Spatial and Seasonal Patterns of the Mosquito Community in Central Oklahoma
Abstract
:1. Introduction
2. Results
2.1. Main Mosquito Species
2.2. Temporal Variation in Trapping Success
2.3. Early- and Late-Season Mosquito Communities
3. Discussion
4. Materials and Methods
4.1. Field Mosquito Trapping
4.2. Lab Processing
4.3. Sanger Sequencing
4.4. Mosquito Community Assemblage Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rosenberg, R.; Lindsey, N.P.; Fischer, M.; Gregory, C.J.; Hinckley, A.F.; Mead, P.S.; Paz-Bailey, G.; Waterman, S.H.; Drexler, N.A.; Kersh, G.J.; et al. Vital Signs: Trends in Reported Vectorborne Disease Cases-United States and Territories, 2004–2016. MMWR Morb. Mortal. Wkly. Rep. 2018, 67, 496–501. [Google Scholar] [CrossRef] [PubMed]
- Leta, S.; Beyene, T.J.; De Clercq, E.M.; Amenu, K.; Kraemer, M.U.G.; Revie, C.W. Global risk mapping for major diseases transmitted by Aedes aegypti and Aedes albopictus. Int. J. Infect. Dis. 2018, 67, 25–35. [Google Scholar] [CrossRef]
- Beard, C.B.; Visser, S.N.; Petersen, L.R. The Need for a National Strategy to Address Vector-Borne Disease Threats in the United States. J. Med. Èntomol. 2019, 56, 1199–1203. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.G.; Adams, J.; McDonald-Hamm, C.; Wendelboe, A.; Bradley, K.K. Seasonality and survival associated with three outbreak seasons of West Nile virus disease in Oklahoma-2003, 2007, and 2012. J. Med. Virol. 2015, 87, 1633–1640. [Google Scholar] [CrossRef] [PubMed]
- Caldwell, J.M.; LaBeaud, A.D.; Lambin, E.F.; Stewart-Ibarra, A.M.; Ndenga, B.A.; Mutuku, F.M.; Krystosik, A.R.; Ayala, E.B.; Anyamba, A.; Borbor-Cordova, M.J.; et al. Climate predicts geographic and temporal variation in mosquito-borne disease dynamics on two continents. Nat. Commun. 2021, 12, 1233. [Google Scholar] [CrossRef]
- Keyel, A.C.; Timm, O.E.; Backenson, P.B.; Prussing, C.; Quinones, S.; McDonough, K.A.; Vuille, M.; Conn, J.E.; Armstrong, P.M.; Andreadis, T.G.; et al. Seasonal temperatures and hydrological conditions improve the prediction of West Nile virus infection rates in Culex mosquitoes and human case counts in New York and Connecticut. PLoS ONE 2019, 14, e021785. [Google Scholar] [CrossRef] [PubMed]
- Petruff, T.A.; McMillan, J.R.; Shepard, J.J.; Andreadis, T.G.; Armstrong, P.M. Increased mosquito abundance and species richness in Connecticut, United States 2001–2019. Sci. Rep. 2020, 10, 19287. [Google Scholar] [CrossRef]
- Tian, H.Y.; Bi, P.; Cazelles, B.; Zhou, S.; Huang, S.-Q.; Yang, J.; Pei, Y.; Wu, X.-X.; Fu, S.-H.; Tong, S.-L.; et al. How environmental conditions impact mosquito ecology and Japanese encephalitis: An eco-epidemiological approach. Environ. Int. 2015, 79, 17–24. [Google Scholar] [CrossRef]
- Yoo, E.H.; Diao, D.C.C.; Russel, C. The Effects of Weather and Environmental Factors on West Nile Virus Mosquito Abundance in Greater Toronto Area. Earth Interact. 2016, 20, 1–22. [Google Scholar] [CrossRef]
- Noden, B.H.; Coburn, L.; Wright, R.; Bradley, K. An Updated Checklist of the Mosquitoes of Oklahoma Including New State Records and West Nile Virus Vectors, 2003–06. J. Am. Mosq. Control Assoc. 2015, 31, 336–345. [Google Scholar] [CrossRef]
