Toxoplasma gondii in African Wildlife: A Systematic Review
Abstract
:1. Introduction
2. Results
2.1. Search Results
2.2. Historical Overview of T. gondii in African Wildlife
3. Discussion
4. Materials and Methods
4.1. Search Strategy
4.2. Selection Criteria
4.3. Data Extraction and Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
- -
- Which African countries have reported the presence of T. gondii in wildlife?
- -
- What is the reported prevalence range of T. gondii in wildlife in Africa?
- -
- What is the history of T. gondii in relation to its presence in wildlife in Africa?
- -
- Bibliographic databases: Pubmed (https://pubmed.ncbi.nlm.nih.gov/, accessed on 3 February 2021), Web of Science (https://webofknowledge.com, accessed on 3 February 2021) and CAB Direct (https://cabdirect.org, accessed on 3 February 2021).
- -
- Additional sources: reference lists of retained records and/or review articles were snowballed for relevant sources.
- Exclusion criteria
- -
- Studies concerning a different parasite than T. gondii;
- -
- Studies on T. gondii in domestic animal species;
- -
- Studies reporting/using data older than 1900 or published after 31 December 2020;
- -
- Studies reporting results from outside the study area;
- -
- Studies reporting results out of the scope of the review question.
- -
- Duplicate records.
- Inclusion criteria
- -
- Studies reporting data on T. gondii from the African continent in both free ranging or captive wild species.
Appendix B
Section and Topic | Item # | Checklist Item | Location Where Item is Reported |
TITLE | |||
Title | 1. | Identify the report as a systematic review. | Page 1 |
ABSTRACT | |||
Abstract | 2. | See the PRISMA 2020 for Abstracts checklist. | Page 1 |
INTRODUCTION | |||
Rationale | 3. | Describe the rationale for the review in the context of existing knowledge. | Pages 1–2 |
Objectives | 4. | Provide an explicit statement of the objective(s) or question(s) the review addresses. | Pages 1–2 |
METHODS | |||
Eligibility criteria | 5. | Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses. | Pages 12–13 |
Information sources | 6. | Specify all databases, registers, websites, organisations, reference lists and other sources searched or consulted to identify studies. Specify the date when each source was last searched or consulted. | Pages 12–13 |
Search strategy | 7. | Present the full search strategies for all databases, registers and websites, including any filters and limits used. | Pages 12–13 |
Selection process | 8. | Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many reviewers screened each record and each report retrieved, whether they worked independently, and if applicable, details of automation tools used in the process. | Pages 12–13 |
Data collection process | 9. | Specify the methods used to collect data from reports, including how many reviewers collected data from each report, whether they worked independently, any processes for obtaining or confirming data from study investigators, and if applicable, details of automation tools used in the process. | Pages 12–13 |
Data items | 10. (a) | List and define all outcomes for which data were sought. Specify whether all results that were compatible with each outcome domain in each study were sought (e.g., for all measures, time points, analyses), and if not, the methods used to decide which results to collect. | Pages 12–13 |
10. (b) | List and define all other variables for which data were sought (e.g., participant and intervention characteristics, funding sources). Describe any assumptions made about any missing or unclear information. | Pages 12–13 | |
Study risk of bias assessment | 11. | Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how many reviewers assessed each study and whether they worked independently, and if applicable, details of automation tools used in the process. | Pages 11–13 |
Effect measures | 12. | Specify for each outcome the effect measure(s) (e.g., risk ratio, mean difference) used in the synthesis or presentation of results. | Pages 11–13 |
