Next Article in Journal
Cytauxzoon felis: An Overview
Previous Article in Journal
Repeated Tick Infestations Impair Borrelia burgdorferi Transmission in a Non-Human Primate Model of Tick Feeding
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

An Inventory of Anthelmintic Plants across the Globe

1
Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Chakh Shazad, Islamabad 45550, Pakistan
2
Department of Parasitology, Faculty of Veterinary Medicine, Bingol University, Bingol 12000, Turkey
3
Department of Parasitology, Faculty of Veterinary Medicine, University of Firat, Elazig 23119, Turkey
4
Department of Botany, University of Poonch Rawalakot, Azad Jammu and Kashmir 12350, Pakistan
5
Department of Chemistry, University of Management & Technology (UMT), Lahore 54770, Pakistan
6
Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi 46000, Pakistan
7
The School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China
8
National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai 200025, China
9
Key Laboratory of Parasite and Vector Biology, National Health Commission of the People’s Republic of China, Shanghai 200025, China
10
World Health Organization Collaborating Center for Tropical Diseases, Shanghai 200025, China
*
Authors to whom correspondence should be addressed.
Pathogens 2023, 12(1), 131; https://doi.org/10.3390/pathogens12010131
Submission received: 29 October 2022 / Revised: 14 December 2022 / Accepted: 22 December 2022 / Published: 13 January 2023

Abstract

:
A wide range of novelties and significant developments in the field of veterinary science to treat helminth parasites by using natural plant products have been assessed in recent years. To the best of our knowledge, to date, there has not been such a comprehensive review of 19 years of articles on the anthelmintic potential of plants against various types of helminths in different parts of the world. Therefore, the present study reviews the available information on a large number of medicinal plants and their pharmacological effects, which may facilitate the development of an effective management strategy against helminth parasites. An electronic search in four major databases (PubMed, Scopus, Web of Science, and Google Scholar) was performed for articles published between January 2003 and April 2022. Information about plant species, local name, family, distribution, plant tissue used, and target parasite species was tabulated. All relevant studies meeting the inclusion criteria were assessed, and 118 research articles were included. In total, 259 plant species were reviewed as a potential source of anthelmintic drugs. These plants can be used as a source of natural drugs to treat helminth infections in animals, and their use would potentially reduce economic losses and improve livestock production.

1. Introduction

Livestock production plays a key role in the economic development of a country. Helminthiasis caused by a helminth infection is a major constraint in global livestock production. The mortality and morbidity in animal populations owing to infections caused by parasitic helminths are rapidly increasing worldwide [1]. These parasitic worms are categorized into two major groups: roundworms (phylum Nematoda) and flatworms (phylum Platyhelminthes) [2]. Among these parasites, gastrointestinal parasites pose a serious threat to livestock production. In recent decades, continuous and intensive use of synthetic anthelmintics has been the only method to control gastrointestinal nematodes. However, resistance to all available anthelmintic drug classes has been reported in livestock species. Resistance to an anthelmintic drug is often observed within a few years of introduction of the drug, indicating a remarkably high rate of resistance development, which likely results from a combination of large, genetically diverse parasite populations, and strong selection pressure for resistance. Plants are an ideal source of naturally occurring compounds that can be used as alternative dewormers in livestock [3]. Recently, some anthelmintics have demonstrated loss of efficacy owing to anthelmintic resistance [4]; as a result, parasitic load progressively increases, leading to high mortality and morbidity. Traditional use of medicinal plants for controlling helminth infections is more acceptable owing to the eco-friendly nature and sustainable supply of medicinal plants [5].
The present review is a comprehensive approach to show a geographical distribution of medicinal plants in a given time period and their anthelmintic potential, which would facilitate their use as an effective management strategy against helminth parasites. An electronic search in four major databases (PubMed, Scopus, Web of Science, and Google Scholar) was performed for data published between January 2003 and April 2022. Using database-specific strings, different combinations of the following keywords were used: “anthelmintic activity of plants”, “gastrointestinal nematodes”, “Platyhelminthes”, “roundworms”. The studies were required to include information about plant species, local name, plant family, distribution, plant tissue used, and target parasite species. The PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement [6] was used as a guide. Prespecified outcome-specific quality criteria were used to judge the admission of each qualitative and quantitative outcome into the appropriate analysis. Two investigators independently reviewed each eligible study and extracted the information and data necessary to carry out the qualitative analysis and the meta-analysis. Disagreements were resolved by consensus among all authors. All relevant studies meeting the criteria were assessed. In some references, multiple lines were used to show them because the authors were working on multiple plant species in the same article. In total, 2202 articles were obtained. However, since not all of them could be included in the current review, it was reduced to 118 articles by sampling (by paying attention to different countries and different plant species and parasites) and used in this review (Figure 1). Finally, 259 plant species from 36 countries worldwide were reviewed as a potential source of anthelmintic drugs. The distribution of the articles used in this review by country is shown in Figure 1.
The details of anthelmintic plants and their extracts potentially effective against Platyhelminthes and Nematoda are presented in Table 1 and Table 2, respectively.

2. Chemical Compounds

The literature review revealed that active chemical compounds present in plants were determined using plant volatile essential oils or extracts in ethanol, butanol, methylene chloride, methanol, hydroalcoholic solvents, dichloromethane, chloroform, petroleum ether, or n-hexane. The following active compounds and secondary metabolites were reported: glycosides, tetrahydroharmine, tannins, gallocatechin, epigallocatechin monomers, jacalin, phytohemagglutinin E2L2, phytohemagglutinin L4, phytohemagglutinin E3L, kidney bean albumin, Maclura pomifera agglutinin, Robinia pseudoacacia agglutinin, wheat germ agglutinin, cysteine proteinases, ursolic acid, galactolipid 2 and 3, aporphines, hexylresorcinol, Dolichos biflorus agglutinin, Galanthus nivalis agglutinin, polycarpol, 3-O-acetyl aleuritolic acid, jacalin (jackfruit agglutinin), concanavalin A (jack bean lectin), Maackia amurensis lectin, dichloromethane, and plumbagin (Table 3).

3. Effect of Plant Extracts in Drug-Resistant Helminths

Medicinal plant extracts have long been used against helminth parasites in humans and livestock; however, scientific support for their application and research on the characterization of active composites remains limited [123]. Numerous studies have investigated anthelmintic resistance, especially in small ruminants. Most studies have used the fecal egg count reduction test (FECRT), which is based on field management practices. Nevertheless, in vivo experiments on drug efficacy have been conducted in areas with high economic importance. Notably, sheep have been studied more extensively than other livestock species, and a broad spectrum of therapeutics have already been developed for sheep [126].
Molecular methods are promising strategies for in vivo and in vitro diagnosis of many infections and may prove to be effective in the detection of parasitic nematodes and anthelmintic resistance [127,128,129,130]. Gaining knowledge about the mechanisms of resistance will ultimately help to reduce anthelmintic drug resistance in parasites. The diagnosis of drug resistance associated with genomic changes using molecular techniques would help in avoiding unnecessary treatments and thus reduce health complications. However, the use of natural plant compounds has the potential to be a complementary control option that can reduce dependence on drug therapy and delay the development of resistance [127,129,131].
In general, many plant secondary metabolites including chalcones, coumarins, terpenoids, tannins, alkaloids, antioxidants, and flavonoids [132,133] possess anthelmintic and neurotoxic properties [134] and inhibit mitochondrial oxidative phosphorylation [135,136]. These plant-based compounds typically show higher biological activity than synthetic compounds [137]. In many parts of the world, plants have been used for many generations and are still being used to treat parasitic diseases [138]. The identification of novel compounds from plants as anthelmintics is an emerging field of research. According to a study, between 2000 and 2019, 40 patents were granted for natural-product-based nematicides divided into seven structural classes [139], but none of them have yet been commercialized. However, difficulties in determining the mechanism of action of the main active ingredients in plant extracts are among the main barriers for researchers.