- Bradt, D.; Wormington, J.D.; Long, J.M.; Hoback, W.W.; Noden, B.H. Differences in Mosquito Communities in Six Cities in Oklahoma. J. Med. Èntomol. 2019, 56, 1395–1403. [Google Scholar] [CrossRef] [PubMed]
- Connelly, C.R.; Gerding, J.A.; Jennings, S.M.; Ruiz, A.; Barrera, R.; Partridge, S.; Ben Beard, C. Continuation of Mosquito Surveillance and Control During Public Health Emergencies and Natural Disasters. MMWR. Morb. Mortal. Wkly. Rep. 2020, 69, 938–940. [Google Scholar] [CrossRef] [PubMed]
- Swetnam, D.; Widen, S.G.; Wood, T.G.; Reyna, M.; Wilkerson, L.; Debboun, M.; Symonds, D.A.; Mead, D.G.; Beaty, B.J.; Guzman, H.; et al. Terrestrial Bird Migration and West Nile Virus Circulation, United States. Emerg. Infect. Dis. 2018, 24, 2184–2194. [Google Scholar] [CrossRef] [PubMed]
- Parry, R.; Naccache, F.; Ndiaye, E.H.; Fall, G.; Castelli, I.; Lühken, R.; Medlock, J.; Cull, B.; Hesson, J.C.; Montarsi, F.; et al. Identification and RNAi Profile of a Novel Iflavirus Infecting Senegalese Aedes vexans arabiensis Mosquitoes. Viruses 2020, 12, 440. [Google Scholar] [CrossRef]
- Turell, M.J.; Dohm, D.J.; Sardelis, M.R.; Oguinn, M.L.; Andreadis, T.G.; Blow, J.A. An update on the potential of north American mosquitoes (Diptera: Culicidae) to transmit West Nile Virus. J. Med. Entomol. 2005, 42, 57–62. [Google Scholar] [CrossRef]
- Clarke, K.R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 1993, 18, 117–143. [Google Scholar] [CrossRef]
- Hoekman, D.; Springer, Y.P.; Gibson, C.; Barker, C.M.; Barrera, R.; Blackmore, M.S.; Bradshaw, W.E.; Foley, D.H.; Ginsberg, H.S.; Hayden, M.H.; et al. Design for mosquito abundance, diversity, and phenology sampling within the National Ecological Observatory Network. Ecosphere 2016, 7, e01320. [Google Scholar] [CrossRef]
- McMillan, J.R.; Armstrong, P.M.; Andreadis, T.G. Patterns of mosquito and arbovirus community composition and ecological indexes of arboviral risk in the northeast United States. PLoS Neglected Trop. Dis. 2020, 14, e0008066. [Google Scholar] [CrossRef]
- Beaulieu, M.R.S.; Hopperstad, K.; Dunn, R.; Reiskind, M.H. Simplification of vector communities during suburban succession. PLoS ONE 2019, 14, e0215485. [Google Scholar]
- Mayi, M.P.A.; Bamou, R.; Djiappi-Tchamen, B.; Fontaine, A.; Jeffries, C.L.; Walker, T.; Antonio-Nkondjio, C.; Cornel, A.J.; Tchuinkam, T. Habitat and Seasonality Affect Mosquito Community Composition in the West Region of Cameroon. Insects 2020, 11, 312. [Google Scholar] [CrossRef]
- Andreadis, T.G.; Anderson, J.F.; Vossbrinck, C.R.; Main, A.J. Epidemiology of West Nile Virus in Connecticut: A Five-Year Analysis of Mosquito Data 1999–2003. Vector-Borne Zoonotic Dis. 2004, 4, 360–378. [Google Scholar] [CrossRef] [PubMed]
- Kulasekera, V.L.; Kramer, L.; Nasci, R.S.; Mostashari, F.; Cherry, B.; Trock, S.C.; Glaser, C.; Miller, J.R. West Nile virus infection in mosquitoes, birds, horses, and humans, Staten Island, New York, 2000. Emerg. Infect. Dis. 2001, 7, 722–725. [Google Scholar] [CrossRef] [PubMed]
- CDC. 2022. Available online: https://www.cdc.gov/westnile/resources/pdfs/MosquitoSpecies1999-2016.pdf (accessed on 16 March 2022).
