning in source attribution of Salmonella Typhimurium. Risk Anal. 2020, 40, 1693–1705. [Google Scholar] [CrossRef]
- Sheppard, S.K.; Dallas, J.F.; MacRae, M.; McCarthy, N.D.; Sproston, E.L.; Gormley, F.J.; Strachan, N.J.C.; Ogden, I.D.; Maiden, M.C.J.; Forbes, K.J. Campylobacter genotypes from food animals, environmental sources and clinical disease in Scotland 2005/6. Int. J. Food Microbiol. 2009, 134, 96–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mullner, P.; Spencer, S.E.F.; Wilson, D.J.; Jones, G.; Noble, A.D.; Midwinter, A.C.; Collins-Emerson, J.M.; Carter, P.; Hathaway, S.; French, N.P. Assigning the source of human campylobacteriosis in New Zealand: A comparative genetic and epidemiological approach. Infect. Genet. Evol. 2009, 9, 1311–1319. [Google Scholar] [CrossRef] [PubMed]
- Kurpas, M.; Osek, J.; Moura, A.; Leclercq, A.; Lecuit, M.; Wieczorek, K. Genomic Characterization of Listeria monocytogenes isolated from ready-to-eat meat and meat processing environments in Poland. Front. Microbiol. 2020, 11, 1412. [Google Scholar] [CrossRef] [PubMed]
- Jagadeesan, B.; Baert, L.; Wiedmann, M.; Orsi, R.H. Comparative analysis of tools and approaches for source tracking Listeria monocytogenes in a food facility using whole-genome sequence data. Front. Microbiol. 2019, 10, 947. [Google Scholar] [CrossRef] [Green Version]
- Foley, S.L.; Johnson, T.J.; Ricke, S.C.; Nayak, R.; Danzeisen, J. Salmonella Pathogenicity and host adaptation in chicken-associated serovars. Microbiol. Mol. Biol. Rev. 2013, 77, 582–607. [Google Scholar] [CrossRef] [Green Version]
- Monack, D.M. Salmonella persistence and transmission strategies. Curr. Opin. Microbiol. 2012, 15, 100–107. [Google Scholar] [CrossRef]
- Ching, T.; Himmelstein, D.S.; Beaulieu-Jones, B.K.; Kalinin, A.A.; Do, B.T.; Way, G.P.; Ferrero, E.; Agapow, P.M.; Zietz, M.; Hoffman, M.M.; et al. Opportunities and obstacles for deep learning in biology and medicine. J. R. Soc. Interface 2018, 15, 20170387. [Google Scholar] [CrossRef] [Green Version]
- Baker, R.E.; Peña, J.M.; Jayamohan, J.; Jérusalem, A. Mechanistic models versus machine learning, a fight worth fighting for the biological community? Biol. Lett. 2018, 14, 20170660. [Google Scholar] [CrossRef]
- Alkema, W.; Boekhorst, J.; Wels, M.; Van Hijum, S.A.F.T. Microbial bioinformatics for food safety and production. Brief. Bioinform. 2016, 17, 283–292. [Google Scholar] [CrossRef] [Green Version]
- Tanui, C.K.; Karanth, S.; Njage, P.M.K.; Meng, J.; Pradhan, A.K. Machine learning-based predictive modeling to identify genotypic traits associated with Salmonella enterica disease endpoints in isolates from ground chicken. LWT 2022, 154, 112701. [Google Scholar] [CrossRef]
- Njage, P.M.K.; Henri, C.; Leekitcharoenphon, P.; Mistou, M.Y.; Hendriksen, R.S.; Hald, T. Machine learning methods as a tool for predicting risk of illness applying next-generation sequencing data. Risk Anal. 2019, 39, 1397–1413. [Google Scholar] [CrossRef]
- Lupolova, N.; Dallman, T.J.; Holden, N.J.; Gally, D.L. Erratum: Patchy promiscuity: Machine learning applied to predict the host specificity of Salmonella enterica and Escherichia coli. Microb. Genom. 2018, 4, e000193. [Google Scholar] [CrossRef]
