Multidrug-Resistant Bacteria in a COVID-19 Hospital in Zagreb
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Data
2.2. Bacterial Isolates
2.3. Antimicrobial Susceptibility Testing
2.4. Phenotypic Detection of β-Lactamases
2.5. Conjugation
2.6. Molecular Detection of Resistance Genes
2.7. Whole Genome Sequencing (WGS)
2.8. Characterization of Plasmids and Molecular Typing of A. baumannii Isolates
2.9. Statistical Analysis
3. Results
3.1. Patients
3.2. Bacterial Isolates
3.3. Antibiotic Susceptibility
3.3.1. Enterobacterales
Strain | SPECIMEN and Outcome | ESBL | AMX | AMC | TZP | CAZ | CTX | CRO | FEP | IPM | MEM | ERT | GM | CIP | COL | BL |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
E. coli 308523 | ETA D | + | >128 | 64 | 64 | >128 | >128 | >128 | 64 | 1 | 0.5 | S | 32 | 64 | 0.25 | CTX-M-15 |
3.3.2. Acinetobacter baumannii
POTOCOL NUMBER | OUTCOME | SPECIMEN | Hodge | CIM | EDTA | TZP | CAZ | FEP | IMI | MEM | GM | CIP | SAM | COL | IC | BL, ST | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 3791, 1998 | S | BC, ETA | + | + | + | >128 | >128 | >128 | >128 | >128 | >128 | >128 | 8 | 1 | 2 | OXA-72 |
2 | 7548 | S | BC | + | + | + | >128 | >128 | >128 | >128 | >128 | >128 | >128 | 4 | 1 | 2 | OXA-23 |
3 | 305574 | D | BC | + | + | + | >128 | >128 | >128 | >128 | >128 | >128 | >128 | 4 | 1 | 2 | OXA-23, ST208 |
4 | 299055 | D | ETA | + | + | + | >128 | >128 | >128 | >128 | >128 | >128 | >128 | 8 | 1 | 2 | OXA-23, ST425 |
5 | 314959 | D | BC | + | + | + | >128 | >128 | >128 | >128 | >128 | >128 | >128 | 8 | 2 | 2 | OXA-23, ST195 |
6 | 317893 | D | ETA | + | + | + | >128 | >128 | >128 | >128 | >128 | >128 | >128 | 8 | 2 | 2 | OXA-23 |
7 | 297466 | D | ETA | + | + | + | >128 | >128 | >128 | >128 | >128 | >128 | >128 | 16 | 2 | 2 | OXA-23, ST748 |
8 | 8959 | D | ETA | + | + | + | >128 | >128 | >128 | >128 | >128 | >128 | >128 | 16 | 2 | 2 | OXA-72 |
9 | 317063 | S | BC | + | + | + | >128 | >128 | >128 | >128 | >128 | >128 | >128 | 4 | 1 | 2 | OXA-23, ST478 |
10 | 290040 | D | ETA | + | + | + | >128 | >128 | >128 | >128 | >128 | >128 | >128 | 32 | 1 | 2 | OXA-72,ST208 |
11 | 288237 294604 | D | BC, ETA | + | + | + | >128 | >128 | >128 | >128 | >128 | >128 | >128 | 32 | 0.5 | 2 | OXA-23-like |
12 | 310639 | D | BC, ETA | + | + | + | >128 | >128 | >128 | >128 | >128 | >128 | >128 | 16 | 2 | 2 | OXA-24-like |
13 | 290005 | D | ETA | + | + | + | >128 | >128 | >128 | >128 | >128 | >128 | >128 | 16 | 1 | 2 | OXA-24-like |
14 | 4853 | D | BC | + | + | + | >128 | >128 | >128 | >128 | >128 | >128 | >128 | 4 | 1 | 2 | OXA-24-like |
15 | 295429 295432 | D | BC, ETA | + | + | + | >128 | >128 | >128 | >128 | >128 | >128 | >128 | 4 | 1 | 2 | OXA-24-like |
16 | 4829, 4841 | D | BC | + | + | + | >128 | >128 | >128 | >128 | >128 | >128 | >128 | 4 | 1 | 2 | OXA-24-like |
17 | 8249 | D | ETA | + | + | + | >128 | >128 | >128 | >128 | >128 | >128 | >128 | 32 | 1 | 2 | OXA-24-like |
18 | 294599 290006 | D | BC, ETA | + | + | + | >128 | >128 | >128 | >128 | >128 | >128 | >128 | 64 | 1 | 2 | OXA-24-like |
19 | 316223 | D | ETA | + | + | + | >128 | >128 | >128 | >128 | >128 | >128 | >128 | 32 | 0.25 | 2 | OXA-24-like |