Synthesis methods | 13. (a) | Describe the processes used to decide which studies were eligible for each synthesis (e.g., tabulating the study intervention characteristics and comparing against the planned groups for each synthesis (item #5)). | Pages 12–13 |
13. (b) | Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing summary statistics, or data conversions. | Pages 12–13 | |
13. (c) | Describe any methods used to tabulate or visually display results of individual studies and syntheses. | Pages 12–13 | |
13. (d) | Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was performed, describe the model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used. | Not applicable | |
13. (e) | Describe any methods used to explore possible causes of heterogeneity among study results (e.g., subgroup analysis, meta-regression). | Not applicable | |
13. (f) | Describe any sensitivity analyses conducted to assess robustness of the synthesized results. | Not applicable | |
Reporting bias assessment | 14. | Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting biases). | Pages 11–13 |
Certainty assessment | 15. | Describe any methods used to assess certainty (or confidence) in the body of evidence for an outcome. | Pages 11–13 |
RESULTS | |||
Study selection | 16. (a) | Describe the results of the search and selection process, from the number of records identified in the search to the number of studies included in the review, ideally using a flow diagram. | Pages 2–11 |
16. (b) | Cite studies that might appear to meet the inclusion criteria, but which were excluded, and explain why they were excluded. | Pages 11–12 | |
Study characteristics | 17. | Cite each included study and present its characteristics. | Pages 2–11 |
Risk of bias in studies | 18. | Present assessments of risk of bias for each included study. | Pages 2–11 |
Results of individual studies | 19. | For all outcomes, present, for each study: (a) summary statistics for each group (where appropriate) and (b) an effect estimate and its precision (e.g., confidence/credible interval), ideally using structured tables or plots. | Page 11 |
Results of syntheses | 20. (a) | For each synthesis, briefly summarise the characteristics and risk of bias among contributing studies. | Pages 2–11 |
20. (b) | Present results of all statistical syntheses conducted. If meta-analysis was done, present for each the summary estimate and its precision (e.g., confidence/credible interval) and measures of statistical heterogeneity. If comparing groups, describe the direction of the effect. | Pages 2–11 | |
20. (c) | Present results of all investigations of possible causes of heterogeneity among study results. | Pages 2–11 | |
20. (d) | Present results of all sensitivity analyses conducted to assess the robustness of the synthesized results. | Pages 2–11 | |
Reporting biases | 21. | Present assessments of risk of bias due to missing results (arising from reporting biases) for each synthesis assessed. | Page 11 |
Certainty of evidence | 22. | Present assessments of certainty (or confidence) in the body of evidence for each outcome assessed. | Pages 2–11 |
DISCUSSION | |||
Discussion | 23. (a) | Provide a general interpretation of the results in the context of other evidence. | Pages 9–11 |
23. (b) | Discuss any limitations of the evidence included in the review. | Page 11 | |
23. (c) | Discuss any limitations of the review processes used. | Page 11 | |
23. (d) | Discuss implications of the results for practice, policy, and future research. | Pages 9–13 | |
OTHER INFORMATION | |||
Registration and protocol | 24. (a) | Provide registration information for the review, including register name and registration number, or state that the review was not registered. | Not applicable |
24. (b) | Indicate where the review protocol can be accessed, or state that a protocol was not prepared. | Page 12 | |
24. (c) | Describe and explain any amendments to information provided at registration or in the protocol. | Pages 14–16 | |
