The Experimental Infection of Goats with Small Ruminant Morbillivirus Originated from Barbary Sheep
Abstract
:1. Introduction
2. Results
2.1. Outbreak Investigation
2.2. Virus Isolation
2.3. Experimental Infection of Goats
2.3.1. Clinical Observation
2.3.2. Gros Pathology
2.4. Serological Analysis
2.5. Virus Detection
2.5.1. ID Rapid PPR Antigen Dipstick Field Test
2.5.2. Molecular Analysis
Reverse Transcriptase Real-Time Polymerase Chain Reaction (RT-qPCR) Results of Swab and EDTA Blood Sample Material
Organs
Phylogenetic Analysis
3. Discussion
4. Materials and Methods
4.1. Outbreak Investigation
4.2. Virus Isolation
4.3. Experimental Design
4.3.1. Experimental Inoculation of Goats
4.3.2. Sample Collection
4.4. Serological Analysis
4.5. Virus Detection
4.5.1. Pen-Side Test for SRMV Antigen Detection
4.5.2. Molecular Analyses
Reverse Transcriptase Real-Time Polymerase Chain Reaction (RT-qPCR) Method
Phylogenetic Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amarasinghe, G.K.; Ceballos, N.G.A.; Banyard, A.C.; Basler, C.F.; Bavari, S.; Bennett, A.J.; Blasdell, K.R.; Briese, T.; Bukreyev, A.; Caì, Y. Taxonomy of the order Mononegavirales: Update 2018. Arch. Virol. 2018, 163, 2283–2294. [Google Scholar] [CrossRef] [PubMed]
- Shaila, M.; Shamaki, D.; Forsyth, M.A.; Diallo, A.; Goatley, L.; Kitching, R.; Barrett, T. Geographic distribution and epidemiology of peste des petits ruminants viruses. Virus Res. 1996, 43, 149–153. [Google Scholar] [CrossRef]
- Dhar, P.; Sreenivasa, B.; Barrett, T.; Corteyn, M.; Singh, R.; Bandyopadhyay, S. Recent epidemiology of peste des petits ruminants virus (PPRV). Vet. Microbiol. 2002, 88, 153–159. [Google Scholar] [CrossRef]
- Elsawalhy, A.; Mariner, J.C.; Chibeu, D.; Wamway, H.; Wakhusama, S.; Olaho-Mukani, W.; Toye, P.G. Pan African strategy for the progressive control of Peste des petits ruminants (Pan African PPR strategy). Bull. Anim. Health Prod. Afr. 2010, 58, 185–193. [Google Scholar] [CrossRef]
- Baron, M.; Parida, S.; Oura, C. Peste des petits ruminants: A suitable candidate for eradication? Vet. Rec. 2011, 169, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Emikpe, B.; Ezeasor, C.; Sabri, M.; Anosa, V.O. Clinicopathological evaluation of intranasal, subcutaneous and intramuscular routes of vaccination against intratracheal challenge of Peste des petits ruminants virus in goats. Small Rumin. Res. 2013, 113, 290–296. [Google Scholar] [CrossRef]
- Kumar, P.; Tripathi, B.; Sharma, A.; Kumar, R.; Sreenivasa, B.; Singh, R.; Dhar, P.; Bandyopadhyay, S.K. Pathological and immunohistochemical study of experimental peste des petits ruminants virus infection in goats. J. Vet. Med. Ser. B 2004, 51, 153–159. [Google Scholar] [CrossRef]
- Couacy-Hymann, E.; Bodjo, C.; Danho, T.; Libeau, G.; Diallo, A. Evaluation of the virulence of some strains of peste-des-petits-ruminants virus (PPRV) in experimentally infected West African dwarf goats. Vet. J. 2007, 173, 178–183. [Google Scholar] [CrossRef]
- Truong, T.; Boshra, H.; Embury-Hyatt, C.; Nfon, C.; Gerdts, V.; Tikoo, S.; Babiuk, L.A.; Kara, P.; Chetty, T.; Mather, A. Peste des petits ruminants virus tissue tropism and pathogenesis in sheep and goats following experimental infection. PLoS ONE 2014, 9, e87145. [Google Scholar]
- Couacy-Hymann, E.; Bodjo, S.; Koffi, M.; Kouakou, C.; Danho, T. The early detection of peste-des-petits-ruminants (PPR) virus antigens and nucleic acid from experimentally infected goats using RT-PCR and immunocapture ELISA techniques. Res. Vet. Sci. 2009, 87, 332–335. [Google Scholar] [CrossRef]