4. Advantages and Disadvantages of Using Plants for Helminth Parasite Control

Limited information is available on gastrointestinal helminth infections in livestock, which remain a major constraint to livestock production worldwide. Nevertheless, a recent study suggests that anthelmintic plants can be used as a potential resource to improve livestock production [38]. The use of plants as anthelmintics has certain benefits over contemporary veterinary treatments, including affordability, lack of adverse effects, and easy accessibility.
Although most of the information available about the antiparasitic properties of medicinal plants is oral and lacked scientific validity until recently, there is now a growing number of controlled laboratory experiments aiming to confirm and quantify anthelmintic plant activity [24]. Plants can be used in the following two manners: 1. plant parts can be used to cure infected animals naturally or 2. plant extracts and concoctions can be tested both in vitro and in vivo for their anthelmintic potential. The advantages of using antiparasitic plants include effectiveness against species resistant to synthetic anthelmintic drugs, limited or no risk of resistance development, and environmentally friendly procedure [42]. A major drawback is that, to date, only a small number of anthelmintic compounds such as macrocyclic lactones, cyclic octadepsipeptides, benzimidazoles, and imidazothiazoles have been identified in plants after decades of research [65]. Another drawback is the inconsistency between in vitro and in vivo studies on the use of plants as anthelmintics, raising questions regarding their validity and reliability [67]. Additionally, neurological effects associated with the dosage and bioavailability of some medicinal plants need to be elucidated before their use. The choice of an appropriate host–parasite system is tricky in in vivo studies because caring for the animal models adequately is expensive, time-consuming, and labor-intensive [100]. Other drawbacks include uncertainty about plant efficacy, nonspecific responses, irreproducible preparations, and potential negative consequences. An alternative strategy is to use plant secondary metabolites with anthelmintic activity [73]. Secondary metabolites exhibit various modes of action for anthelmintic activity. For example, tannins hinder the feeding process of parasites through forming complexes with parasite proteins or deactivating key enzymes [73]. Terpenes block the tyramine receptors of parasites, whereas alkaloids create unfavorable conditions in the host intestine by generating nitrated and free sugars [97,124]. However, it is important to conduct more studies on the underlying molecular mechanisms and adverse effects on the host to improve drug development.

5. Recommendations

An ideal anthelmintic agent should have a broad spectrum of action, a high treatment rate with a single therapeutic dose, low toxicity to the host, and cost-effectiveness. Most currently used synthetic drugs do not meet these requirements. Commonly used drugs have side effects such as nausea, drowsiness, and intestinal disorders. The development of resistance to existing drugs in parasites and the high cost of drugs have led researchers to explore novel anthelmintic effective agents. Ethnobotanical drugs are the source of easily available and effective anthelmintic agents for humans, especially in tropical and developing countries. Thus, people use various herbs or products derived from plants to treat helminth infections. Plants produce secondary metabolites with various ecophysiological functions, such as defense against pathogen attacks and protection against abiotic stresses. These metabolites have potential medicinal effects in humans and animals.

6. Conclusions and Future Perspectives

It is estimated that more than 2.5 billion people are affected with helminth parasites at some stage in their lives. Parasitic diseases remain the major reason of substantial economic loss owing to their impact on livestock health and unexpected deworming costs. According to the literature review, potential anthelmintic plants exhibit great diversity in terms of species and compounds. Nevertheless, initially, all anthelmintics are tested in livestock before being used for human therapy; thus, developments in veterinary anthelmintics could also lead to advancements in human therapy. In addition, studies on nutritional support and vaccination are also required to develop livestock with low parasite susceptibility.

Author Contributions

Conceptualization and design, S.S., J.C. and H.A.; analysis and interpretation of data, H.K.K., H.A., F.C., S.G.K. and K.S.A.; writing—original draft preparation, H.A., M.S.A. and W.S.; statistical analysis, S.F.; supervision, S.S. and J.C.; writing—review and editing, H.A., M.S.A., K.S.A., S.F., S.S., J.Z., F.P., S.L. and J.C. All authors approved the final version of the manuscript.