Support | 25. | Describe sources of financial or non-financial support for the review, and the role of the funders or sponsors in the review. | Page 13 |
Competing interests | 26. | Declare any competing interests of review authors. | Page 13 |
Availability of data, code and other materials | 27. | Report which of the following are publicly available and where they can be found: template data collection forms; data extracted from included studies; data used for all analyses; analytic code; any other materials used in the review. | Page 13 |
References
- Aguirre, A.A.; Longcore, T.; Barbieri, M.; Dabritz, H.; Hill, D.; Klein, P.N.; Sizemore, G.C. The One health approach to toxoplasmosis: Epidemiology, control, and prevention strategies. EcoHealth 2019, 16, 378–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schluter, D.; Schlüter, D.; Däubener, W.; Schares, G.; Groß, U.; Pleyer, U.; Lüder, C. Animals are key to human toxoplasmosis. Int. J. Med. Microbiol. 2014, 304, 917–929. [Google Scholar] [CrossRef] [PubMed]
- Tenter, A.M.; Heckeroth, A.R.; Weiss, L.M. Toxoplasma gondii: From animals to humans. Int. J. Parasitol. 2000, 30, 1217–1258. [Google Scholar] [CrossRef] [Green Version]
- Ferroglio, E.; Bosio, F.; Trisciuoglio, A.; Zanet, S. Toxoplasma gondii in sympatric wild herbivores and carnivores: Epidemiology of infection in the Western Alps. Parasites Vectors 2014, 7, 196. [Google Scholar] [CrossRef] [Green Version]
- Dubey, J.P. The history of Toxoplasma gondii-the first 100 years. J. Eukaryot. Microbiol. 2008, 55, 467–475. [Google Scholar] [CrossRef] [PubMed]
- Dubey, J.P. History of the discovery of the life cycle of Toxoplasma gondii. Int. J. Parasitol. 2009, 39, 877–882. [Google Scholar] [CrossRef]
- Berger-Schoch, A.E.; Herrmann, D.C.; Schares, G.; Müller, N.; Bernet, D.; Gottstein, B.; Frey, C.F. Prevalence and genotypes of Toxoplasma gondii in feline faeces (oocysts) and meat from sheep, cattle and pigs in Switzerland. Vet. Parasitol. 2011, 177, 290–297. [Google Scholar] [CrossRef] [PubMed]
- Buxton, D.; Maley, S.W.; Wright, S.E.; Rodger, S.; Bartley, P.; Innes, E.A. Toxoplasma gondii and ovine toxoplasmosis: New aspects of an old story. Vet. Parasitol. 2007, 149, 25–28. [Google Scholar] [CrossRef]
- Torrey, E.F.; Yolken, R.H. Toxoplasma oocysts as a public health problem. Trends Parasitol. 2013, 29, 380–384. [Google Scholar] [CrossRef]
- Hammond-Aryee, K. Toxoplasma gondii seroprevalence studies in humans and animals in Africa. S. Afr. Fam. Pract. 2014, 56, 119–124. [Google Scholar] [CrossRef] [Green Version]
- Khademvatan, S.; Foroutan, M.; Hazrati-Tappeh, K.; Dalvand, S.; Khalkhali, H.; Masoumifard, S.; Hedayati-Rad, F. Toxoplasmosis in rodents: A systematic review and meta-analysis in Iran. J. Infect. Public Health 2017, 10, 487–493. [Google Scholar] [CrossRef]
- Dupont, C.D.; Christian, D.A.; Hunter, C.A. Immune response and immunopathology during toxoplasmosis. Semin. Immunopathol. 2012, 34, 793–813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, A.; Dubey, J.P.; Su, C.; Ajioka, J.W.; Rosenthal, B.M.; Sibley, L.D. Genetic analyses of atypical Toxoplasma gondii strains reveal a fourth clonal lineage in North America. Int. J. Parasitol. 2011, 41, 645–655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, C.; Khan, A.; Zhou, P.; Majumdar, D.; Ajzenberg, D.; Dardé, M.L.; Zhu, X.Q.; Ajioka, J.W.; Rosenthal, B.M.; Dubey, J.P.; et al. Globally diverse Toxoplasma gondii isolates comprise six major clades originating from a small number of distinct ancestral lineages. Proc. Natl. Acad. Sci. USA 2012, 109, 5844–5849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dubey, J.P.; Sundar, N.; Hill, D.; Velmurugan, G.V.; Bandini, L.A.; Kwok, O.C.H.; Majumdar, D.; Su, C. High prevalence and abundant atypical genotypes of Toxoplasma gondii isolated from lambs destined for human consumption in the USA. Int. J. Parasitol. 2008, 38, 999–1006. [Google Scholar] [CrossRef] [PubMed]