- Pope, R.A.; Parida, S.; Bailey, D.; Brownlie, J.; Barrett, T.; Banyard, A.C. Early events following experimental infection with peste-des-petits ruminants virus suggest immune cell targeting. PLoS ONE 2013, 8, e55830. [Google Scholar] [CrossRef] [PubMed]
- Hammouchi, M.; Loutfi, C.; Sebbar, G.; Touil, N.; Chaffai, N.; Batten, C.; Harif, B.; Oura, C.; El Harrak, M. Experimental infection of alpine goats with a Moroccan strain of peste des petits ruminants virus (PPRV). Vet Microbiol 2012, 160, 240–244. [Google Scholar] [CrossRef]
- Fakri, F.Z.; Elhajjam, A.; Bamouh, Z.; Jazouli, M.; Boumart, Z.; Tadlaoui, K.; Fassi-Fihri, O.; Elharrak, M. Susceptibility of Moroccan sheep and goat breeds to peste des petits ruminants virus. Acta Vet. Scand. 2017, 59, 56. [Google Scholar] [CrossRef] [PubMed]
- Dou, Y.; Liang, Z.; Prajapati, M.; Zhang, R.; Li, Y.; Zhang, Z. Expanding Diversity of Susceptible Hosts in Peste Des Petits Ruminants Virus Infection and Its Potential Mechanism Beyond. Front. Vet. Sci. 2020, 7, 66. [Google Scholar] [CrossRef]
- Balamurugan, V.; Krishnamoorthy, P.; Veeregowda, B.M.; Sen, A.; Rajak, K.K.; Bhanuprakash, V.; Gajendragad, M.R.; Prabhudas, K. Seroprevalence of Peste des petits ruminants in cattle and buffaloes from Southern Peninsular India. Trop. Anim. Health Prod. 2012, 44, 301–306. [Google Scholar] [CrossRef] [PubMed]
- Abubakar, M.; Mahapatra, M.; Muniraju, M.; Arshed, M.J.; Khan, E.-u.H.; Banyard, A.C.; Ali, Q.; Parida, S. Serological detection of antibodies to peste des petits ruminants virus in large ruminants. Transbound. Emerg. Dis. 2017, 64, 513–519. [Google Scholar] [CrossRef]
- Haroun, M.; Hajer, I.; Mukhtar, M.; Ali, B. Short Communication Detection of Antibodies Against Peste des Petits Ruminants Virus in Sera of Cattle, Camels, Sheep and Goats in Sudan. Vet. Res. Commun. 2002, 26, 541. [Google Scholar] [CrossRef]
- Schulz, C.; Fast, C.; Wernery, U.; Kinne, J.; Joseph, S.; Schlottau, K.; Jenckel, M.; Höper, D.; Patteril, N.A.G.; Syriac, G. Camelids and cattle are dead-end hosts for peste-des-petits-ruminants virus. Viruses 2019, 11, 1133. [Google Scholar] [CrossRef]
- Schulz, C.; Fast, C.; Schlottau, K.; Hoffmann, B.; Beer, M. Neglected hosts of small ruminant morbillivirus. Emerg. Infect. Dis. 2018, 24, 2334. [Google Scholar] [CrossRef]
- Kinne, J.; Kreutzer, R.; Kreutzer, M.; Wernery, U.; Wohlsein, P. Short Report Peste des petits ruminants in Arabian wildlife. Epidemiol Infect. 2010, 138, 1211–1214. [Google Scholar] [CrossRef]
- Pruvot, M.; Fine, A.E.; Hollinger, C.; Strindberg, S.; Damdinjav, B.; Buuveibaatar, B.; Chimeddorj, B.; Bayandonoi, G.; Khishgee, B.; Sandag, B. Outbreak of Peste des Petits Ruminants among Critically Endangered Mongolian Saiga and other Wild Ungulates, Mongolia, 2016–2017. Emerg. Infect. Dis. 2020, 26, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bamouh, Z.; Fakri, F.; Jazouli, M.; Safini, N.; Omari Tadlaoui, K.; Elharrak, M. Peste des petits ruminants pathogenesis on experimental infected goats by the Moroccan 2015 isolate. BMC Vet. Res. 2019, 15, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Emikpe, B.; Akpavie, S.O. Clinicopathologic effects of peste des petit ruminant virus infection in West African dwarf goats. Small Rumin. Res. 2011, 95, 168–173. [Google Scholar] [CrossRef]