Funding

This study was supported by the National Natural Science Foundation of China (Nos. 81971969, 82272369, and 81772225 to JC) and the Three-Year Public Health Action Plan (2020–2022) of Shanghai (No. GWV-10.1-XK13 to JC). The funders had no role in the study design, the data collection, and analysis, the decision to publish, or the preparation of the manuscript.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Nirmal, S.A.; Malwadkar, G.; Laware, R. Anthelmintic activity of Pongamia glabra. Songklanakarin J. Sci. Technol. 2007, 29, 755–757. [Google Scholar]
  2. Onyeyili, P.; Nwosu, C.; Amin, J.; Jibike, J. Anthelmintic activity of crude aqueous extract of Nauclea latifolia stem bark against ovine nematodes. Fitoterapia 2001, 72, 12–21. [Google Scholar] [CrossRef] [PubMed]
  3. Mahmoudvand, H.; Kheirandish, F.; Ghasemi Kia, M.; Tavakoli Kareshk, A.; Yarahmadi, M. Chemical composition, protoscolicidal effects and acute toxicity of Pistacia atlantica Desf. fruit extract. Nat. Prod. Res. 2016, 30, 1208–1211. [Google Scholar] [CrossRef] [PubMed]
  4. Greenberg, R.M. Ca2+ signalling, voltage-gated Ca2+ channels and praziquantel in flatworm neuromusculature. Parasitology 2005, 131, S97–S108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  5. Oliveira, L.; Bevilaqua, C.; Costa, C.; Macedo, I.; Barros, R.; Rodrigues, A.; Camurça-Vasconcelos, A.; Morais, S.; Lima, Y.; Vieira, L. Anthelmintic activity of Cocos nucifera L. against sheep gastrointestinal nematodes. Vet. Parasitol. 2009, 159, 55–59. [Google Scholar] [CrossRef]
  6. Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. J. Clin. Epidemiol. 2009, 62, e1–e34. [Google Scholar] [CrossRef] [Green Version]
  7. Minsakorn, S.; Nuplod, K.; Puttarak, P.; Chawengkirttikul, R.; Panyarachun, B.; Ngamniyom, A.; Charoenkul, T.; Jaisa-Aad, M.; Panyarachun, P.; Anuracpreeda, P. The anthelmintic effects of medicinal plant extracts against paramphistome parasites, Carmyerius spatiosus. Acta Parasitol. 2019, 64, 566–574. [Google Scholar] [CrossRef]
  8. Thomsen, H.; Reider, K.; Franke, K.; Wessjohann, L.; Keiser, J.; Dagne, E.; Arnold, N. Characterization of constituents and anthelmintic properties of Hagenia abyssinica. Sci. Pharm. 2012, 80, 433–446. [Google Scholar] [CrossRef] [Green Version]
  9. Zibaei, M.; Rostamipour, R.; Nayebzadeh, H. Effect of Pistacia atlantica fruit and leaf extracts on hydatid cyst protoscolices. Recent Pat. Antiinfect. Drug Discov. 2016, 11, 53–58. [Google Scholar] [CrossRef]
  10. Yones, D.A.; Taher, G.A.; Ibraheim, Z.Z. In vitro effects of some herbs used in Egyptian traditional medicine on viability of protoscolices of hydatid cysts. Korean J. Parasitol. 2011, 49, 255. [Google Scholar] [CrossRef]
  11. Al-Daoody, A.A.; Shareef, A.Y.; Hammoshi, M.H. In Vitro Effects of Ethanolic Extract and Crude Alkaloids of Prosopis farcta Leaves on the Viability of Echinococcus granulosus Protoscolices in Comparison to Mebendazole. RJS Rafidain J. Sci. 2006, 17, 43–52. [Google Scholar]
  12. Mahmoudvand, H.; Dezaki, E.S.; Kheirandish, F.; Ezatpour, B.; Jahanbakhsh, S.; Harandi, M.F. Scolicidal effects of black cumin seed (Nigella sativa) essential oil on hydatid cysts. Korean J. Parasitol. 2014, 52, 653. [Google Scholar] [CrossRef] [PubMed]
  13. Barzinji, R.; Kadir, A.; Mothana, R.A.; Nasher, A.K. Effect of leaf extracts of Dendrosicyos socotrana and Jatropha unicostata on the viability of Echinococcus granulosus protoscoleces. EurAsian J. Biosci. 2009, 3, 122–129. [Google Scholar] [CrossRef] [Green Version]
  14. Rouhani, S.; Salehi, N.; Kamalinejad, M.; Zayeri, F. Efficacy of Berberis vulgaris aqueous extract on viability of Echinococcus granulosus protoscolices. J. Investig. Surg. 2013, 26, 347–351. [Google Scholar] [CrossRef] [PubMed]
  15. Gangwar, M.; Verma, V.C.; Singh, T.D.; Singh, S.K.; Goel, R.; Nath, G. In-vitro scolicidal activity of Mallotus philippinensis (Lam.) Muell Arg. fruit glandular hair extract against hydatid cyst Echinococcus granulosus. Asian Pac. J. Trop. Dis. 2013, 6, 595–601. [Google Scholar] [CrossRef] [Green Version]
  16. Verma, V.C.; Gangwar, M.; Yashpal, M.; Nath, G. Anticestodal activity of endophytic Pestalotiopsis sp. on protoscoleces of hydatid cyst Echinococcus granulosus. Biomed Res. Int. 2013, 2013, 308515. [Google Scholar] [CrossRef] [Green Version]
  17. Alvarez-Mercado, J.M.; Ibarra-Velarde, F.; Alonso-Díaz, M.Á.; Vera-Montenegro, Y.; Avila-Acevedo, J.G.; García-Bores, A.M. In vitro antihelmintic effect of fifteen tropical plant extracts on excysted flukes of Fasciola hepatica. BMC Vet. Res. 2015, 11, 45. [Google Scholar] [CrossRef] [Green Version]
  18. Kumar, P.; SUNITA, K.; Singh, R.; Singh, D. Fasciola larvae: Anthelmintic activity of medicinal plant Potentilla fulgens against sporocyst, redia and cercaria. Asian J. Adv. Agric. Res. 2020, 3, 24–30. [Google Scholar]
  19. Vishwakarma, A.; Kumar, P. In vivo Anthelmintic Activity of Medicinal plant Asparagus racemosus against Larva of Fasciola gigantica. Res. J. Agri. Sci. 2021, 12, 675–680. [Google Scholar]
  20. Onocha, P.; Olusanya, T. Antimicrobial and anthelmintic evaluation of Nigerian Euphorbiaceae plants 3: Acalypha wilkesiana. Afr. Sci. 2021, 11, 85–89. [Google Scholar]
  21. Roy, B.; Swargiary, A.; Giri, B.R. Alpinia nigra (Family Zingiberaceae): An anthelmintic medicinal plant of north-east India. Adv. Life Sci. 2012, 2, 39–51. [Google Scholar] [CrossRef] [Green Version]
  22. Soren, A.D.; Yadav, A.K. In Vitro Anthelmintic Efficacy of Sesbania sesban var. bicolor, Cyperus compressus and Asparagus racemosus against Gastrothylax crumenifer (Trematoda). Proc. Zool. Soc. 2021, 74, 262–267. [Google Scholar] [CrossRef]
  23. Soren, A.D.; Yadav, A.K. Studies on the anthelmintic potentials of the roots of Asparagus racemosus willd.(Asparagaceae). Clin. Phytoscience 2021, 7, 32. [Google Scholar] [CrossRef]
  24. Soren, A.D.; Yadav, A.K. Evaluation of in vitro and in vivo anthelmintic efficacy of Cyperus compressus Linn., a traditionally used anthelmintic plant in parasite-animal models. Future J. Pharm. Sci. 2020, 6, 126. [Google Scholar] [CrossRef]
  25. Soren, A.D.; Chen, R.P.; Yadav, A.K. In vitro and in vivo anthelmintic study of Sesbania sesban var. bicolor, a traditionally used medicinal plant of Santhal tribe in Assam, India. J. Parasit. Dis. 2021, 45, 1–9. [Google Scholar] [CrossRef] [PubMed]
  26. Roy, S.; Lyndem, L.M. An in vitro confirmation of the ethonopharmacological use of Senna plants as anthelmintic against rumen fluke Paramphistomum gracile. BMC Vet. Res. 2019, 15, 360. [Google Scholar] [CrossRef] [PubMed]