20 | 300705 | D | BC, ETA | + | + | + | >128 | >128 | >128 | >128 | >128 | >128 | >128 | 4 | 1 | 2 | OXA-24-like |
21 | 309328 | D | BC, ETA | + | + | + | >128 | >128 | >128 | >128 | >128 | >128 | >128 | 4 | 0.5 | 2 | OXA-24-like |
22 | 289675 | D | ETA | + | + | + | >128 | >128 | >128 | >128 | >128 | >128 | >128 | 8 | 0.5 | 2 | OXA-24-like |
23 | 20584 | D | ETA | + | + | + | >128 | >128 | >128 | >128 | >128 | >128 | >128 | 4 | 0.5 | 2 | OXA-24-like |
24 | 300700 | D | ETA | + | + | + | >128 | >128 | >128 | >128 | >128 | >128 | >128 | 32 | 0.5 | 2 | OXA-24-like |
25 | 307477 | D | BC, ETA | + | + | + | >128 | >128 | >128 | >128 | >128 | >128 | >128 | >128 | 0.5 | 2 | OXA-24-like |
26 | 287935 | D | BC | + | + | + | >128 | >128 | >128 | >128 | >128 | >128 | >128 | 32 | 0.5 | 2 | OXA-24-like |
27 | 290410 | D | BC, ETA | + | + | + | >128 | >128 | >128 | >128 | >128 | >128 | >128 | 16 | 0.5 | 2 | OXA-24-like |
28 | 290000 | D | ETA | + | + | + | >128 | >128 | >128 | >128 | >128 | >128 | >128 | 16 | 1 | 2 | OXA-24-like |
29 | 316358 | D | BC, ETA | + | + | + | >128 | >128 | >128 | >128 | >128 | >128 | >128 | 4 | 1 | 2 | OXA-24-like |
30 | 288243 | D | BC | + | + | + | >128 | >128 | >128 | >128 | >128 | >128 | >128 | 64 | 1 | 2 | OXA-24-like |
31 | 297099 297105 | BC, ETA | + | + | + | >128 | >128 | >128 | >128 | >128 | >128 | >128 | 8 | 1 | 2 | OXA-24-like | |
32 | 314854 | D | ETA | + | + | + | >128 | >128 | >128 | >128 | >128 | >128 | >128 | 4 | 1 | 2 | OXA-23-like |
33 | 306000 | D | ETA | + | + | + | >128 | >128 | >128 | >128 | >128 | >128 | >128 | 4 | 1 | 2 | OXA-23-like |
34 | 302294 | D | ETA | + | + | + | >128 | >128 | >128 | >128 | >128 | >128 | >128 | 2 | 1 | 2 | OXA-24-like |
3.3.3. Gram-Positive Isolates
PROTOCOL NUMBER | SPECIMEN and Outcome | PEN | OX | CLY | ERI | SXT | RIF | GM | CIP | VAN | TEIC | LZD |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1. (7620) | ETA D | R | R | R | R | S | S | S | R | S (0.5) | S (0.5) | S |
2. (317779) | ETA S | R | R | R | R | S | S | S | R | S (0.5) | S (0.5) | S |
3. (305541) | ETA D | R | R | R | R | S | S | S | S | S (0.5) | S (0.5) | S |
4. (302595) | ETA D | R | R | R | R | S | S | S | S | S (0.5) | S (0.5) | S |
5. (288240) | BC D | R | R | R | R | S | S | R | R | S (0.5) | S (0.5) | S |
3.4. Conjugation
3.5. Molecular Detection of Resistance Genes
3.5.1. Enterobacterales
3.5.2. A. baumannii
3.6. Whole Genome Sequencing
Isolate | PROTOCOL NUMBER | AG | β-Lactam | SUL | TET | CHL | ACCCESION NUMBER |
---|---|---|---|---|---|---|---|
A. baumannii 1 | 3791 | armA | Sul2 | tetB | JAKLXV000000000 | ||
aph(3″)-Ib aph(6)-Id | blaOXA-66 blaADC-25 blaOXA-72 | ||||||
A. baumannii 2 | 7548 | sul1 | tetB | JAKLXW000000000 | |||
armA | blaOXA-66 blaADC-25 blaOXA-23 | ||||||
aph(3″)-Ib aph(6)-Id | |||||||
305,574 | armA | blaOXA-66 blaADC-25 blaOXA-23 | sul1 | tetB | JAKLXX000000000 | ||
A. baumannii 3 | aph(3″)-Ib aph(6)-Id | ||||||
314,959 | armA | blaOXA-66 blaADC-25 blaOXA-23 | sul1 | tetB | JAKLXY000000000 | ||
A. baumannii 5 | aph(3″)-Ib aph(6)-Id | ||||||
317,893 | JAKLXZ000000000 | ||||||