- Karanth, S.; Tanui, C.K.; Meng, J.; Pradhan, A.K. Exploring the predictive capability of advanced machine learning in identifying severe disease phenotype in Salmonella enterica. Food Res. Int. 2022, 151, 110817. [Google Scholar] [CrossRef]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159. [Google Scholar] [CrossRef] [Green Version]
- Fleiss, J.L.; Levin, B.; Paik, M.C. Statistical Methods for Rates and Proportions; Wiley Series in Probability and Statistics; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2003; ISBN 0471526290. [Google Scholar]
- Cabal, A.; Pietzka, A.; Huhulescu, S.; Allerberger, F.; Ruppitsch, W.; Schmid, D. Isolate-based surveillance of Listeria monocytogenes by whole genome sequencing in Austria. Front. Microbiol. 2019, 10, 2282. [Google Scholar] [CrossRef]
- Chen, J.; Karanth, S.; Pradhan, A.K. Quantitative microbial risk assessment for Salmonella: Inclusion of whole genome sequencing and genomic epidemiological studies, and advances in the bioinformatics pipeline. J. Agric. Food Res. 2020, 2, 100045. [Google Scholar] [CrossRef]
- Stekhoven, D.J.; Bühlmann, P. Missforest-Non-parametric missing value imputation for mixed-type data. Bioinformatics 2012, 28, 112–118. [Google Scholar] [CrossRef] [Green Version]
- Kshirsagar, M.; Carbonell, J.; Klein-Seetharaman, J. Techniques to cope with missing data in host-pathogen protein interaction prediction. Bioinformatics 2012, 28, 466–472. [Google Scholar] [CrossRef]
- Zhang, S.; Li, S.; Gu, W.; Den Bakker, H.; Boxrud, D.; Taylor, A.; Roe, C.; Driebe, E.; Engelthaler, D.M.; Allard, M.; et al. Zoonotic source attribution of Salmonella enterica serotype Typhimurium using genomic surveillance data, United States. Emerg. Infect. Dis. 2019, 25, 82–91. [Google Scholar] [CrossRef] [Green Version]
- Mritunjay, S.K.; Kumar, V. Fresh farm produce as a source of pathogens: A review. Res. J. Environ. Toxicol. 2015, 9, 59–70. [Google Scholar] [CrossRef] [Green Version]
- Aureli, P.; Fiorucci, G.C.; Caroli, D.; Marchiaro, G.; Novara, O.; Leone, L.; Salmaso, S. An outbreak of febrile gastroenteritis associated with corn contaminated by Listeria monocytogenes. N. Engl. J. Med. 2000, 342, 1236–1241. [Google Scholar] [CrossRef]
- Angelo, K.M.; Conrad, A.R.; Saupe, A.; Dragoo, H.; West, N.; Sorenson, A.; Barnes, A.; Doyle, M.; Beal, J.; Jackson, K.A.; et al. Multistate outbreak of Listeria monocytogenes infections linked to whole apples used in commercially produced, prepackaged caramel apples: United States, 2014-2015. Epidemiol. Infect. 2017, 145, 848–856. [Google Scholar] [CrossRef] [Green Version]
- Zilelidou, E.A.; Tsourou, V.; Poimenidou, S.; Loukou, A.; Skandamis, P.N. Modeling transfer of Escherichia coli O157: H7 and Listeria monocytogenes during preparation of fresh-cut salads: Impact of cutting and shredding practices. Food Microbiol. 2015, 45, 254–265. [Google Scholar] [CrossRef]
- Norton, D.M.; Braden, C.R. Foodborne listeriosis. In Listeria, Listeriosis, and Food Safety, Third Edition; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2007; pp. 305–356. ISBN 9781420015188. [Google Scholar]
- Mashak, Z.; Banisharif, F.; Banisharif, G.; Reza Pourian, M.; Eskandari, S.; Seif, A.; Safarpoor Dehkordi, F.; Alavi, I. Prevalence of Listeria species and serotyping of Listeria monocytogenes bacteria isolated from seafood samples. Egypt. J. Vet. Sci. 2021, 52, 1–9. [Google Scholar] [CrossRef]
- CDC. National Outbreak Reporting System; CDC: Atlanta, GA, USA, 2019.