- Sanders, J.D.; Talley, J.L.; Frazier, A.E.; Noden, B.H. Landscape and Anthropogenic Factors Associated with Adult Aedes aegypti and Aedes albopictus in Small Cities in the Southern Great Plains. Insects 2020, 11, 699. [Google Scholar] [CrossRef]
- Rozeboom, L.E. The Mosquitoes of Oklahoma [Internet]. In Technical Bulletin T-16; Oklahoma Agricultural and Mechanical College Agricultural Experiment Station: Stillwater, OK, USA, 1942; Volume 56, Available online: https://babel.hathitrust.org/cgi/pt?id=coo.31924018295687;view=1up;seq=5 (accessed on 31 May 2019).
- Ryan, S.J.; Carlson, C.J.; Mordecai, E.A.; Johnson, L.R. Global expansion and redistribution of Aedes-borne virus transmission risk with climate change. PLoS Negl. Trop. Dis. 2019, 13, e0007213. [Google Scholar] [CrossRef]
- Richards, B.J.T.T.; Hassan, H.; Gebbiena, M.B.; Bartholomay, L.; Paskewitz, S. First Detection of Aedes albopictus (Diptera: Culicidae) and Expansion of Aedes japonicus japonicus in Wisconsin, United States. J. Med. Entomol. 2018, 56, 291–296. [Google Scholar] [CrossRef]
- Armstrong, P.M.; Andreadis, T.G.; Shepard, J.J.; Thomas, M.C. Northern range expansion of the Asian tiger mosquito (Aedes albopictus): Analysis of mosquito data from Connecticut, USA. PLoS Negl. Trop. Dis. 2017, 11, e0005623. [Google Scholar] [CrossRef]
- Sherwood, J.A.; Stehman, S.V.; Howard, J.J.; Oliver, J. Cases of Eastern equine encephalitis in humans associated with Aedes canadensis, Coquillettidia perturbans and Culiseta melanura mosquitoes with the virus in New York State from 1971 to 2012 by analysis of aggregated published data. Epidemiol. Infect. 2020, 148, e72. [Google Scholar] [CrossRef] [PubMed]
- Woods, A.J.; Omernik, J.M.; Butler, D.R.; Ford, J.G.; Henley, J.G.; Hoagland, B.W.; Arndt, D.S. Geological Survey, map scale 1:1,250,000; Ecoregions of Oklahoma: Reston, VA, USA, 2016. [Google Scholar]
- Miller, R.; Fox, G. A tool for drought planning in Oklahoma: Estimating and using drought-influenced flow exceedance curves. J. Hydrol. Reg. Stud. 2017, 10, 35–46. [Google Scholar] [CrossRef]
- Survey, O.C. Oklahoma Climate-Long Term Averages and Extremes. 2022. Available online: http://climate.ok.gov/index.php/climate (accessed on 2 August 2022).