A. baumannii 6 | armA | blaOXA-66 blaADC-25 blaOXA-23 | sul1 | tetB | |||
aph(3″)-Ib aph(6)-Id | |||||||
A. baumannii 7 | 297,466 | armA | blaOXA-66 blaADC-25 blaOXA-23 | sul1 | tetB | catA1 | JAKLYA000000000 |
aph(3″)-Ib aph(6)-Id aac(3)-Ia aadA1 | |||||||
A. baumannii 8 | 8959 | armA | Sul2 | tetB | JAKLYB000000000 | ||
aph(3″)-Ib aph(6)-Id aac(3)-Ia aadA1 | blaOXA-66 blaADC-25 blaOXA-72 | ||||||
A. baumannii 9 | 317,063 | armA | blaOXA-66 blaADC-25 blaOXA-23 | sul1 | tetB | JAKLYC000000000 | |
aph(3″)-Ib aph(6)-Id aadA1 | |||||||
290,040 | armA | Sul1 | tetB | ||||
A. baumannii 10 | aph(3″)-Ib aph(6)-Id aac(6)-Ip | blaOXA-66 blaADC-25 blaOXA-72 | JAKLYD000000000 |
3.7. Plasmid Analysis
3.7.1. Enterobacterales
3.7.2. A. baumannii
3.8. Genotyping
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Durán-Manuel, E.M.; Cruz-Cruz, C.; Ibáñez-Cervantes, G.; Bravata-Alcantará, J.C.; Sosa-Hernández, O.; Delgado-Balbuena, L.; León-García, G.; Cortés-Ortíz, I.A.; Cureño-Díaz, M.A.; Castro-Escarpulli, G.; et al. Clonal dispersion of Acinetobacter baumannii in an intensive care unit designed to patients COVID-19. J. Infect. Dev. Ctries. 2021, 31, 58–68. [Google Scholar] [CrossRef]
- Khurana, S.; Singh, P.; Sharad, N.; Kiro, V.V.; Rastogi, N.; Lathwal, A.; Malhotra, R.; Trikha, A.; Mathur, P. Profile of co-infections & secondary infections in COVID-19 patients at a dedicated COVID-19 facility of a tertiary care Indian hospital: Implication on antimicrobial resistance. Indian J. Med. Microbiol. 2021, 39, 147–153. [Google Scholar] [CrossRef]
- Bradford, P.A. Extended-spectrum β-lactamases in the 21st Century: Characterization, Epidemiology, and Detection of This Important Resistance Threat. Clin. Microbiol. Rev. 2001, 14, 933–951. [Google Scholar] [CrossRef] [Green Version]
- Bonnet, R. Growing group of extended-spectrum β-lactamases: The CTX-M enzymes. Antimicrob. Agents Chemother. 2004, 48, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossolini, G.M.; D’Andrea, M.M.; Mugnaioli, C. The spread of CTX-M-type extended-spectrum β-lactamases. Clin. Infect. 2008, 14, 33–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacoby, G.A. AmpC β-lactamases. J. Clin. Microbiol. 2009, 22, 161–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canton, R.; Akova, M.; Carmeli, Y.; Giske, C.G.; Glupczynski, Y.; Gniadkowski, M.; Miriagou, V.; Naas, T.; Rossolini, G.M.; Samuelsen, Ø.; et al. Rapid evolution and spread of carbapenemases among Enterobacteriaceae in Europe. Clin. Microbiol. Infect. 2012, 18, 413–431. [Google Scholar] [CrossRef] [Green Version]
- Queenan, A.M.; Bush, K. Carbapenemases: The versatile β-lactamases. Clin. Microbiol. Rev. 2007, 20, 440–458. [Google Scholar] [CrossRef] [Green Version]
- Brown, S.; Amyes, S. OXA β-lactamase in Acinetobacter: The story so far. J. Antimicrob. Chemother. 2006, 57, 1–3. [Google Scholar] [CrossRef]
- Deurenberg, R.H.; Sobbering, E.E. The evolution of Staphylococus aureus. Infect. Genet. Evol. 2008, 8, 747–763. [Google Scholar] [CrossRef] [PubMed]