- Rajak, K.; Sreenivasa, B.; Hosamani, M.; Singh, R.; Singh, S.; Singh, R.; Bandyopadhyay, S.K. Experimental studies on immunosuppressive effects of peste des petits ruminants (PPR) virus in goats. Comp. Immunol. Microbiol. Infect. Dis. 2005, 28, 287–296. [Google Scholar] [CrossRef] [PubMed]
- Enchery, F.; Hamers, C.; Kwiatek, O.; Gaillardet, D.; Montange, C.; Brunel, H.; Goutebroze, S.; Philippe-Reversat, C.; Libeau, G.; Hudelet, P. Development of a PPRV challenge model in goats and its use to assess the efficacy of a PPR vaccine. Vaccine 2019, 37, 1667–1673. [Google Scholar] [CrossRef] [PubMed]
- Couacy-Hymann, E.; Bodjo, S.C.; Danho, T.; Koffi, M.; Libeau, G.; Diallo, A. Early detection of viral excretion from experimentally infected goats with peste-des-petits ruminants virus. Prev. Vet. Med. 2007, 78, 85–88. [Google Scholar] [CrossRef]
- Baron, J.; Fishbourne, E.; Couacy-Hyman, E.; Abubakar, M.; Jones, B.; Frost, L.; Herbert, R.; Chibssa, T.; Van’t Klooster, G.; Afzal, M. Development and testing of a field diagnostic assay for peste des petits ruminants virus. Transbound. Emerg. Dis. 2014, 61, 390–396. [Google Scholar] [CrossRef]
- Ezeibe, M.; Okoroafor, O.; Ngene, A.; Eze, J.; Eze, I.; Ugonabo, J.A.C. Persistent detection of peste de petits ruminants antigen in the faeces of recovered goats. Trop. Anim. Health Prod. 2008, 40, 517–519. [Google Scholar] [CrossRef]
- Kumar, K.S.; Babu, A.; Sundarapandian, G.; Roy, P.; Thangavelu, A.; Kumar, K.S.; Arumugam, R.; Chandran, N.; Muniraju, M.; Mahapatra, M. Molecular characterisation of lineage IV peste des petits ruminants virus using multi gene sequence data. Vet. Microbiol. 2014, 174, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Bataille, A.; Kwiatek, O.; Belfkhi, S.; Mounier, L.; Parida, S.; Mahapatra, M.; Caron, A.; Chubwa, C.C.; Keyyu, J.; Kock, R. Optimization and evaluation of a non-invasive tool for peste des petits ruminants surveillance and control. Sci. Rep. 2019, 9, 4742. [Google Scholar]
- Liu, W.; Wu, X.; Wang, Z.; Bao, J.; Li, L.; Zhao, Y.; Li, J. Virus excretion and antibody dynamics in goats inoculated with a field isolate of peste des petits ruminants virus. Transbound. Emerg. Dis. 2013, 60, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Kul, O.; Kabakci, N.; Atmaca, H.; Özkul, A. Natural peste des petits ruminants virus infection: Novel pathologic findings resembling other morbillivirus infections. Vet. Pathol. 2007, 44, 479–486. [Google Scholar] [CrossRef] [Green Version]
- Parida, S.; Muniraju, M.; Altan, E.; Baazizi, R.; Raj, G.D.; Mahapatra, M. Emergence of PPR and its threat to Europe. Small Rumin. Res. 2016, 142, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Benfield, C.T.; Hill, S.; Shatar, M.; Shiilegdamba, E.; Damdinjav, B.; Fine, A.; Willett, B.; Kock, R.; Bataille, A. Molecular epidemiology of peste des petits ruminants virus emergence in critically endangered Mongolian saiga antelope and other wild ungulates. Virus Evol. 2021, 7, veab062. [Google Scholar] [CrossRef] [PubMed]
- Batten, C.A.; Banyard, A.C.; King, D.P.; Henstock, M.R.; Edwards, L.; Sanders, A.; Buczkowski, H.; Oura, C.C.; Barrett, T. A real time RT-PCR assay for the specific detection of Peste des petits ruminants virus. J. Virol. Methods 2011, 171, 401–404. [Google Scholar] [CrossRef]
- Spearman, C.; Kaerber, G. Titerbestrimmung (determination of titer). In Virologische Arbeitsmethoden; Bibrack, B., Wittmann, G., Eds.; Springer: Berlin/Heidelberg, Germany, 1974. [Google Scholar]