- Yang, L.; Huang, C.; Homer, C.G.; Wylie, B.; Coan, M.J. An approach for mapping large-area impervious surfaces: Synergistic use of Landsat-7 ETM+ and high spatial resolution imagery. Can. J. Remote Sens. 2003, 29, 230–240. [Google Scholar] [CrossRef]
- Jin, S.; Homer, C.; Yang, L.; Danielson, P.; Dewitz, J.; Li, C.; Zhu, Z.; Xian, G.; Howard, D. Overall Methodology Design for the United States National Land Cover Database 2016 Products. Remote Sens. 2019, 11, 2971. [Google Scholar] [CrossRef]
- Thomas, K.; Pelletier, N.; França, C.M.B. Using metagenomics to detect West Nile virus in mosquitoes collected in Oklahoma. BIOS, 2022; in press. [Google Scholar]
- Darsie, R.F.; Ward, R.A. Identification and Geographical Distribution of the Mosquitoes of North America, North of Mexico, 2nd ed.; University Press of Florida: Gainesville, FL, USA, 2005; Volume 2. [Google Scholar]
- Burkett-Cadena, N.D. Mosquitoes of the Southeastern United States; University of Alabama Press: Tuscaloosa, AL, USA, 2013. [Google Scholar]
- Folmer, O.; Black, M.; Hoeh, W.; Lutz, R.; Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 1994, 3, 294–299. [Google Scholar] [PubMed]
- Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012, 28, 1647–1649. [Google Scholar] [CrossRef] [PubMed]
2018 | 2019 | 2020 | 2020 | 2021 | 2021 | ||
---|---|---|---|---|---|---|---|
Sampling season | Early | Early | Early | Late | Early | Late | |
No. sampling sites | 9 | 11 | 9 | 8 | 8 | 4 | |
Total trapping events | 107 | 70 | 62 | 87 | 135 | 100 | |
Light/Gravid events | 107/0 | 57/13 | 26/36 | 25/62 | 78/57 | 0/69 | |
Sampling period | 15 May –21 June | May 20 –June 25 | 22 May –30 June | 1 July– 22 September | 14 May –30 June | 1 July– 16 November | |
Species | % Total | ||||||
Aedes albopictus | 79 | 113 | 57 | 343 | 40 | 128 | 3.11 |
Aedes atropalpus | - | 1 | - | 1 | 1 | 0.01 | |
Aedes canadensis | - | - | 1 | 13 | 30 | - | 0.17 |
Aedes epacticus | 4 | 2 | 13 | 39 | 43 | 0 | 0.39 |
Aedes sollicitans | 24 | 52 | 0 | 7 | 6 | 8 | 0.33 |
Aedes triseriatus | 13 | 17 | 11 | 4 | 39 | 5 | 0.36 |
Aedes trivittatus | - | 440 | 8 | 4 | 167 | 2 | 2.35 |
Aedes vexans | 7272 | 1184 | 284 | 112 | 5333 | 15 | 55.16 |
Aedes Total | 7395 | 1819 | 374 | 522 | 5659 | 159 | |
Culex coronator | 5 | - | 1 | 13 | 3 | - | 0.09 |
Culex erraticus | 2 | - | 23 | 42 | 2 | - | 0.27 |
Culex nigripalpus | 20 | 4 | 7 | 132 | 52 | 9 | 0.86 |
Culex pipiens | 325 | 460 | 257 | 1388 | 1478 | 2135 | 23.55 |
Culex restuans | - | - | 0 | 8 | 46 | 2 | 0.22 |
Culex salinarius | - | - | 2 | 68 | 276 | 15 | 1.41 |
Culex tarsalis | 39 | 674 | 14 | 8 | 316 | 10 | 3.71 |
Culex Total | 391 | 1169 | 304 | 1659 | 2173 | 2171 | |
Anopheles crucians | - | - | 74 | 30 | 286 | 5 | 1.54 |
Anopheles pseudopunctipennis | 19 | 23 | 106 | 29 | 2 | 2 | 0.69 |
Anopheles punctipennis | - | 36 | 11 | 14 | 35 | 4 | 0.37 |
Anopheles quadrimaculatus | 18 | 6 | 38 | 57 | 55 | 2 | 0.67 |
Anopheles Total | 37 | 65 | 229 | 130 | 378 | 13 | |
Psorophora ciliata | - | 4 | 0 | 3 | 3 | 1 | 0.04 |
Psorophora columbiae | 21 | 163 | 34 | 574 | 327 | 24 | 4.43 |