- Shwab, E.K.; Zhu, X.Q.; Majumdar, D.; Pena, H.F.; Gennari, S.M.; Dubey, J.P.; Su, C. Geographical patterns of Toxoplasma gondii genetic diversity revealed by multilocus PCR-RFLP genotyping. Parasitology 2014, 141, 453–461. [Google Scholar] [CrossRef] [Green Version]
- Nicolle, C.; Manceaux, L. On an infection of Leishman bodies (or related organisms) of the gondi. C R Seances Acad. Sci. 1908, 147, 763–766. [Google Scholar]
- Hofmeyr, C.F.B. Two hundred and eighty-four autopsies at the National Zoological Gardens, Pretoria. J. S. Afr. Vet. Assoc. 1956, 27, 263–296. [Google Scholar]
- Riemann, H.P.; Burridge, M.J.; Behymer, D.E.; Franti, C.E. Toxoplasma gondii antibodies in free-living African mammals. J. Wildl. Dis. 1975, 11, 529–533. [Google Scholar] [CrossRef]
- Bakal, P.M.; Karstad, L.; In, T.V.N. Serologic evidence of toxoplasmosis in captive and free-living wild mammals in Kenya. J. Wildl. Dis. 1980, 16, 559–564. [Google Scholar] [CrossRef]
- Ocholi, R.A.; Kalejaiye, J.O.; Okewole, P.A. Acute disseminated toxoplasmosis in two captive lions (Panthera leo) in Nigeria. Vet. Rec. 1989, 124, 515–516. [Google Scholar] [CrossRef] [PubMed]
- Spencer, J.A.; Markel, P. Serological survey of sera from lions in Etosha National Park. S. Afr. J. Wildl. 1993, 23, 60–61. [Google Scholar]
- Van Heerden, J.; Mills, M.G.L.; Van Vuuren, M.J.; Kelly, P.J.; Dreyer, M.J. An investigation into the health status and diseases of wild dogs (Lycaon pictus) in the Kruger National Park. J. S. Afr. Vet. Assoc. 1995, 66, 18–27. [Google Scholar] [PubMed]
- Cheadle, M.A.; Spencer, J.A.; Blagburn, B.L. Seroprevalences of Neospora caninum and Toxoplasma gondii in nondomestic felids from southern Africa. J. Zoo Wildl. Med. 1999, 30, 248–251. [Google Scholar] [PubMed]
- Penzhorn, B.L.; Stylianides, E.; Van Vuuren, M.; Alexander, K.; Meltzer, D.G.A.; Mukarati, N. Seroprevalence of Toxoplasma gondii in free-ranging lion and leopard populations in southern Africa. S. Afr. J. Wildl. Res. 2002, 32, 163–165. [Google Scholar]
- Hove, T.; Mukaratirwa, S. Seroprevalence of Toxoplasma gondii in farm-reared ostriches and wild game species from Zimbabwe. Acta Trop. 2005, 94, 49–53. [Google Scholar] [CrossRef]
- Junge, R.E.; Louis, E.E. Biomedical evaluation of black lemurs (Eulemur macaco macaco) in Lokobe Reserve, Madagascar. J. Zoo Wildl. Med. 2007, 38, 67–76. [Google Scholar] [CrossRef]
- Kamga-Waladjo, A.R. Neospora caninum and Toxoplasma gondii in Lion (Panthera leo) from Senegal, West Africa. Asian J. Anim. Vet. Adv. 2009, 4, 346–349. [Google Scholar] [CrossRef] [Green Version]
- Mukarati, N.L.; Vassilev, G.D.; Tagwireyi, W.M.; Tavengwa, M. Occurrence, prevalence and intensity of internal parasite infections of African lions (Panthera leo) in enclosures at a recreation park in Zimbabwe. J. Zoo Wildl. Med. 2013, 44, 686–693. [Google Scholar] [CrossRef]
- Pomerantz, J.; Rasambainarivo, F.T.; Dollar, L.; Rahajanirina, L.P.; Andrianaivoarivelo, R.; Parker, P.; Dubovi, E. Prevalence of antibodies to selected viruses and parasites in introduced and endemic carnivores in western Madagascar. J. Wildl. Dis. 2016, 52, 544–552. [Google Scholar] [CrossRef] [Green Version]
- Lukášová, R.; Kobédová, K.; Halajian, A.; Bártová, E.; Murat, J.B.; Rampedi, K.M.; Luus-Powell, W.J. Molecular detection of Toxoplasma gondii and Neospora caninum in birds from South Africa. Acta Trop. 2018, 178, 93–96. [Google Scholar] [CrossRef] [PubMed]
- Lukášová, R.; Halajian, A.; Bártová, E.; Kobédová, K.; Swanepoel, L.H.; O’Riain, M.J. The Occurrence of Some Nonblood Protozoan Parasites in Wild and Domestic Mammals in South Africa. J. Wildl. Dis. 2018, 54, 392–396. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, S.C.M.; Torelli, F.; Klein, S.; Fyumagwa, R.; Karesh, W.B.; Hofer, H.; Seeber, F.; East, M.L. Evidence of high exposure to Toxoplasma gondii in free-ranging and captive African carnivores. Int. J. Parasitol. Parasites Wildl. 2018, 8, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Galal, L.; Schares, G.; Stragier, C.; Vignoles, P.; Brouat, C.; Cuny, T.; Dubois, C.; Rohart, T.; Glodas, C.; Dardé, M.L.; et al. Diversity of Toxoplasma gondii strains shaped by commensal communities of small mammals. Int. J. Parasitol. 2019, 49, 267–275. [Google Scholar] [CrossRef]