  27. Shalaby, H.; Soad, N.; Farag, T. Tegumental effects of methanolic extract of Balanites aegyptiaca fruits on adult Paramphistomum microbothrium (Fischoeder 1901) under laboratory conditions. Iran. J. Parasitol. 2016, 11, 396. [Google Scholar] [PubMed]
  28. Lalthanpuii, P.; Zokimi, Z.; Lalchhandama, K. The toothache plant (Acmella oleracea) exhibits anthelmintic activity on both parasitic tapeworms and roundworms. Pharmacogn. Mag. 2020, 16, 193. [Google Scholar]
  29. Kosalge, S.B.; Fursule, R.A. Investigation of in vitro anthelmintic activity of Thespesia lampas (Cav.). Asian J. Pharm. Clin. Res. 2009, 2, 69–71. [Google Scholar]
  30. Rabiu, H.; Subhasish, M. Investigation of in vitro anthelmintic activity of Azadirachta indica leaves. Int. J. Drug Dev. Res. 2011, 3, 94–100. [Google Scholar]
  31. Ali, N.; Ali Shah, S.W.; Shah, I.; Ahmed, G.; Ghias, M.; Khan, I.; Ali, W. Anthelmintic and relaxant activities of Verbascum Thapsus Mullein. BMC Complement. Altern. Med. 2012, 12, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  32. Ali, N.; Shah, S.W.A.; Shah, I.; Ahmed, G.; Ghias, M.; Khan, I. Cytotoxic and anthelmintic potential of crude saponins isolated from Achillea Wilhelmsii, C. Koch and Teucrium Stocksianum boiss. BMC Complement. Altern. Med. 2011, 11, 106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  33. Rabiul, H.; Subhasish, M. Investigation of in vitro anthelmintic activity of Cinnamomum camphor leaves. Int. J. Drug Dev. Res. 2011, 3, 295–300. [Google Scholar]
  34. Subhasish, M.; Rabiul, H.; Parag, G.; Debasish, D. Investigation of in vitro anthelmintic activity of Clerodendron inerme. Int. J. Drug Dev. Res. 2010, 2, 826–829. [Google Scholar]
  35. Lalthanpuii, P.B.; Lalchhandama, K. Phytochemical analysis and in vitro anthelmintic activity of Imperata cylindrica underground parts. BMC Complement. Med. Ther. 2020, 20, 332. [Google Scholar] [CrossRef]
  36. Tekwu, E.M.; Bosompem, K.M.; Anyan, W.K.; Appiah-Opong, R.; Owusu, K.B.-A.; Tettey, M.D.; Kissi, F.A.; Appiah, A.A.; Penlap Beng, V.; Nyarko, A.K. In vitro assessment of anthelmintic activities of Rauwolfia vomitoria (Apocynaceae) stem bark and roots against parasitic stages of Schistosoma mansoni and cytotoxic study. J. Parasitol. Res. 2017. [Google Scholar] [CrossRef] [Green Version]
  37. de Oliveira, R.N.; Rehder, V.L.G.; Oliveira, A.S.S.; Jeraldo, V.d.L.S.; Linhares, A.X.; Allegretti, S.M. Anthelmintic activity in vitro and in vivo of Baccharis trimera (Less) DC against immature and adult worms of Schistosoma mansoni. Exp. Parasitol. 2014, 139, 63–72. [Google Scholar] [CrossRef] [Green Version]
  38. Godinho, L.S.; de Carvalho, A.; Soares, L.; Barbosa de Castro, C.C.; Dias, M.M.; Pinto, P.d.F.; Crotti, A.E.M.; Pinto, P.L.S.; de Moraes, J.; Da Silva Filho, A.A. Anthelmintic activity of crude extract and essential oil of Tanacetum vulgare (Asteraceae) against adult worms of Schistosoma mansoni. Sci. World J. 2014. [Google Scholar] [CrossRef] [Green Version]
  39. dos Santos, A.F.; de Azevedo, D.P.; dos Santos Mata, R.d.C.; de Mendonça, D.I.D.; Sant’Ana, A.E.G. The lethality of Euphorbia conspicua to adults of Biomphalaria glabrata, cercaria of Schistosoma mansoni and larvae of Artemia salina. Bioresour. Technol. 2007, 98, 135–139. [Google Scholar] [CrossRef]
  40. Atjanasuppat, K.; Wongkham, W.; Meepowpan, P.; Kittakoop, P.; Sobhon, P.; Bartlett, A.; Whitfield, P.J. In vitro screening for anthelmintic and antitumour activity of ethnomedicinal plants from Thailand. J. Ethnopharmacol. 2009, 123, 475–482. [Google Scholar] [CrossRef]
  41. Kumar, V.K.; Kumar, P.; Venkatachalam, T. Investigation of anthelmintic activity of Pergularia daemia leaves. Pharmacophore 2014, 5, 44–48. [Google Scholar]
  42. Lalthanpuii, P.B.; Lalchhandama, K. Chemical composition and broad-spectrum anthelmintic activity of a cultivar of toothache plant, Acmella oleracea, from Mizoram, India. Pharm. Biol. 2020, 58, 393–399. [Google Scholar] [CrossRef] [PubMed]
  43. Dkhil, M.A.; Zreiq, R.; Hafiz, T.A.; Mubaraki, M.A.; Sulaiman, S.; Algahtani, F.; Abdel-Gaber, R.; Al-Shaebi, E.M.; Al-Quraishy, S. Anthelmintic and antimicrobial activity of Indigofera oblongifolia leaf extracts. Saudi J. Biol. Sci. 2020, 27, 594–598. [Google Scholar] [CrossRef]
  44. Flota-Burgos, G.J.; Rosado-Aguilar, J.A.; Rodríguez-Vivas, R.I.; Borges-Argáez, R.; Martínez-Ortiz-de-Montellano, C.; Gamboa-Angulo, M. Anthelmintic activity of extracts and active compounds from Diospyros anisandra on Ancylostoma caninum, Haemonchus placei and Cyathostomins. Front. Vet. Sci. 2020, 7, 565103. [Google Scholar] [CrossRef] [PubMed]
  45. Lalchhandama, K.; Roy, B.; Dutta, B.K. Anthelmintic activity of Acacia oxyphylla stem bark against Ascaridia galli. Pharm. Biol. 2009, 47, 578–583. [Google Scholar] [CrossRef] [Green Version]
  46. Yadav, A.; Patil, S.; Dharanguttikar, V.; Mohite, S. Anthelmintic Activity of Malvastrum Coromandelianum Leaf Extracts against Pheretima Posthuma and Ascardia Galli. Int. J. Sci. Res. Chemi. 2020, 5, 18–24. [Google Scholar]
  47. Ezea, B.O.; Ogbole, O.O.; Ajaiyeoba, E.O. In vitro anthelmintic properties of root extracts of three Musa species. J. Pharm. Bioresour. 2019, 16, 145–151. [Google Scholar] [CrossRef]
  48. Williams, A.R.; Soelberg, J.; Jäger, A.K. Anthelmintic properties of traditional African and Caribbean medicinal plants: Identification of extracts with potent activity against Ascaris suum in vitro. Parasite 2016, 23, 24–30. [Google Scholar] [CrossRef] [Green Version]
  49. Williams, A.R.; Fryganas, C.; Ramsay, A.; Mueller-Harvey, I.; Thamsborg, S.M. Direct anthelmintic effects of condensed tannins from diverse plant sources against Ascaris suum. PLoS ONE 2014, 9, e97053. [Google Scholar] [CrossRef] [Green Version]
  50. Singh, M.; Shakya, S.; Soni, V.K.; Dangi, A.; Kumar, N.; Bhattacharya, S.-M. The n-hexane and chloroform fractions of Piper betle L. trigger different arms of immune responses in BALB/c mice and exhibit antifilarial activity against human lymphatic filarid Brugia malayi. Int. Immunopharmacol. 2009, 9, 716–728. [Google Scholar] [CrossRef]
  51. Mathew, N.; Misra-Bhattacharya, S.; Perumal, V.; Muthuswamy, K. Antifilarial lead molecules isolated from Trachyspermum ammi. Molecules 2008, 13, 2156–2168. [Google Scholar] [CrossRef] [Green Version]
  52. Gaur, R.; Sahoo, M.; Dixit, S.; Fatma, N.; Rastogi, S.; Kulshreshtha, D.; Chatterjee, R.; Murthy, P. Antifilarial activity of Caesalpinia bonducella against experimental filarial infections. Indian J. Med. Res. 2008, 128, 65. [Google Scholar] [PubMed]