- Gil, M.I.; Selma, M.V.; Suslow, T.; Jacxsens, L.; Uyttendaele, M.; Allende, A. Pre- and postharvest preventive measures and intervention strategies to control microbial food safety hazards of fresh leafy vegetables. Crit. Rev. Food Sci. Nutr. 2015, 55, 453–468. [Google Scholar] [CrossRef] [PubMed]
- Osaili, T.M.; Alaboudi, A.R.; Nesiar, E.A. Prevalence of Listeria spp. and antibiotic susceptibility of Listeria monocytogenes isolated from raw chicken and ready-to-eat chicken products in Jordan. Food Control 2011, 22, 586–590. [Google Scholar] [CrossRef]
- Schäfer, D.F.; Steffens, J.; Barbosa, J.; Zeni, J.; Paroul, N.; Valduga, E.; Junges, A.; Backes, G.T.; Cansian, R.L. Monitoring of contamination sources of Listeria monocytogenes in a poultry slaughterhouse. LWT 2017, 86, 393–398. [Google Scholar] [CrossRef]
- Carrasco, E.; Morales-Rueda, A.; García-Gimeno, R.M. Cross-contamination and recontamination by Salmonella in foods: A review. Food Res. Int. 2012, 45, 545–556. [Google Scholar] [CrossRef]
- Bogere, P.; Baluka, A.S. Microbiological quality of meat at the abattoir and butchery levels in Kampala city, Uganda. Internet J. Food Saf. 2014, 16, 29–35. [Google Scholar]
- Lambertz, S.T.; Nilsson, C.; Brådenmark, A.; Sylvén, S.; Johansson, A.; Jansson, L.M.; Lindblad, M. Prevalence and level of Listeria monocytogenes in ready-to-eat foods in Sweden 2010. Int. J. Food Microbiol. 2012, 160, 24–31. [Google Scholar] [CrossRef]
- Matle, I.; Mbatha, K.R.; Lentsoane, O.; Magwedere, K.; Morey, L.; Madoroba, E. Occurrence, serotypes, and characteristics of Listeria monocytogenes in meat and meat products in South Africa between 2014 and 2016. J. Food Saf. 2019, 39, e12629. [Google Scholar] [CrossRef]
- Vitas, A.I.; Garcia-Jalon, V.A.E.I. Occurrence of Listeria monocytogenes in fresh and processed foods in Navarra (Spain). Int. J. Food Microbiol. 2004, 90, 349–356. [Google Scholar] [CrossRef]
- McCarthy, N.D.; Colles, F.M.; Dingle, K.E.; Bagnall, M.C.; Manning, G.; Maiden, M.C.J.; Falush, D. Host-associated genetic import in Campylobacter jejuni. Emerg. Infect. Dis. 2007, 13, 267–272. [Google Scholar] [CrossRef]
- Sheppard, S.K.; Dallas, J.F.; Strachan, N.J.C.; MacRae, M.; McCarthy, N.D.; Wilson, D.J.; Gormley, F.J.; Falush, D.; Ogden, L.D.; Maiden, M.C.J.; et al. Campylobacter genotyping to determine the source of human infection. Clin. Infect. Dis. 2009, 48, 1072–1078. [Google Scholar] [CrossRef] [Green Version]
- Strachan, N.J.C.; Gormley, F.J.; Rotariu, O.; Ogden, I.D.; Miller, G.; Dunn, G.M.; Sheppard, S.K.; Dallas, J.F.; Reid, T.M.S.; Howie, H.; et al. Attribution of campylobacter infections in Northeast Scotland to specific sources by use of multilocus sequence typing. J. Infect. Dis. 2009, 199, 1205–1208. [Google Scholar] [CrossRef] [Green Version]
- Rosner, B.M.; Schielke, A.; Didelot, X.; Kops, F.; Breidenbach, J.; Willrich, N.; Gölz, G.; Alter, T.; Stingl, K.; Josenhans, C.; et al. A combined case-control and molecular source attribution study of human Campylobacter infections in Germany, 2011–2014. Sci. Rep. 2017, 7, 5139. [Google Scholar] [CrossRef]