- Gamble, A.; Ramos, R.; Parra-Torres, Y.; Mercier, A.; Galal, L.; Pearce-Duvet, J.; Villena, I.; Montalvo, T.; González-Solís, J.; Hammouda, A.; et al. Exposure of yellow-legged gulls to Toxoplasma gondii along the Western Mediterranean coasts: Tales from a sentinel. Int. J. Parasitol. Parasites Wildl. 2019, 8, 221–228. [Google Scholar] [CrossRef]
- Serieys, L.E.K.; Hammond-Aryee, K.; Bishop, J.; Broadfield, J.; O’Riain, M.J.; van Helden, P.D. High Seroprevalence of Toxoplasma gondii in an Urban Caracal (Caracal caracal) Population in South Africa. J. Wildl. Dis. 2019, 55, 951–953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seltmann, A.; Schares, G.; Aschenborn, O.H.; Heinrich, S.K.; Thalwitzer, S.; Wachter, B.; Czirják, G.Á. Species-specific differences in Toxoplasma gondii, Neospora caninum and Besnoitia besnoiti seroprevalence in Namibian wildlife. Parasites Vectors 2020, 13, 7. [Google Scholar] [CrossRef] [PubMed]
- Alexander, A.B.; Poirotte, C.; Porton, I.J.; Freeman, K.L.; Rasambainarivo, F.; Olson, K.G.; Iambana, B.; Deem, S.L. Gastrointestinal parasites of captive and free-living lemurs and domestic carnivores in eastern Madagascar. J. Zoo Wildl. Med. 2016, 47, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Junge, R.E.; Louis, E.E. Preliminary biomedical evaluation of wild ruffed lemurs (Varecia variegata and V. rubra). Am. J. Primatol. 2005, 66, 85–94. [Google Scholar] [CrossRef]
- Dutton, C.J.; Junge, R.E.; Louis, E.E. Biomedical evaluation of free-ranging red ruffed lemurs (Varecia rubra) within the Masoala National Park, Madagascar. J. Zoo Wildl. Med. 2008, 39, 76–85. [Google Scholar] [CrossRef]
- Miller, D.S.; Sauther, M.L.; Hunter-Ishikawa, M.; Fish, K.; Culbertson, H.; Cuozzo, F.P.; Campbell, T.W.; Andrews, G.A.; Chavey, P.S.; Nachreiner, R.; et al. Biomedical evaluation of free-ranging ring-tailed lemurs (Lemur catta) in three habitats at the Beza Mahafaly Special Reserve, Madagascar. J. Zoo Wildl. Med. 2007, 38, 201–216. [Google Scholar] [CrossRef]
- Marchiondo, A.A.; Duszynski, D.W.; Maupin, G.O. Prevalence of antibodies to Toxoplasma gondii in wild and domestic animals of New Mexico, Arizona and Colorado. J. Wildl. Dis. 1976, 12, 226–232. [Google Scholar] [CrossRef] [Green Version]
- Smith, D.D.; Frenkel, J.K. Prevalence of antibodies to Toxoplasma gondii in wild mammals of Missouri and East Central Kansas: Biological and ecological considerations of transmission. J. Wildl. Dis. 1995, 31, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.E.; Fisher, J.R.; Dubey, J.P. Toxoplasmosis in a bobcat (Felis rufus). J. Wildl. Dis. 1995, 31, 555–557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quist, C.F.; Dubey, J.P.; Luttrell, M.P.; Davidson, W.R. Toxoplasmosis in Wild Turkeys: A Case Report and Serologic Survey. J. Wildl. Dis. 1995, 31, 255–258. [Google Scholar] [CrossRef] [Green Version]
- Miller, M.A.; Miller, W.A.; Conrad, P.A.; James, E.R.; Melli, A.C.; Leutenegger, C.M.; Dabritz, H.A.; Packham, A.E.; Paradies, D.; Harris, M.; et al. Type X Toxoplasma gondii in a wild mussel and terrestrial carnivores from coastal California: New linkages between terrestrial mammals, runoff and toxoplasmosis of sea otters. Int. J. Parasitol. 2008, 38, 1319–1328. [Google Scholar] [CrossRef]
- Cañón-Franco, W.A.; Araújo, F.A.P.; López-Orozco, N.; Jardim, M.M.A.; Keid, L.B.; Dalla-Rosa, C.; Cabral, A.D. Toxoplasma gondii in free-ranging wild small felids from Brazil: Molecular detection and genotypic characterization. Vet. Parasitol. 2013, 197, 462–469. [Google Scholar] [CrossRef] [Green Version]
- Dubey, J.P.; Quinn, W.J.; Weinandy, D. Fatal Neonatal Toxoplasmosis in a Bobcat (Lynx rufus). J. Wildl. Dis. 1987, 23, 324–327. [Google Scholar] [CrossRef] [Green Version]