  53. Misra, N.; Sharma, M.; Raj, K.; Dangi, A.; Srivastava, S.; Misra-Bhattacharya, S. Chemical constituents and antifilarial activity of Lantana camara against human lymphatic filariid Brugia malayi and rodent filariid Acanthocheilonema viteae maintained in rodent hosts. Parasitol. Res. 2007, 100, 439–448. [Google Scholar] [CrossRef] [PubMed]
  54. Fujimaki, Y.; Kamachi, T.; Yanagi, T.; Caceres, A.; Maki, J.; Aoki, Y. Macrofilaricidal and microfilaricidal effects of Neurolaena lobata, a Guatemalan medicinal plant, on Brugia pahangi. J. Helminthol. 2005, 79, 23–28. [Google Scholar] [CrossRef] [PubMed]
  55. Okem, A.; Finnie, J.; Van Staden, J. Pharmacological, genotoxic and phytochemical properties of selected South African medicinal plants used in treating stomach-related ailments. J. Ethnopharmacol. 2012, 139, 712–720. [Google Scholar] [CrossRef]
  56. Ndjonka, D.; Agyare, C.; Lüersen, K.; Djafsia, B.; Achukwi, D.; Nukenine, E.; Hensel, A.; Liebau, E. In vitro activity of Cameroonian and Ghanaian medicinal plants on parasitic (Onchocerca ochengi) and free-living (Caenorhabditis elegans) nematodes. J. Helminthol. 2011, 85, 304–312. [Google Scholar] [CrossRef]
  57. Katiki, L.M.; Ferreira, J.F.; Gonzalez, J.M.; Zajac, A.M.; Lindsay, D.S.; Chagas, A.C.S.; Amarante, A.F. Anthelmintic effect of plant extracts containing condensed and hydrolyzable tannins on Caenorhabditis elegans, and their antioxidant capacity. Vet. Parasitol. 2013, 192, 218–227. [Google Scholar] [CrossRef]
  58. von Son-de Fernex, E.; Alonso-Díaz, M.Á.; Mendoza-de Gives, P.; Valles-de la Mora, B.; González-Cortazar, M.; Zamilpa, A.; Gallegos, E.C. Elucidation of Leucaena leucocephala anthelmintic-like phytochemicals and the ultrastructural damage generated to eggs of Cooperia spp. Vet. Parasitol. 2015, 214, 89–95. [Google Scholar] [CrossRef]
  59. Osei Akoto, C.; Acheampong, A.; Boakye, Y.D.; Naazo, A.A.; Adomah, D.H. Anti-inflammatory, antioxidant, and anthelmintic activities of Ocimum basilicum (Sweet Basil) fruits. J. Chemistry 2020. [Google Scholar] [CrossRef]
  60. A Yousef, B.; M Hassan, H.; Zhang, L.-Y.; Jiang, Z.-Z. Anticancer potential and molecular targets of pristimerin: A mini-review. Curr. Cancer Drug Targets. 2017, 17, 100–108. [Google Scholar] [CrossRef]
  61. Kaiaty, A.M.; Salib, F.A.; El-Gameel, S.M.; Hussien, A.M.; Kamel, M.S. Anthelmintic activity of pomegranate peel extract (Punica granatum) and synthetic anthelmintics against gastrointestinal nematodes in cattle, sheep, goats, and buffalos: In vivo study. Parasitol. Res. 2021, 120, 3883–3893. [Google Scholar] [CrossRef] [PubMed]
  62. de Medeiros, M.L.S.; de Moura, M.C.; Napoleão, T.H.; Paiva, P.M.G.; Coelho, L.C.B.B.; Bezerra, A.C.D.S.; da Silva, M.D.C. Nematicidal activity of a water soluble lectin from seeds of Moringa oleifera. Int. J. Biol. Macromol. 2018, 108, 782–789. [Google Scholar] [CrossRef] [PubMed]
  63. Alowanou, G.; Olounladé, P.; Akouèdegni, G.; Faihun, A.; Koudandé, D.; Hounzangbé-Adoté, S. In vitro anthelmintic effects of Bridelia ferruginea, Combretum glutinosum, and Mitragyna inermis leaf extracts on Haemonchus contortus, an abomasal nematode of small ruminants. Parasitol. Res. 2019, 118, 1215–1223. [Google Scholar] [CrossRef]
  64. Ndlela, S.; Mkwanazi, M.; Chimonyo, M. In vitro efficacy of plant extracts against gastrointestinal nematodes in goats. Trop. Anim. Health Prod. 2021, 53, 295. [Google Scholar] [CrossRef] [PubMed]
  65. Castagna, F.; Piras, C.; Palma, E.; Musolino, V.; Lupia, C.; Bosco, A.; Rinaldi, L.; Cringoli, G.; Musella, V.; Britti, D. Green veterinary pharmacology applied to parasite control: Evaluation of Punica granatum, Artemisia campestris, Salix caprea aqueous macerates against gastrointestinal nematodes of sheep. Vet. Sci. 2021, 8, 237. [Google Scholar] [CrossRef]
  66. Piza, M.; Féboli, A.; Augusto, J.; Anjos, L.; Laurentiz, A.; Royo, V.; Alvarenga, F.; Laurentiz, R. In vitro ovicidal and larvicidal activity of Psidium cattleianum Sabine leaves against gastrointestinal nematodes of naturally infected sheep. Bol. Ind. Anim. 2019, 76, 1–8. [Google Scholar] [CrossRef]
  67. Castagna, F.; Britti, D.; Oliverio, M.; Bosco, A.; Bonacci, S.; Iriti, G.; Ragusa, M.; Musolino, V.; Rinaldi, L.; Palma, E. In vitro anthelminthic efficacy of aqueous pomegranate (Punica granatum L.) extracts against gastrointestinal nematodes of sheep. Pathogens 2020, 9, 1063. [Google Scholar] [CrossRef]
  68. Jogpal, B.; Swarnakar, G.; Chouhan, H.S.; Roat, K. In vitro anthelmintic activity of medicinal plant Tinospora cordifolia extract on amphistome Gastrothylax crumenifer. Ecol. Environ. Conserv. 2021, 27, 231–234. [Google Scholar]
  69. Irum, S.; Ahmed, H.; Mukhtar, M.; Mushtaq, M.; Mirza, B.; Donskow-Łysoniewska, K.; Qayyum, M.; Simsek, S. Anthelmintic activity of Artemisia vestita Wall ex DC. and Artemisia maritima L. against Haemonchus contortus from sheep. Vet. Parasitol. 2015, 212, 451–455. [Google Scholar] [CrossRef]
  70. Acharya, J.; Hildreth, M.B.; Reese, R.N. In vitro screening of forty medicinal plant extracts from the United States Northern Great Plains for anthelmintic activity against Haemonchus contortus. Vet. Parasitol. 2014, 201, 75–81. [Google Scholar] [CrossRef]
  71. Tariq, K.; Chishti, M.; Ahmad, F.; Shawl, A. Anthelmintic efficacy of Achillea millifolium against gastrointestinal nematodes of sheep: In vitro and in vivo studies. J. Helminthol. 2008, 82, 227–233. [Google Scholar] [CrossRef]
  72. Ferreira, L.; Castro, P.; Chagas, A.; França, S.; Beleboni, R. In vitro anthelmintic activity of aqueous leaf extract of Annona muricata L.(Annonaceae) against Haemonchus contortus from sheep. Exp. Parasitol. 2013, 134, 327–332. [Google Scholar] [CrossRef] [Green Version]
  73. Soares, A.M.; Oliveira, J.T.; Rocha, C.Q.; Ferreira, A.T.; Perales, J.; Zanatta, A.C.; Vilegas, W.; Silva, C.R.; Costa-Junior, L.M. Myracrodruon urundeuva seed exudates proteome and anthelmintic activity against Haemonchus contortus. PLoS ONE 2018, 13, e0200848. [Google Scholar] [CrossRef]
  74. Ahmed, M.; Laing, M.; Nsahlai, I. In vitro anthelmintic activity of crude extracts of selected medicinal plants against Haemonchus contortus from sheep. J. Helminthol. 2013, 87, 174–179. [Google Scholar] [CrossRef] [PubMed]
  75. Alawa, C.; Adamu, A.; Gefu, J.; Ajanusi, O.; Abdu, P.; Chiezey, N.; Alawa, J.; Bowman, D. In vitro screening of two Nigerian medicinal plants (Vernonia amygdalina and Annona senegalensis) for anthelmintic activity. Vet. Parasitol. 2003, 113, 73–81. [Google Scholar] [CrossRef] [PubMed]