- Chastre, J.; Fagon, J.Y. Ventilator-associated pneumonia. Am. J. Respir. Crit. Care Med. 2002, 165, 867–903. [Google Scholar] [CrossRef] [PubMed]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Dingle, T.C.; Butler-Wu, S.M. Maldi-tof mass spectrometry for microorganism identification. Clin. Lab. Med. 2013, 3, 589–609. [Google Scholar] [CrossRef]
- Clinical Laboratory Standard Institution. Performance Standards for Antimicrobial Susceptibility Testing, 28th ed.; Approved Standard M100-S22; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- European Committee for Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 12. 2022. Available online: http://www.eucast.org (accessed on 1 October 2022).
- Jarlier, V.; Nicolas, M.H.; Fournier, G.; Philippon, A. Extended broad-spectrum β-lactamases conferring transferable resistance to newer β-lactam agents in Enterobacteriaceae: Hospital prevalence and susceptibility patterns. Rev. Infect. Dis. 1988, 10, 867–878. [Google Scholar] [CrossRef]
- Pournaras, S.A.; Markogiannakis, A.; Ikonomidis, L.; Kondyli, K.; Bethimouti, A.N.; Maniatis, N.J.; Legakis, N.J.; Tsakris, A. Outbreak of multiple clones of imipenem-resistant Acinetobacter baumannii isolates expressing OXA-58 carbapenemase in an intensive care unit. J. Antimicrob. Chemother. 2006, 57, 557–561. [Google Scholar] [CrossRef]
- Coudron, I. Inhibitor-based methods for detection of plasmid-mediated AmpC β-lactamases in Klebsiella spp., Escherichia coli and Proteus mirabilis. J. Clin. Microbiol. 2005, 43, 4163–4167. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.; Lim, Y.S.; Yong, D.; Yum, J.H.; Chong, Y. Evaluation of the Hodge test and the imipenem-EDTA-double-disk synergy test for differentiating metallo-β-lactamase-producing isolates of Pseudomonas spp. and Acinetobacter spp. J. Clin. Microbiol. 2003, 41, 4623–4629. [Google Scholar] [CrossRef] [Green Version]
- Pasteran, F.; Mendez, T.; Guerriero, L.; Rapoport, M.; Corso, A. A sensitive screening test for suspected class A carbapenemase production in species of Enterobacteriaceae. J. Clin. Microbiol. 2009, 47, 1631–1639. [Google Scholar] [CrossRef] [Green Version]
- van der Zwaluw, K.; De Haan, A.; Pluister, G.N.; Bootsma, H.J.; de Neeling, A.J. The Carbapenem Inactivation Method (CIM), a simple and low-cost alternative for the carba NP test to assess phenotypic carbapenemase activity in Gram-negative rods. PLoS ONE 2015, 10, e0123690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2002, 18, 268–281. [Google Scholar] [CrossRef]
- Elwell, L.P.; Falkow, S. The characterization of R plasmids and the detection of plasmid-specified genes. In Antibiotics in Laboratory Medicine, 2nd ed.; Lorian, V., Ed.; Williams and Wilkins: Baltimore, MD, USA, 1986; pp. 683–721. [Google Scholar]
- Arlet, G.; Brami, G.; Decre, D.; Flippo, A.; Gaillot, O.; Lagrange, P.H.; Philippon, A. Molecular characterization by PCR restriction fragment polymorphism of TEM β-lactamases. FEMS Microbiol. Lett. 1995, 134, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Nüesch-Inderbinen, M.T.; Hächler, H.; Kayser, F.H. Detection of genes coding for extended-spectrum SHV β-lactamases in clinical isolates by a molecular genetic method, and comparison with the E test. Eur. J. Clin. Microbiol. Infect. Dis. 1996, 15, 398–402. [Google Scholar] [CrossRef] [PubMed]