- Polci, A.; Cosseddu, G.; Ancora, M.; Pinoni, C.; El Harrak, M.; Sebhatu, T.; Ghebremeskel, E.; Sghaier, S.; Lelli, R.; Monaco, F.; et al. Development and preliminary evaluation of a new real-time RT-PCR assay for detection of peste des petits ruminants virus genome. Transbound. Emerg. Dis. 2015, 62, 332–338. [Google Scholar] [CrossRef]
- Hoffmann, B.; Depner, K.; Schirrmeier, H.; Beer, M. A universal heterologous internal control system for duplex real-time RT-PCR assays used in a detection system for pestiviruses. J. Virol. Methods 2006, 136, 200–209. [Google Scholar] [CrossRef]
- Chrzastek, K.; Lee, D.-h.; Smith, D.; Sharma, P.; Suarez, D.L.; Pantin-Jackwood, M.; Kapczynski, D.R. Use of Sequence-Independent, Single-Primer-Amplification (SISPA) for rapid detection, identification, and characterization of avian RNA viruses. Virology 2017, 509, 159–166. [Google Scholar] [CrossRef]
- Ries, C.; Domes, U.; Janowetz, B.; Böttcher, J.; Burkhardt, K.; Miller, T.; Beer, M.; Hoffmann, B. Isolation and Cultivation of a New Isolate of BTV-25 and Presumptive Evidence for a Potential Persistent Infection in Healthy Goats. Viruses 2020, 12, 983. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. J. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
ID. | Days Post Infection | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 3 | 5 | 7 | 10 | 12 | 14 | 17 | 21 | 24 | 28 | |
Z/9 | − | − | ++ | +++ | +++ | +++ | * | ||||
Z/10 | − | − | +++ | +++ | +++ | +++ | |||||
Z/11 | − | − | + | +++ | +++ | +++ | ++ | (+) | − | − | − |
Z/20 | − | − | + | +++ | |||||||
Z/22 | − | − | (+) | +++ | +++ | +++ | |||||
Z/23 | − | − | ++ | +++ | +++ | ||||||
Z/24 | − | − | − | − | (+) | +++ | +++ | +++ | |||
Z/25 | − | − | − | − | − | + | +++ | +++ |
ID | Days Post Infection | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 3 | 5 | 7 | 10 | 12 | 14 | 17 | 21 | 24 | 28 | |
Z/9 | − | − | + | +++ | +++ | +++ | * | ||||
Z/10 | − | − | + | +++ | +++ | +++ | |||||
Z/11 | − | − | − | +++ | +++ | +++ | (+) | − | − | − | − |
Z/20 | − | − | − | + | |||||||
Z/22 | − | − | + | +++ | +++ | +++ | |||||
Z/23 | − | − | +++ | ++ | +++ | ||||||
Z/24 | − | − | − | − | (+) | +++ | +++ | +++ | |||
Z/25 | − | − | − | − | (+) | ++ | +++ | +++ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milovanović, M.; Dietze, K.; Joseph, S.; Wernery, U.; Kumar, A.; Kinne, J.; Patteril, N.G.; Hoffmann, B. The Experimental Infection of Goats with Small Ruminant Morbillivirus Originated from Barbary Sheep. Pathogens 2022, 11, 991. https://doi.org/10.3390/pathogens11090991
Milovanović M, Dietze K, Joseph S, Wernery U, Kumar A, Kinne J, Patteril NG, Hoffmann B. The Experimental Infection of Goats with Small Ruminant Morbillivirus Originated from Barbary Sheep. Pathogens. 2022; 11(9):991. https://doi.org/10.3390/pathogens11090991
Chicago/Turabian StyleMilovanović, Milovan, Klaas Dietze, Sunitha Joseph, Ulrich Wernery, Ajith Kumar, Joerg Kinne, Nissy Georgy Patteril, and Bernd Hoffmann. 2022. "The Experimental Infection of Goats with Small Ruminant Morbillivirus Originated from Barbary Sheep" Pathogens 11, no. 9: 991. https://doi.org/10.3390/pathogens11090991
APA StyleMilovanović, M., Dietze, K., Joseph, S., Wernery, U., Kumar, A., Kinne, J., Patteril, N. G., & Hoffmann, B. (2022). The Experimental Infection of Goats with Small Ruminant Morbillivirus Originated from Barbary Sheep. Pathogens, 11(9), 991. https://doi.org/10.3390/pathogens11090991