  76. Kahiya, C.; Mukaratirwa, S.; Thamsborg, S.M. Effects of Acacia nilotica and Acacia karoo diets on Haemonchus contortus infection in goats. Vet. Parasitol. 2003, 115, 265–274. [Google Scholar] [CrossRef] [PubMed]
  77. Zamilpa, A.; García-Alanís, C.; López-Arellano, M.; Hernández-Velázquez, V.; Valladares-Cisneros, M.; Salinas-Sánchez, D.; Mendoza-de Gives, P. In vitro nematicidal effect of Chenopodium ambrosioides and Castela tortuosa n-hexane extracts against Haemonchus contortus (Nematoda) and their anthelmintic effect in gerbils. J. Helminthol. 2019, 93, 434–439. [Google Scholar] [CrossRef]
  78. Sebai, E.; Serairi, R.; Saratsi, K.; Abidi, A.; Sendi, N.; Darghouth, M.A.; Wilson, M.S.; Sotiraki, S.; Akkari, H. Hydro-ethanolic extract of Mentha pulegium exhibit anthelmintic and antioxidant proprieties in vitro and in vivo. Acta Parasitol. 2020, 65, 375–387. [Google Scholar] [CrossRef]
  79. Dhadde Gurunath, S.; Mali Hanmant, S.; Sapate Rohit, B.; Vakhariya Rohan, R.; Raut Indrayani, D.; Nitalikar Manoj, M. Investigation of In-Vitro Anthelmintic Activity of Methanolic Extract of Tylophora Indica Leaves against Haemonchus contortus. J. Univ. Shanghai Sci. Technol. 2021, 23, 37–42. [Google Scholar]
  80. Oliveira, A.F.; Junior, L.M.C.; Lima, A.S.; Silva, C.R.; Ribeiro, M.N.; Mesquista, J.W.; Rocha, C.Q.; Tangerina, M.M.; Vilegas, W. Anthelmintic activity of plant extracts from Brazilian savanna. Vet. Parasitol. 2017, 236, 121–127. [Google Scholar] [CrossRef]
  81. Soldera-Silva, A.; Seyfried, M.; Campestrini, L.H.; Zawadzki-Baggio, S.F.; Minho, A.P.; Molento, M.B.; Maurer, J.B.B. Assessment of anthelmintic activity and bio-guided chemical analysis of Persea americana seed extracts. Vet. Parasitol. 2018, 251, 34–43. [Google Scholar] [CrossRef] [PubMed]
  82. Mravčáková, D.; Komáromyová, M.; Babják, M.; Urda Dolinská, M.; Königová, A.; Petrič, D.; Čobanová, K.; Ślusarczyk, S.; Cieslak, A.; Várady, M. Anthelmintic activity of wormwood (Artemisia absinthium L.) and mallow (Malva sylvestris L.) against Haemonchus contortus in sheep. Animals 2020, 10, 219. [Google Scholar] [CrossRef] [Green Version]
  83. Ahmed, A.H.; Ejo, M.; Feyera, T.; Regassa, D.; Mummed, B.; Huluka, S.A. In vitro anthelmintic activity of crude extracts of Artemisia herba-alba and Punica granatum against Haemonchus contortus. J. Parasitol. Res. 2020. [Google Scholar] [CrossRef] [Green Version]
  84. Karim, M.A.; Islam, M.R.; Lovelu, M.A.; Nahar, S.F.; Dutta, P.K.; Talukder, M.H. In vitro evaluation of anthelmintic activity of tannin-containing plant Artemisia extracts against Haemonchus contortus from goat: Anthelmintic activity of tannin-containing plants Artemisia. J. Bangladesh Agric. Univ. 2019, 17, 363–368. [Google Scholar] [CrossRef]
  85. Hoste, H.; Brunet, S.; Paolini, V.; Bahuaud, D.; Chauveau, S.; Fouraste, I.; Lefrileux, Y. Compared in vitro anthelmintic effects of eight tannin-rich plants browsed by goats in the southern part of France. Option Méditerrenéennes 2009, 85, 431–436. [Google Scholar]
  86. Iqbal, Z.; Lateef, M.; Ashraf, M.; Jabbar, A. Anthelmintic activity of Artemisia brevifolia in sheep. J. Ethnopharmacol. 2004, 93, 265–268. [Google Scholar] [CrossRef] [PubMed]
  87. Tariq, K.; Chishti, M.; Ahmad, F.; Shawl, A. Anthelmintic activity of extracts of Artemisia absinthium against ovine nematodes. Vet. Parasitol. 2009, 160, 83–88. [Google Scholar] [CrossRef] [PubMed]
  88. Manolaraki, F.; Sotiraki, S.; Stefanakis, A.; Skampardonis, V.; Volanis, M.; Hoste, H. Anthelmintic activity of some Mediterranean browse plants against parasitic nematodes. Parasitology 2010, 137, 685–696. [Google Scholar] [CrossRef]
  89. Busari, I.; Soetan, K.; Aiyelaagbe, O.; Babayemi, O. Phytochemical screening and in vitro anthelmintic activity of methanolic extract of Terminalia glaucescens leaf on Haemonchus contortus eggs. Acta Trop. 2021, 223, 106091. [Google Scholar] [CrossRef]
  90. Eguale, T.; Tadesse, D.; Giday, M. In vitro anthelmintic activity of crude extracts of five medicinal plants against egg-hatching and larval development of Haemonchus contortus. J. Ethnopharmacol. 2011, 137, 108–113. [Google Scholar] [CrossRef]
  91. Zarza-Albarrán, M.; Olmedo-Juárez, A.; Rojo-Rubio, R.; Mendoza-de Gives, P.; González-Cortazar, M.; Tapia-Maruri, D.; Mondragón-Ancelmo, J.; García-Hernández, C.; Blé-González, E.A.; Zamilpa, A. Galloyl flavonoids from Acacia farnesiana pods possess potent anthelmintic activity against Haemonchus contortus eggs and infective larvae. J. Ethnopharmacol. 2020, 249, 112402. [Google Scholar] [CrossRef]
  92. Castañeda-Ramírez, G.S.; de Jesús Torres-Acosta, J.F.; Sandoval-Castro, C.A.; Borges-Argáez, R.; Cáceres-Farfán, M.; Mancilla-Montelongo, G.; Mathieu, C. Bio-guided fractionation to identify Senegalia gaumeri leaf extract compounds with anthelmintic activity against Haemonchus contortus eggs and larvae. Vet. Parasitol. 2019, 270, 13–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  93. Moreno, F.C.; Gordon, I.J.; Wright, A.; Benvenutti, M.A.; Saumell, C. Efecto antihelmíntico in vitro de extractos de plantas sobre larvas infectantes de nematodos gastrointestinales de rumiantes. Arch. Med. Vet. 2010, 42, 155–163. [Google Scholar] [CrossRef] [Green Version]
  94. Nyasse, B.; Ngantchou, I.; Nono, J.-J.; Schneider, B. Antifilarial activity in vitro of polycarpol and 3-O-acetyl aleuritolic acid from cameroonian medicinal plants against Onchocerca gutturosa. Nat. Prod. Res. 2006, 20, 391–397. [Google Scholar] [CrossRef]
  95. Ndjonka, D.; Rapado, L.; Silber, A.; Liebau, E.; Wrenger, C. Natural products as a source for treating neglected parasitic diseases. Int. J. Mol. Sci. 2013, 14, 3395–3439. [Google Scholar] [CrossRef]
  96. Rakhshandehroo, E.; Asadpour, M.; Malekpour, S.; Jafari, A. The anthelmintic effects of five plant extracts on the viability of Parascaris equorum larvae. Equine Vet. Educ. 2017, 29, 219–224. [Google Scholar] [CrossRef]
  97. GS, R.I.D.; Yadav, J.; Sapate, R.; Mali, H. In vitro Anthelmintic Activity of crude extract of flowers of Bougainvillea Spectabilis Wild against Pheretima Posthuma. Int. J. Pharm. Pharm. Sci. 2020, 17, 1–18. [Google Scholar]
  98. Chander, P.A.; Sri, H.Y.; Sravanthi, N.B.; Susmitha, U.V. In vitro anthelmintic activity of Barleria buxifolia on Indian adult earthworms and estimation of total flavonoid content. Asian Pac. J. Trop. Dis. 2014, 4, S233–S235. [Google Scholar] [CrossRef]