- Dubey, J.P.; Velmurugan, G.V.; Ulrich, V.; Gill, J.; Carstensen, M.; Sundar, N.; Kwok, O.C.H.; Thulliez, P.; Majumdar, D.; Su, C. Transplacental toxoplasmosis in naturally-infected white-tailed deer: Isolation and genetic characterisation of Toxoplasma gondii from foetuses of different gestational ages. Int. J. Parasitol. 2008, 38, 1057–1063. [Google Scholar] [CrossRef]
- Basso, W.; Edelhofer, R.; Zenker, W.; Möstl, K.; Kübber-Heiss, A.; Prosl, H. Toxoplasmosis in Pallas’ cats (Otocolobus manul) raised in captivity. Parasitology 2005, 130, 293–299. [Google Scholar] [CrossRef]
- Dubey, J.P.; Sreekumar, C. Redescription of Hammondia hammondi and its differentiation from Toxoplasma gondii. Int. J. Parasitol. 2003, 33, 1437–1453. [Google Scholar] [CrossRef]
- Lukešová, D.; Literák, I. Shedding of Toxoplasma gondii oocysts by Felidae in zoos in the Czech Republic. Vet. Parasitol. 1998, 74, 1–7. [Google Scholar] [CrossRef]
- Dorny, P.; Fransen, J. Toxoplasmosis in a Siberian tiger (Panthera tigris altaica). Vet. Rec. 1989, 125, 647. [Google Scholar] [PubMed]
- Miller, N.L.; Frenkel, J.K.; Dubey, J.P. Oral infections with Toxoplasma cysts and oocysts in felines, other mammals, and in birds. J. Parasitol. 1972, 58, 928–937. [Google Scholar] [CrossRef] [PubMed]
- Jewell, M.L.; Frenkel, J.K.; Johnson, K.M.; Reed, V.; Ruiz, A.N.D.A. Development of Toxoplasma oocysts in neotropical felidae. Am. J. Trop. Med. Hyg. 1972, 21, 512–517. [Google Scholar] [CrossRef] [PubMed]
- Yan, C.; Liang, L.J.; Zheng, K.Y.; Zhu, X.Q. Impact of environmental factors on the emergence, transmission and distribution of Toxoplasma gondii. Parasites Vectors 2016, 9, 137. [Google Scholar] [CrossRef] [Green Version]
- Liyanage, K.; Wiethoelter, A.; Hufschmid, J.; Jabbar, A. Descriptive Comparison of ELISAs for the Detection of Toxoplasma gondii Antibodies in Animals: A Systematic Review. Pathogens 2021, 10, 605. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, Z.D.; Huang, S.Y.; Zhu, X.Q. Diagnosis of toxoplasmosis and typing of Toxoplasma gondii. Parasites Vectors 2015, 8, 292. [Google Scholar] [CrossRef] [Green Version]
- Rostami, A.; Karanis, P.; Fallahi, S. Advances in serological, imaging techniques and molecular diagnosis of Toxoplasma gondii infection. Infection 2018, 46, 303–315. [Google Scholar] [CrossRef]
- Santoro, M.; Viscardi, M.; Sgroi, G.; D’Alessio, N.; Veneziano, V.; Pellicano, R.; Brunetti, R.; Fusco, G. Real-time PCR detection of Toxoplasma gondii in tissue samples of wild boars (Sus scrofa) from southern Italy reveals high prevalence and parasite load. Parasites Vectors 2019, 12, 335. [Google Scholar] [CrossRef]
- Dubey, J.P.; Thulliez, P.; Weigel, R.M.; Andrews, C.D.; Lind, P.; Powell, E.C. Sensitivity and specificity of various serologic tests for detection of Toxoplasma gondii infection in naturally infected sows. Am. J. Vet. Res. 1995, 56, 1030–1036. [Google Scholar] [PubMed]
- Bachand, N.; Ravel, A.; Leighton, P.; Stephen, C.; Ndao, M.; Avard, E.; Jenkins, E. Serological and molecular detection of Toxoplasma gondii in terrestrial and marine wildlife harvested for food in Nunavik, Canada. Parasites Vectors 2019, 12, 155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boughattas, S.; Behnke, J.; Sharma, A.; Abu-Madi, M. Seroprevalence of Toxoplasma gondii infection in feral cats in Qatar. BMC Vet. Res. 2016, 13, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Prisma Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement (Reprinted from Annals of Internal Medicine). PLoS Med. 2009, 89, 873–880. [Google Scholar]
- Pienaar, E.; Grobler, L.; Busgeeth, K.; Eisinga, A.; Siegfried, N. Developing a geographic search filter to identify randomised controlled trials in Africa: Finding the optimal balance between sensitivity and precision. Health Info. Libr. J. 2011, 28, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Bmj 2021, 372, n71. [Google Scholar] [CrossRef]
Country | Common Animal Species Name | Scientific Name | Prevalence% (Positive/n) | Methods of Detection | Reference |
---|---|---|---|---|---|
Tunisia | Common gundi H | Ctenodactylys gundi | 100 (3/3) | PM, MC | Nicolle and Manceaux, 1908 |