- Woodford, N.; Ward, M.E.; Kaufmann, M.E.; Turton, J.; Fagan, E.J.; James, D.; Johnson, A.P.; Pike, R.; Warner, M.; Cheasty, T.; et al. Community and hospital spread of Escherichia coli producing CTX-M extended-spectrum β-lactamases in the UK. J. Antimicrob. Chemother. 2004, 54, 735–743. [Google Scholar] [CrossRef] [PubMed]
- Pagani, L.; Mantengoli, E.; Migliavacca, R.; Nucleo, E.; Pollini, S.; Spalla, M.; Daturi, R.; Romero, E.; Rossolini, G.M. Multifocal detection of multidrug-resistant Pseudomonas aeruginosa producing PER-1 extended-spectrum β-lactamase in Northern Italy. J. Clin. Microbiol. 2004, 42, 2523–2529. [Google Scholar] [CrossRef] [Green Version]
- Perez-Perez, F.J.; Hanson, N.D. Detection of plasmid-mediated AmpC β-lactamase genes in clinical isolates by using multiplex PCR. J. Clin. Microbiol. 2002, 40, 2153–2162. [Google Scholar] [CrossRef] [Green Version]
- Poirel, L.; Walsh, T.R.; Cuveiller, V.; Nordman, P. Multiplex PCR for detection of acquired carbapenemases genes. Diagn. Microbiol. Infect. Dis. 2011, 70, 119–123. [Google Scholar] [CrossRef]
- Robicsek, A.; Jacoby, G.A.; Hooper, D.C. The worldwide emergence of plasmid-mediated quinolone resistance. Lancet Infect. Dis. 2006, 6, 629–640. [Google Scholar] [CrossRef]
- Woodford, N.; Fagan, E.J.; Ellington, M.J. Multiplex PCR for rapid detection of genes encoding CTX-M extended-spectrum β-lactamases. J. Antimicrob. Chemother. 2006, 57, 154–155. [Google Scholar] [CrossRef] [Green Version]
- Saladin, M.; Cao, V.T.B.; Lambert, T.; Donay, J.L.; Hermann, J.; Ould-Hocine, L. Diversity of CTX-M β-lactamases and their promoter regions from Enterobacteriaceae isolated in three Parisian hospitals. FEMS Microbiol. Lett. 2002, 209, 161–168. [Google Scholar] [CrossRef]
- Woodford, N.; Ellington, M.J.; Coelho, J.; Turton, J.; Ward, M.E.; Brown, S.; Amyes, S.G.; Livermore, D.M. Multiplex PCR for genes encoding prevalent OXA carbapenemases. Int. J. Antimicrob. Agents 2006, 27, 351–353. [Google Scholar] [CrossRef] [PubMed]
- Turton, J.F.; Ward, M.E.; Woodford, N.; Kaufman, M.E.; Pike, R.; Livermore, D.M.; Pitt, T.L. The role of ISAba1 in expression of OXA carbapenemase genes in Acinetobacter baumannii. FEMS Microbiol. Lett. 2006, 258, 72–77. [Google Scholar] [CrossRef] [Green Version]
- Zankari, E.; Hasman, H.; Cosentino, S.; Vestergaard, M.; Rasmussen, S.; Aarestrup, F.M.; Larsen, M.V. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 2012, 67, 2640–2644. [Google Scholar] [CrossRef] [PubMed]
- Carattoli, A.; Bertini, A.; Villa, L.; Falbo, V.; Hopkins, K.L.; Threfall, E.J. Identification of plasmids by PCR-based replicon typing. J. Microbiol. Methods 2005, 63, 219–228. [Google Scholar] [CrossRef]
- Carattoli, A.; Seiffert, S.N.; Schwendener, S.; Perreten, V.; Endimiani, A. Differentiation of IncL and IncM plasmids associated with the spread of clinically relevant antimicrobial resistance. PLoS ONE 2015, 10, e0123063. [Google Scholar] [CrossRef] [Green Version]
- Bertini, A.; Poirel, L.; Mugnier, P.; Villa, J.; Nordman, P.; Caratoli, A. Characterization and PCR-based replicon typing of resistance plasmids in Acinetobacter baumannii. Antimicrob. Agents Chemother. 2010, 54, 4168–4177. [Google Scholar] [CrossRef] [Green Version]