Psorophora cyanescens | - | - | 2 | 32 | 54 | - | 0.34 |
Psorophora ferox | 3 | 9 | 1 | - | 16 | 2 | 0.15 |
Psorophora howardii | - | - | 1 | 1 | - | - | 0.01 |
Psorophora Total | 24 | 176 | 38 | 610 | 400 | 27 | |
Orthopodomyia signifera | - | 3 | - | 1 | - | - | 0.02 |
Coquillettidia perturbans | - | - | - | 11 | - | - | 0.04 |
Unknown | 4 | 16 | 5 | - | - | - | 0.05 |
Grand Total Mosquitoes | 7804 | 3028 | 945 | 2935 | 8609 | 2335 | 25,656 |
Species Richness | Abundance | Trapping Events | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Site Number | Landscape Setting | 2018 Early | 2019 Early | 2020 Early | 2020 Late | 2021 Early | 2021 Late | Early Total | Late Total | Site Total | Early | Late | Total | Early | Late | Total |
1 | Suburban backyard | 12 | 11 | 12 | 7 | 19 | 7 | 19 | 475 | 1566 | 2041 | 43 | 18 | 61 | ||
2 | Suburban backyard | 9 | 9 | 12 | 13 | 15 | 12 | 17 | 613 | 552 | 1165 | 29 | 8 | 37 | ||
3 | Suburban backyard | 8 | 2 | 9 | 9 | 191 | 191 | 10 | 10 | |||||||
4 | Suburban backyard | 8 | 7 | 3 | 6 | 7 | 8 | 13 | 11 | 18 | 279 | 279 | 558 | 34 | 15 | 49 |
5 | Rural | 4 | 7 | 1 | 19 | 20 | 20 | 2576 | 2576 | 29 | 29 | |||||
6 | Suburban backyard | 4 | 11 | 9 | 11 | 9 | 14 | 246 | 769 | 1015 | 19 | 10 | 29 | |||
7 | Suburban backyard | 17 | 5 | 9 | 17 | 9 | 21 | 711 | 160 | 871 | 48 | 14 | 62 | |||
8 | Riparian forest | 14 | 12 | 17 | 15 | 19 | 13 | 23 | 18 | 24 | 11,818 | 859 | 12,677 | 57 | 24 | 81 |
9 | Rural | 7 | 5 | 7 | 5 | 10 | 49 | 20 | 69 | 3 | 2 | 5 | ||||
10 | Rural | 11 | 11 | 11 | 379 | 379 | 3 | 3 | ||||||||
11 | Suburban backyard | 7 | 10 | 10 | 7 | 12 | 474 | 153 | 627 | 16 | 18 | 34 | ||||
12 | Rural | 9 | 23 | 19 | 12 | 20 | 26 | 27 | 2225 | 912 | 3137 | 29 | 19 | 48 | ||
13 | Suburban backyard | 3 | 16 | 17 | 17 | 350 | 350 | 20 | 20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoekman, D.; Cummings, B.; Arango, H.; Back, N.; Welles, R.; Pelletier, N.; Helwig, K.; Escritt, C.; Thomas, K.; Fellers, H.; et al. Spatial and Seasonal Patterns of the Mosquito Community in Central Oklahoma. Pathogens 2022, 11, 1007. https://doi.org/10.3390/pathogens11091007
Hoekman D, Cummings B, Arango H, Back N, Welles R, Pelletier N, Helwig K, Escritt C, Thomas K, Fellers H, et al. Spatial and Seasonal Patterns of the Mosquito Community in Central Oklahoma. Pathogens. 2022; 11(9):1007. https://doi.org/10.3390/pathogens11091007
Chicago/Turabian StyleHoekman, David, Bailee Cummings, Helen Arango, Nicholas Back, Randall Welles, Noah Pelletier, Katelyn Helwig, Christian Escritt, Kayla Thomas, Hailie Fellers, and et al. 2022. "Spatial and Seasonal Patterns of the Mosquito Community in Central Oklahoma" Pathogens 11, no. 9: 1007. https://doi.org/10.3390/pathogens11091007
APA StyleHoekman, D., Cummings, B., Arango, H., Back, N., Welles, R., Pelletier, N., Helwig, K., Escritt, C., Thomas, K., Fellers, H., Campbell, C., Wheeler, A., Iglesias, R., Jacobs, H., Lively, M., & França, C. M. B. (2022). Spatial and Seasonal Patterns of the Mosquito Community in Central Oklahoma. Pathogens, 11(9), 1007. https://doi.org/10.3390/pathogens11091007