South Africa | African wild dog C | Lycaon pictus | 50 (1/2) | MC | Hofmeyr, 1956 |
Kenya | Lion C | Panthera leo | 100 (1/1) | IHA | Riemann et al., 1975 |
Uganda | Defassa waterbuck C | Kobus ellipsiprymnus | 100 (2/2) | IHA | Riemann et al., 1975 |
Tanzania | Rock Hyrax O | Procavia capensis | 100 (1/1) | IHA | Riemann et al., 1975 |
Tanzania | Burchells Zebra H | Equus quagga burchellii | 28 (8/29) | IHA | Riemann et al., 1975 |
Zambia | African elephant H | Loxodonta africana | 6 (4/63) | IHA | Riemann et al., 1975 |
Zambia | Hippopotamus H | Hippopotamus amphibius | 8 (4/49) | IHA | Riemann et al., 1975 |
Kenya | Silver-backed jackal C | Canis mesomelas | 67 (4/6) | SFTD | Bakal et al., 1980 |
Kenya | White tailed mongoose C | Ichneumia albicauda | 50 (1/2) | SFTD | Bakal et al., 1980 |
Kenya | Spotted hyena C | Crocuta crocuta | 100 (6/6) | SFTD | Bakal et al., 1980 |
Kenya | Zebra H | Equus quagga burchellii | 90 (9/10) | SFTD | Bakal et al., 1980 |
Kenya | Warthog O | Phacochoerus africanus | 100 (2/2) | SFTD | Bakal et al., 1980 |
Kenya | Giraffe H | Giraffa camelopardalis | 50 (5/10) | SFTD | Bakal et al., 1980 |
Kenya | Eland H | Taurotragus oryx | 100 (10/10) | SFTD | Bakal et al., 1980 |
Kenya | Bushbuck H | Tragelaphus scriptus | 80 (8/10) | SFTD | Bakal et al., 1980 |
Kenya | Fringe-eared oryx H | Oryx beisa callotis | 50 (2/4) | SFTD | Bakal et al., 1980 |
Kenya | Waterbuck H | Kobus ellipsiprymnus | 27 (5/11) | SFTD | Bakal et al., 1980 |
Kenya | Hartebeest H | Alcelaphus buselaphus | 83 (10/12) | SFTD | Bakal et al., 1980 |
Kenya | Topi H | Damaliscus lunatus jimela | 82 (9/11) | SFTD | Bakal et al., 1980 |
Kenya | Wildebeest H | Connochaetes taurinus | 90 (9/10) | SFTD | Bakal et al., 1980 |
Kenya | Impala H | Aepyceros melampus | 80 (8/10) | SFTD | Bakal et al., 1980 |
Kenya | Grant’s gazelle H | Nanger granti | 80 (8/10) | SFTD | Bakal et al., 1980 |
Kenya | Thomson’s gazelle H | Eudorcas thomsonii | 90 (9/10) | SFTD | Bakal et al., 1980 |
Kenya | Steenbok H | Raphicerus campestris | 50 (1/2) | SFTD | Bakal et al., 1980 |
Kenya | Dikdik H | Rhynchotragus spp. | 100 (5/5) | SFTD | Bakal et al., 1980 |
Kenya | African buffalo H | Syncerus caffer | 100 (10/10) | SFTD | Bakal et al., 1980 |
Nigeria | Lion C | Panthera leo | 40 (2/5) | SFTD, PM, MT, MC oocysts in feces | Ocholi et al., 1989 |
South Africa | Lion C | Panthera leo | 90 (36/40) | IFAT | Cheadle et al., 1999 |
South Africa | Leopard C | Panthera pardus | 100 (2/2) | IFAT | Cheadle et al., 1999 |
Botswana | Leopard C | Panthera pardus | 50 (1/2) | IFAT | Cheadle et al., 1999 |
Namibia | Lion C | Panthera leo | 100 (1/1) | IFAT | Cheadle et al., 1999 |
Namibia | Cheetah C | Acinonyx jubatus | 33 (2/6) | IFAT | Cheadle et al., 1999 |
South Africa | Cheetah C | Acinonyx jubatus | 50 (8/16) | IFAT | Cheadle et al., 1999 |
South Africa | African wild dog C | Lycaon pictus | 100 (16/16) | IFAT | Van Heerden et al., 1993 |
Botswana | Lion C | Panthera leo | 92 (49/53) | IFAT | Penzhorn et al., 2002 |
Botswana | Leopard C | Panthera pardus | 100 (1/1) | IFAT | Penzhorn et al., 2002 |
South Africa | Lion C | Panthera leo | 100 (42/42) | IFAT | Penzhorn et al., 2002 |
South Africa | Leopard C | Panthera pardus | 86 (6/7) | IFAT | Penzhorn et al., 2002 |
Zimbabwe | Lion C | Panthera leo | 100 (21/21) | IFAT | Penzhorn et al., 2002 |
Zimbabwe | Giraffe H | Giraffa camelopardalis | 10 (1/10) | MAT | Hove and Mukaratirwa, 2005 |
Zimbabwe | Greater kudu H | Tragelaphus strepsiceros | 20 (2/10) | MAT | Hove and Mukaratirwa, 2005 |
Zimbabwe | Nyala H | Tragelaphus angasii | 90 (9/10) | MAT | Hove and Mukaratirwa, 2005 |
Zimbabwe | Bushbuck H | Tragelaphus scriptus | 57 (8/14) | MAT | Hove and Mukaratirwa, 2005 |
Zimbabwe | Black rhino H | Diceros bicornis | 27 (3/11) | MAT | Hove and Mukaratirwa, 2005 |
Zimbabwe | African elephant H | Loxodonta africana | 10 (2/20) | MAT | Hove and Mukaratirwa, 2005 |
Zimbabwe | Lion C | Panthera leo | 92 (24/26) | MAT | Hove and Mukaratirwa, 2005 |