- Turton, J.F.; Gabriel, S.N.; Valderrey, C.; Kaufmann, M.E.; Pitt, T.L. Use of sequence based typing and multiplex PCR to identify clonal lineages of outbreak strains of Acinetobacter baumannii. Clin. Microbiol. Infect. 2007, 13, 807–815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rawson, T.M.; Wilson, R.C.; Holmes, A. Understanding the role of bacterial and fungal infection in COVID-19. Clin. Microbiol. Infect. 2021, 27, 9–11. [Google Scholar] [CrossRef] [PubMed]
- Bork, J.T.; Leekha, S.; Claeys, K.; Seung, H.; Tripoli, M.; Amoroso, A.; Heil, E.L. Change in hospital antibiotic use and acquisition of multidrug-resistant gram-negative organisms after the onset of coronavirus disease 2019. Infect. Control Hosp. Epidemiol. 2021, 42, 1115–1117. [Google Scholar] [CrossRef]
- Grasselli, G.; Scaravilli, V.; Mangioni, D.; Scudeller, L.; Alagna, L.; Bartoletti, M.; Bellani, G.; Biagioni, E.; Bonfanti, P.; Bottino, N.; et al. Hospital-Acquired Infections in Critically ill Patients with COVID-19. Chest 2021, 160, 454–465. [Google Scholar] [CrossRef]
- Garcia-Vidal, C.; Sanjuan, G.M.; Moreno-García, E.; Puerta-Alcalde, P.; Garcia-Pouton, N.; Chumbita, M.; Fernandez-Pittol, M.; Pitart, C.; Inciarte, A.; Bodro, M.; et al. Incidence of co-infections and superinfections in hospitalized patients with COVID-19: A retrospective cohort study. Clin. Microbiol. Infect. 2021, 27, 83–88. [Google Scholar] [CrossRef]
- Hughes, S.; Troise, O.; Donaldson, H.; Mughal, N.; Moore, L.S.P. Bacterial and fungal coinfection among hospitalized patients with COVID-19: A retrospective cohort study in a UK secondary-care setting. Clin. Microbiol. Infect. 2020, 26, 1395–1399. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Wu, D.; Chen, H.; Yan, W.; Yang, D.; Chen, G.; Ma, K.; Xu, D.; Yu, H.; Wang, H.; et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: Retrospective study. BMJ 2020, 368, m1091. [Google Scholar] [CrossRef] [Green Version]
- Dong, X.; Cao, Y.Y.; Lu, X.X.; Zhang, J.J.; Du, H.; Yan, Y.Q.; Akdis, C.A.; Gao, Y.D. Eleven faces of coronavirus disease 2019. Allergy 2020, 75, 1699–1709. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 15, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Franolić-Kukina, I.; Bedenić, B.; Budimir, A.; Herljević, Z.; Vraneš, J.; Higgins, P. Clonal spread of carbapenem-resistant OXA-72 positive Acinetobacter baumannii in a Croatian university hospital. Int. J. Infect. Dis. 2011, 15, e706–e709. [Google Scholar] [CrossRef] [Green Version]
- Vranić-Ladavac, M.; Bedenić, B.; Minandri, F.; Ištok, M.; Frančula-Zaninović, S.; Ladavac, R.; Visca, P. Carbapenem-resistance and acquired class D carbapenemases in Acinetobacter baumannii from Croatia 2009–2010. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 471–478. [Google Scholar] [CrossRef]