  99. Desai, H.; Kapadia, M.; Kharat, A. Evaluation of anthelmintic activity of Plumbago zeylanica Linn. Int. J. Pharm. Sci. 2012, 3, 4281. [Google Scholar]
  100. Carvalho, V.; Ramos, L.d.A.; da Silva, C.; Nebo, L.; Moraes, D.; Da Silva, F.; Da Costa, N.; Junior, R.d.O.R.; De Souza, L.; Rodrigues, R. In vitro anthelmintic activity of Siparuna guianensis extract and essential oil against Strongyloides venezuelensis. J. Helminthol. 2020, 94, e50. [Google Scholar] [CrossRef]
  101. Shalaby, H.A.; El Namaky, A.H.; Khalil, F.A.; Kandil, O.M. Efficacy of methanolic extract of Balanites aegyptiaca fruits on Toxocara vitulorum. Vet. Parasitol. 2012, 183, 386–392. [Google Scholar] [CrossRef] [PubMed]
  102. Ríos-de Álvarez, L.; Jackson, F.; Greer, A.; Grant, G.; Jackson, E.; Morrison, A.; Huntley, J. Direct anthelmintic and immunostimulatory effects of oral dosing semi-purified phytohaemagglutinin lectin in sheep infected with Teladorsagia circumcincta and Trichostrongylus colubriformis. Vet. Parasitol. 2012, 187, 267–274. [Google Scholar] [CrossRef]
  103. dos Santos, A.F.; Fonseca, S.A.; César, F.A.; de Azevedo Albuquerque, M.C.P.; Santana, J.V.; Santana, A.E.G. A penta-substituted pyridine alkaloid from the rhizome of Jatropha elliptica (Pohl) Muell. Arg. is active against Schistosoma mansoni and Biomphalaria glabrata. Parasitol. Res. 2014, 113, 1077–1084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  104. Sharifi-Rad, J.; Hoseini-Alfatemi, S.; Sharifi-Rad, M.; Sharifi-Rad, M.; Iriti, M.; Sharifi-Rad, M.; Sharifi-Rad, R.; Raeisi, S. Phytochemical compositions and biological activities of essential oil from Xanthium strumarium L. Molecules 2015, 20, 7034–7047. [Google Scholar] [CrossRef] [Green Version]
  105. Akkari, H.; Ezzine, O.; Dhahri, S.; B’chir, F.; Rekik, M.; Hajaji, S.; Darghouth, M.A.; Jamâa, M.L.B.; Gharbi, M. Chemical composition, insecticidal and in vitro anthelmintic activities of Ruta chalepensis (Rutaceae) essential oil. Ind. Crops. Prod. 2015, 74, 745–751. [Google Scholar] [CrossRef]
  106. Moreno, F.C.; Gordon, I.J.; Knox, M.; Summer, P.; Skerrat, L.; Benvenutti, M.A.; Saumell, C. Anthelmintic efficacy of five tropical native Australian plants against Haemonchus contortus and Trichostrongylus colubriformis in experimentally infected goats (Capra hircus). Vet. Parasitol. 2012, 187, 237–243. [Google Scholar] [CrossRef]
  107. Mansur, F.; Luoga, W.; Buttle, D.; Duce, I.; Lowe, A.; Behnke, J. The anthelmintic efficacy of natural plant cysteine proteinases against two rodent cestodes Hymenolepis diminuta and Hymenolepis microstoma in vitro. Vet. Parasitol. 2014, 201, 48–58. [Google Scholar] [CrossRef]
  108. Kalani, K.; Kushwaha, V.; Sharma, P.; Verma, R.; Srivastava, M.; Khan, F.; Murthy, P.; Srivastava, S.K. In vitro, in silico and in vivo studies of ursolic acid as an anti-filarial agent. PLoS ONE 2014, 9, e111244. [Google Scholar]
  109. Kushwaha, S.; Roy, S.; Maity, R.; Mallick, A.; Soni, V.K.; Singh, P.K.; Chaurasiya, N.D.; Sangwan, R.S.; Misra-Bhattacharya, S.; Mandal, C. Chemotypical variations in Withania somnifera lead to differentially modulated immune response in BALB/c mice. Vaccine 2012, 30, 1083–1093. [Google Scholar] [CrossRef]
  110. Kushwaha, S.; Soni, V.K.; Singh, P.K.; Bano, N.; Kumar, A.; Sangwan, R.S.; Bhattacharya, S.M. Withania somnifera chemotypes NMITLI 101R, NMITLI 118R, NMITLI 128R and withaferin A protect Mastomys coucha from Brugia malayi infection. Parasite Immunol. 2011, 34, 199–209. [Google Scholar] [CrossRef]
  111. Sashidhara, K.V.; Singh, S.P.; Misra, S.; Gupta, J.; Misra-Bhattacharya, S. Galactolipids from Bauhinia racemosa as a new class of antifilarial agents against human lymphatic filarial parasite, Brugia malayi. Eur. J. Med. Chem. 2012, 50, 230–235. [Google Scholar] [CrossRef] [PubMed]
  112. Magalhães, L.G.; Machado, C.B.; Morais, E.R.; de Carvalho Moreira, É.B.; Soares, C.S.; da Silva, S.H.; Da Silva Filho, A.A.; Rodrigues, V. In vitro schistosomicidal activity of curcumin against Schistosoma mansoni adult worms. Parasitol. Res. 2009, 104, 1197–1201. [Google Scholar] [CrossRef] [PubMed]
  113. Lin, J.; Nishino, K.; Roberts, M.C.; Tolmasky, M.; Aminov, R.I.; Zhang, L. Mechanisms of antibiotic resistance. Front. Microbiol. 2015, 6, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  114. Maestrini, M.; Tava, A.; Mancini, S.; Salari, F.; Perrucci, S. In vitro anthelmintic activity of saponins derived from Medicago spp. plants against donkey gastrointestinal nematodes. Vet. Sci. 2019, 6, 35. [Google Scholar] [CrossRef] [Green Version]
  115. Maestrini, M.; Tava, A.; Mancini, S.; Tedesco, D.; Perrucci, S. In vitro anthelmintic activity of saponins from Medicago spp. against sheep gastrointestinal nematodes. Molecules 2020, 25, 242. [Google Scholar] [CrossRef] [Green Version]
  116. Buza, V.; Cătană, L.; Andrei, S.; Ștefănuț, L.; Răileanu, Ș.; Matei, M.; Vlasiuc, I.; Cernea, M. In vitro anthelmintic activity assessment of six medicinal plant aqueous extracts against donkey strongyles. J. Helminthol. 2020, 94, E147. [Google Scholar] [CrossRef]
  117. Aremu, A.; Finnie, J.; Van Staden, J. Potential of South African medicinal plants used as anthelmintics–Their efficacy, safety concerns and reappraisal of current screening methods. S. Afr. J. Bot. 2012, 82, 134–150. [Google Scholar] [CrossRef] [Green Version]
  118. Irum, S.; Ahmed, H.; Mirza, B.; Donskow-Łysoniewska, K.; Muhammad, A.; Qayyum, M.; Simsek, S. In vitro and in vivo anthelmintic activity of extracts from Artemisia parviflora and A. sieversiana. Helminthologia 2017, 54, 218–224. [Google Scholar] [CrossRef]
  119. Zenebe, S.; Feyera, T.; Assefa, S. In vitro anthelmintic activity of crude extracts of aerial parts of Cissus quadrangularis L. and leaves of Schinus molle L. against Haemonchus contortus. Biomed. Res. Int. 2017. [Google Scholar] [CrossRef] [Green Version]
  120. Spiegler, V.; Hensel, A.; Seggewiß, J.; Lubisch, M.; Liebau, E. Transcriptome analysis reveals molecular anthelmintic effects of procyanidins in C. elegans. PLoS ONE 2017, 12, e0184656. [Google Scholar] [CrossRef] [Green Version]
  121. Sambodo, P.; Prastowo, J.; Kurniasih, K.; Indarjulianto, S. In vitro potential anthelmintic activity of Biophytum petersianum on Haemonchus contortus. Vet. World. 2018, 11, 1–4. [Google Scholar] [CrossRef]
  122. Thooyavan, G.; Kathikeyan, J.; Govindarajalu, B. Anthelmintic activity of Abutilon indicum leaf extract on sheep tapeworm Moniezia expansa in vitro. J. Pharmacogn. Phytochem. 2018, 7, 317–321. [Google Scholar]