- Miller, P.; Marshall, J.; French, N.; Jewell, C. sourceR: Classification and source attribution of infectious agents among heterogeneous populations. PLoS Comput. Biol. 2017, 13, e1005564. [Google Scholar] [CrossRef]
- Maiden, M.C.J.; Van Rensburg, M.J.J.; Bray, J.E.; Earle, S.G.; Ford, S.A.; Jolley, K.A.; McCarthy, N.D. MLST revisited: The gene-by-gene approach to bacterial genomics. Nat. Rev. Microbiol. 2013, 11, 728–736. [Google Scholar] [CrossRef] [Green Version]
- Arning, N.; Sheppard, S.K.; Bayliss, S.; Clifton, D.A.; Wilson, D.J. Machine learning to predict the source of campylobacteriosis using whole genome data. PLoS Genet. 2021, 17, e1009436. [Google Scholar] [CrossRef]
- Beales, N. Adaptation of microorganisms to cold temperatures, weak acid preservatives, low pH, and osmotic stress: A review. Compr. Rev. Food Sci. Food Saf. 2004, 3, 1–20. [Google Scholar] [CrossRef]
- Knudsen, G.M.; Olsen, J.E.; Dons, L. Characterization of DegU, a response regulator in Listeria monocytogenes, involved in regulation of motility and contributes to virulence. FEMS Microbiol. Lett. 2004, 240, 171–179. [Google Scholar] [CrossRef] [Green Version]
- Kallipolitis, B.H.; Ingmer, H.; Gahan, C.G.; Hill, C.; Søgaard-Andersen, L. CesRK, a Two-component signal transduction system in Listeria monocytogenes, responds to the presence of cell wall-acting antibiotics and affects β-Lactam resistance. Antimicrob. Agents Chemother. 2003, 47, 3421–3429. [Google Scholar] [CrossRef] [Green Version]
- Moura, A.; Criscuolo, A.; Pouseele, H.; Maury, M.M.; Leclercq, A.; Tarr, C.; Björkman, J.T.; Dallman, T.; Reimer, A.; Enouf, V.; et al. Whole genome-based population biology and epidemiological surveillance of Listeria monocytogenes. Nat. Microbiol. 2016, 2, 16185. [Google Scholar] [CrossRef]
- Zhou, Z.; Alikhan, N.F.; Sergeant, M.J.; Luhmann, N.; Vaz, C.; Francisco, A.P.; Carriço, J.A.; Achtman, M. Grapetree: Visualization of core genomic relationships among 100,000 bacterial pathogens. Genome Res. 2018, 28, 1395–1404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Kuhn, M. The Caret Package. 2011. Available online: https://topepo.github.io/caret/ (accessed on 7 May 2022).
- Wheeler, N.E.; Gardner, P.P.; Barquist, L. Machine learning identifies signatures of host adaptation in the bacterial pathogen Salmonella enterica. PLoS Genet. 2018, 14, e1007333. [Google Scholar] [CrossRef] [Green Version]
- Kuhn, M.; Johnson, K. Applied Predictive Modeling; Springer: New York, NY, USA, 2013; ISBN 9781461468493. [Google Scholar]
Models | Accuracy | 95% CI | Kappa |
---|---|---|---|
Logit boost | 0.732 a | 0.665–0.760 | 0.654 |
Random forest | 0.722 a | 0.667–0.776 | 0.657 |
Stochastic gradient boosting | 0.701 a | 0.645–0.745 | 0.633 |
Support vector machine | 0.614 b | 0.569–0.671 | 0.530 |
Loci | Gene | Protein Name | Dairy | Fruits | Leafy Greens | Meat | Poultry | Seafood | Vegetables |
---|---|---|---|---|---|---|---|---|---|
lmo2702 | recR | Recombination protein RecR | 0.6653 | 0.5945 | 0.6925 | 0.8315 | 0.7212 | 0.6219 | 0.6653 |