- Bedenić, B.; Beader, N.; Godič-Torkar, K.; Vranić-Ladavac, M.; Luxner, J.; Veir, Z.; Grisold, A.J.; Zarfel, G. Nursing home as reservoir of carbapenem-resistant Acinetobacter baumannii. Microb. Drug Resist. 2015, 21, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Bedenić, B.; Siroglavić, M.; Slade, M.; Šijak, D.; Dekić, S.; Šeruga-Musić, M.; Godan-Hauptman, A.; Hrenović, J. Comparison of clinical and sewage isolates of Acinetobacter baumannii from two long-term care facilities in Zagreb; mechanisms and routes of spread. Arch. Microbiol. 2020, 202, 361–368. [Google Scholar] [CrossRef]
- D’Onofrio, V.; Conzemius, R.; Varda-Brkić, D.; Bogdan, M.; Grisold, A.; Gyssens, I.C.; Bedenić, B.; Barišić, I. Epidemiology of colistin-resistant, carbapenemase-producing Enterobacteriaceae and Acinetobacter baumannii in Croatia. Infect. Genet. Evol. 2020, 81, 104263. [Google Scholar] [CrossRef]
- Wohlfarth, E.; Kresken, M.; Higgins, P.G.; Stefanik, D.; Wille, J.; Hafner, D.; Körber-Irrgang, B.; Seifert, H.; Study Group “Antimicrobial Resistance” of the Paul-Ehrlich-Society for Infection Therapy. The evolution of carbapenem resistance determinants and major epidemiological lineages among carbapenem-resistant Acinetobacter baumannii isolates in Germany, 2010–2019. Int. J. Antimicrob. Agents 2022, 60, 106689. [Google Scholar] [CrossRef]
- Grisold, A.J.; Luxner, J.; Bedenić, B.; Diab-Elschahawi, M.; Berktold, M.; Wechsler-Fördös, A.; Zarfel, G.E. Diversity of Oxacillinases and Sequence Types in Carbapenem-Resistant Acinetobacter baumannii from Austria. Int. J. Environ. Res. Public Health 2021, 23, 2171. [Google Scholar] [CrossRef] [PubMed]
- Tonkić, M.; Bedenić, B.; Goić-Barišić, I.; Katić, S.; Kalenić, S.; Kaufmann, M.E.; Woodford, N.; Punda-Polić, V. First report of CTX-M producing isolates from Croatia. J. Chemother. 2007, 19, 97–100. [Google Scholar] [CrossRef] [PubMed]
- Literacka, E.; Bedenić, B.; Baraniak, A.; Fiett, J.; Tonkić, M.; Jajić-Benčić, I.; Gniadkowski, M. BlaCTX-M genes in Escherichia coli from Croatian hospitals are located in new (blaCTX-M-3) and widely spread (blaCTX-M-3a, blaCTX-M-15) genetic structures. Antimicrob. Agents Chemother. 2009, 53, 1630–1635. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bedenić, B.; Bratić, V.; Mihaljević, S.; Lukić, A.; Vidović, K.; Reiner, K.; Schöenthaler, S.; Barišić, I.; Zarfel, G.; Grisold, A. Multidrug-Resistant Bacteria in a COVID-19 Hospital in Zagreb. Pathogens 2023, 12, 117. https://doi.org/10.3390/pathogens12010117
Bedenić B, Bratić V, Mihaljević S, Lukić A, Vidović K, Reiner K, Schöenthaler S, Barišić I, Zarfel G, Grisold A. Multidrug-Resistant Bacteria in a COVID-19 Hospital in Zagreb. Pathogens. 2023; 12(1):117. https://doi.org/10.3390/pathogens12010117
Chicago/Turabian StyleBedenić, Branka, Vesna Bratić, Slobodan Mihaljević, Anita Lukić, Karlo Vidović, Krešimir Reiner, Silvia Schöenthaler, Ivan Barišić, Gernot Zarfel, and Andrea Grisold. 2023. "Multidrug-Resistant Bacteria in a COVID-19 Hospital in Zagreb" Pathogens 12, no. 1: 117. https://doi.org/10.3390/pathogens12010117
APA StyleBedenić, B., Bratić, V., Mihaljević, S., Lukić, A., Vidović, K., Reiner, K., Schöenthaler, S., Barišić, I., Zarfel, G., & Grisold, A. (2023). Multidrug-Resistant Bacteria in a COVID-19 Hospital in Zagreb. Pathogens, 12(1), 117. https://doi.org/10.3390/pathogens12010117