Zimbabwe | Ostrich H | Struthio camelus | 48 (24/50) | MAT | Hove and Mukaratirwa, 2005 |
Madagascar | Black lemur H | Eulemur macaco | 10 (1/10) | Serum biochemical profile (IgG and IgM) | Junge et al., 2007 |
Senegal | Lion C | Panthera leo | 43 (3/7) | ELISA | Kamga-Waladjo et al., 2009 |
Zimbabwe | Lion C | Panthera leo | 17 (5/30) | McMaster (feces) | Makarati et al., 2013 |
Madagascar | Fossa C | Cryptoprocta ferox | 93 (42/25) | ELISA | Pomerantz et al., 2016 |
South Africa | Gerbil H | Gerbilliscus sp. | 1 (1/122) | ELISA | Lukášová et al., 2018 |
South Africa | Kudu H | Tragelaphus strepsiceros | 8 (1/13) | ELISA | Lukášová et al., 2018 |
South Africa | Honey badger C | Mellivora capensis | 25 (1/4) | ELISA | Lukášová et al., 2018 |
South Africa | White tailed mongoose C | Ichneumia albicauda | 14 (1/7) | ELISA | Lukášová et al., 2018 |
South Africa | Southern Yellow-billed Hornbill (bird) O | Tockus leucomelas | 25 (1/4) | PCR (brain) | Lukášová et al., 2018 |
South Africa | Laughing Dove (bird) O | Spilopelia senegalensis | 25 (1/4) | PCR (brain) | Lukášová et al., 2018 |
South Africa | Red-eyed Dove (bird) O | Streptopelia semitorquata | 20 (1/5) | PCR (brain) | Lukášová et al., 2018 |
Tanzania | Spotted hyena C | Crocuta | 75 (45/60) | ELISA | Ferreira et al., 2018 |
Senegal | Rodents O | Mus musculus domesticus | 4.8 (32/671) and 13.1 (88/671) | MAT and PCR | Galal et al., 2019 |
Senegal | Rodents O | Rattus rattus | 2.6 (2/78) and 3.8 (3/78) | MAT and PCR | Galal et al., 2019 |
Senegal | Rodents O | Cricetomys gambianus | 31.9 (15/47) and 27.7 (13/47) | MAT and PCR | Galal et al., 2019 |
Senegal | Shrew O | Crocidura olivieri | 37.5 (12/32) and 15.6 (5/32) | MAT and PCR | Galal et al., 2019 |
Tunisia | Yellow-legged gull O | Larus michahellis | 3 (30 nests, Sfax), 11 (37 nest, Djerba) | ELISA | Gamble et al., 2019 |
South Africa | Caracal C | Caracal | 83 (24/29) | IFAT | Serleys et al., 2019 |
Namibia | Blue wildebeest H | Connochaetes taurinus | 10 (2/20) and | ELISA and IB | Seltmann et al., 2020 |
Namibia | Honey badger C | Mellivora capensis | 70 (7/10) and 60 (6/10) | ELISA and IB | Seltmann et al., 2020 |
Namibia | Lion C | Panthera leo | 93 (55/59) and 93 (55/59) | ELISA and IB | Seltmann et al., 2020 |
Namibia | Brown Hyena C | Hyaena brunnea | 92 (12/13) and 92 (12/13) | ELISA and IB | Seltmann et al., 2020 |
Namibia | Caracal C | Caracal | 67 (10/15) and 67 (10/15) | ELISA and IB | Seltmann et al., 2020 |
Namibia | Cheetah C | Acinonyx jubatus | 52 (131/250) and 52 (131/250) | ELISA and IB | Seltmann et al., 2020 |
Namibia | Leopard C | Panthera pardus | 81 (47/58) and 81 (47/58) | ELISA and IB | Seltmann et al., 2020 |
Namibia | Spotted hyena C | Crocuta | 91 (10/11) and 91 (10/11) | ELISA and IB | Seltmann et al., 2020 |
Namibia | Wild dog C | Lycaon pictus | 71 (5/7) and 57 (4/7) | ELISA and IB | Seltmann et al., 2020 |
Namibia | Bat-eared fox O | Otocyon megalotis | 25 (1/4) and 0 (0/4) | ELISA and IB | Seltmann et al., 2020 |
Namibia | Black-backed jackal C | Canis mesomelas | 67 (26/39) and 67 (26/39) | ELISA and IB | Seltmann et al., 2020 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bokaba, R.P.; Dermauw, V.; Morar-Leather, D.; Dorny, P.; Neves, L. Toxoplasma gondii in African Wildlife: A Systematic Review. Pathogens 2022, 11, 868. https://doi.org/10.3390/pathogens11080868
Bokaba RP, Dermauw V, Morar-Leather D, Dorny P, Neves L. Toxoplasma gondii in African Wildlife: A Systematic Review. Pathogens. 2022; 11(8):868. https://doi.org/10.3390/pathogens11080868
Chicago/Turabian StyleBokaba, Refilwe Philadelphia, Veronique Dermauw, Darshana Morar-Leather, Pierre Dorny, and Luis Neves. 2022. "Toxoplasma gondii in African Wildlife: A Systematic Review" Pathogens 11, no. 8: 868. https://doi.org/10.3390/pathogens11080868
APA StyleBokaba, R. P., Dermauw, V., Morar-Leather, D., Dorny, P., & Neves, L. (2022). Toxoplasma gondii in African Wildlife: A Systematic Review. Pathogens, 11(8), 868. https://doi.org/10.3390/pathogens11080868