lmo2401 | lmo2401 | Hypothetical protein | 0.7017 | 0.663 | 0.6997 | 0.8231 | 0.7664 | 0.663 | 0.7017 |
lmo2615 | rpsE | 30S ribosomal protein S5 | 0.6873 | 0.5786 | 0.708 | 0.8199 | 0.7465 | 0.6081 | 0.6873 |
lmo2577 | lmo2577 | Hypothetical protein | 0.7066 | 0.6611 | 0.6809 | 0.808 | 0.7851 | 0.6611 | 0.7066 |
lmo1501 | lmo1501 | Hypothetical protein | 0.6925 | 0.6014 | 0.6839 | 0.8022 | 0.716 | 0.6374 | 0.6925 |
lmo1933 | folE | GTP cyclohydrolase 1 | 0.577 | 0.6111 | 0.599 | 0.8012 | 0.7435 | 0.627 | 0.6111 |
lmo2215 | lmo2215 | Similar to ABC transporter (ATP-binding protein) | 0.692 | 0.6473 | 0.6633 | 0.7988 | 0.72 | 0.6473 | 0.692 |
lmo0821 | lmo0821 | Hypothetical protein | 0.6641 | 0.6641 | 0.7076 | 0.7979 | 0.7461 | 0.6641 | 0.657 |
lmo1715 | lmo1715 | Methyltransferase | 0.674 | 0.6314 | 0.6612 | 0.7963 | 0.7371 | 0.6314 | 0.674 |
lmo2515 | degU | NarL family, response regulator DegU | 0.6923 | 0.6482 | 0.6759 | 0.7952 | 0.7781 | 0.6482 | 0.6923 |
lmo0625 | lmo0625 | Putative lipase/acylhydrolase | 0.6548 | 0.6242 | 0.6813 | 0.7945 | 0.743 | 0.6242 | 0.6548 |
lmo0544 | srlA | PTS sorbitol transporter subunit IIC | 0.7125 | 0.6483 | 0.7073 | 0.7928 | 0.7713 | 0.6483 | 0.7125 |
lmo2728 | mlrA | Transcriptional regulator, MerR family protein | 0.62 | 0.6322 | 0.6294 | 0.7909 | 0.6994 | 0.6041 | 0.6322 |
lmo2348 | lmo2348 | Amino acid ABC transporter permease | 0.6776 | 0.6673 | 0.681 | 0.7901 | 0.7512 | 0.6673 | 0.6776 |
lmo2422 | cesR | Two-component response regulator | 0.6988 | 0.6498 | 0.6574 | 0.7883 | 0.7307 | 0.6498 | 0.6988 |
lmo0623 | lmo0623 | Hypothetical protein | 0.6382 | 0.6382 | 0.6382 | 0.7877 | 0.7026 | 0.6382 | 0.6307 |
lmo0635 | lmo0635 | Hypothetical protein | 0.6715 | 0.6715 | 0.7008 | 0.7872 | 0.744 | 0.6715 | 0.656 |
lmo2658 | lmo2658 | Hypothetical protein | 0.5621 | 0.5409 | 0.5969 | 0.7859 | 0.6298 | 0.5644 | 0.5621 |
lmo0611 | azoR1 | Azoreductase | 0.626 | 0.6511 | 0.7853 | 0.7737 | 0.626 | 0.626 | 0.6511 |
lmo1425 | lmo1425 | Hypothetical protein | 0.7079 | 0.651 | 0.6755 | 0.7852 | 0.7607 | 0.651 | 0.7079 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanui, C.K.; Benefo, E.O.; Karanth, S.; Pradhan, A.K. A Machine Learning Model for Food Source Attribution of Listeria monocytogenes. Pathogens 2022, 11, 691. https://doi.org/10.3390/pathogens11060691
Tanui CK, Benefo EO, Karanth S, Pradhan AK. A Machine Learning Model for Food Source Attribution of Listeria monocytogenes. Pathogens. 2022; 11(6):691. https://doi.org/10.3390/pathogens11060691
Chicago/Turabian StyleTanui, Collins K., Edmund O. Benefo, Shraddha Karanth, and Abani K. Pradhan. 2022. "A Machine Learning Model for Food Source Attribution of Listeria monocytogenes" Pathogens 11, no. 6: 691. https://doi.org/10.3390/pathogens11060691
APA StyleTanui, C. K., Benefo, E. O., Karanth, S., & Pradhan, A. K. (2022). A Machine Learning Model for Food Source Attribution of Listeria monocytogenes. Pathogens, 11(6), 691. https://doi.org/10.3390/pathogens11060691