  123. Zangueu, C.B.; Olounlade, A.P.; Ossokomack, M.; Djouatsa, Y.N.N.; Alowanou, G.G.; Azebaze, A.G.B.; Llorent-Martínez, E.J.; de Córdova, M.L.F.; Dongmo, A.B.; Hounzangbe-Adote, M.S. In vitro effects of aqueous extract from Maytenus senegalensis (Lam.) Exell stem bark on egg hatching, larval migration and adult worms of Haemonchus contortus. BMC Vet. Res. 2018, 14, 147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  124. Braga de Oliveira, M.I.; Rodrigues Brandão, F.; Rocha da Silva, M.J.; Carvalho Rosa, M.; Santana Farias, C.F.; Silva dos Santos, D.; Majolo, C.; Oliveira, M.R.d.; Chaves, F.C.M.; Bizzo, H.R. In vitro anthelmintic efficacy of essential oils in the control of Neoechinorhynchus buttnerae, an endoparasite of Colossoma macropomum. J. Essent. Oil Res. 2021, 33, 509–522. [Google Scholar] [CrossRef]
  125. Zaman, M.A.; Qamar, W.; Yousaf, S.; Mehreen, U.; Shahid, Z.; Khan, M.K.; Qamar, M.F.; Kamran, M. In vitro experiments revealed the anthelmintic potential of herbal complex against Haemonchus contortus. Pak. Vet. J. 2019, 40, 271–273. [Google Scholar]
  126. Salgado, J.A.; Santos, C.d.P. Overview of anthelmintic resistance of gastrointestinal nematodes of small ruminants in Brazil. Rev. Bras. Parasitol. Vet. 2016, 25, 3–17. [Google Scholar] [CrossRef] [Green Version]
  127. von Samson-Himmelstjerna, G. Molecular diagnosis of anthelmintic resistance. Vet. Parasitol. 2006, 136, 99–107. [Google Scholar] [CrossRef] [PubMed]
  128. Demeler, J.; Küttler, U.; El-Abdellati, A.; Stafford, K.; Rydzik, A.; Varady, M.; Kenyon, F.; Coles, G.; Höglund, J.; Jackson, F. Standardization of the larval migration inhibition test for the detection of resistance to ivermectin in gastro intestinal nematodes of ruminants. Vet. Parasitol. 2010, 174, 58–64. [Google Scholar] [CrossRef]
  129. Beech, R.; Skuce, P.; Bartley, D.; Martin, R.; Prichard, R.; Gilleard, J. Anthelmintic resistance: Markers for resistance, or susceptibility? Parasitology 2011, 138, 160–174. [Google Scholar] [CrossRef] [Green Version]
  130. Demeler, J.; Küttler, U.; von Samson-Himmelstjerna, G. Adaptation and evaluation of three different in vitro tests for the detection of resistance to anthelmintics in gastro intestinal nematodes of cattle. Vet. Parasitol. 2010, 170, 61–70. [Google Scholar] [CrossRef] [PubMed]
  131. Kaplan, R.M. Drug resistance in nematodes of veterinary importance: A status report. Trends Parasitol. 2004, 20, 477–481. [Google Scholar] [CrossRef] [PubMed]
  132. Mukherjee, N.; Mukherjee, S.; Saini, P.; Roy, P.; P Sinha Babu, S. Phenolics and terpenoids; the promising new search for anthelmintics: A critical review. Mini Rev. Med. Chem. 2016, 16, 1415–1441. [Google Scholar] [CrossRef] [PubMed]
  133. Ramirez, B.; Bickle, Q.; Yousif, F.; Fakorede, F.; Mouries, M.-A.; Nwaka, S. Schistosomes: Challenges in compound screening. Expert Opin. Drug Discov. 2007, 2, S53–S61. [Google Scholar] [CrossRef] [PubMed]
  134. Geary, T.G.; Sakanari, J.A.; Caffrey, C.R. Anthelmintic drug discovery: Into the future. J. Parasitol. 2015, 101, 125–133. [Google Scholar] [CrossRef] [PubMed]
  135. Castelli, M.V.; Lodeyro, A.F.; Malheiros, A.; Zacchino, S.A.; Roveri, O.A. Inhibition of the mitochondrial ATP synthesis by polygodial, a naturally occurring dialdehyde unsaturated sesquiterpene. Biochem. Pharmacol. 2005, 70, 82–89. [Google Scholar] [CrossRef] [PubMed]
  136. Tritten, L.; Braissant, O.; Keiser, J. Comparison of novel and existing tools for studying drug sensitivity against the hookworm Ancylostoma ceylanicum in vitro. Parasitol. 2012, 139, 348–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  137. Newman, D.J.; Cragg, G.M.; Kingston, D.G. Natural products as pharmaceuticals and sources for lead structures. Pract. Med. Chem. 2008, 159–186. [Google Scholar]
  138. Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the last 25 years. J. Nat. Prod. 2007, 70, 461–477. [Google Scholar] [CrossRef] [Green Version]
  139. Garcia-Bustos, J.F.; Sleebs, B.E.; Gasser, R.B. An appraisal of natural products active against parasitic nematodes of animals. Parasit Vectors. 2019, 12, 306. [Google Scholar] [CrossRef]
Figure 1. The PRISMA chart showing the summary of the literature search and query results.
Figure 1. The PRISMA chart showing the summary of the literature search and query results.
Pathogens 12 00131 g001
Table 1. List of anthelmintic plants and their extracts effective against flatworms (Platyhelminthes).
Table 1. List of anthelmintic plants and their extracts effective against flatworms (Platyhelminthes).
ParasiteStudy ModelPlant FamilyPlant NamePlant TissueExtractEffective Concentration and Mortality Rate (%)Reference
Carmyerius spatiosusIn vitroLeguminosaeCassia siameaLeaves and heartwoodEthyl acetate extractsHighest anthelminthic effect[7]
PlumbaginaceaePlumbago zeylanicaRootsn-butanol extract
PlumbaginaceaePlumbago indicaRootshexane, ethyl acetate, and n-butanol extract
CombretaceaeTerminalia catappaLeavesn-butanol and water extract
Clonorchis sinensisIn vitroRosaceaeHagenia abyssinicaFemale flowersCrude extract5 h (100 µg/mL)[8]
Echinococcus granulosus (protoscolex)In vitroAnacardiaceaePistacia atlanticaFruits and leavesHydroalcoholic extracts100%; killed protoscoleces (50 mg/mL in 10 min)[3]
Leaves and fruitsHydroalcoholic extracts0.1% concentration of fresh fruit extract (99.09 ± 1.27 mg/mL) and leaf extract (89.25 ± 18.42 mg/mL) had strong scolicidal effects in 360 min[9]
In vitroLamiaceaeSalvia officinalisAerial partsEthanolic extract100% (6–8 days)[10]
FabaceaeProsopis farctaLeavesEthanolic extract
Crude alkaloids
25% scolicidal activity with a 500 mg/mL dose after 24 h[11]
57% scolicidal activity with a 500 mg/mL dose after 24 h
RanunculaceaeNigella sativaSeedsEssential oil (Thymoquinone)100% scolicidal activity with a 1 mg/mL dose after 10 min[12]
CucurbitaceaeDendrosicyos socotranaLeavesAqueous and methanolic extracts100% scolicidal activity with a 5000 μg/mL dose after
360 h (methanolic extract)
and 408 h (aqueous extract)
[13]
EuphorbiaceaeJatropha unicostataAqueous and methanolic extracts100% scolicidal activity with a 1000 μg/mL dose after
288 h (both extracts)
BerberidaceaeBerberis vulgarisFruitsAqueous extracts98.7% scolicidal activity with a 2 mg/mL dose after
30 min
[14]
EuphorbiaceaeMallotus philippinensisFruitsMethanolic extracts99% scolicidal activity with a 20 mg/mL dose after
60 min
[15]
Echinococcus granulosus protoscolexIn vitroMeliaceaeAzadirachta indicaWhole plantEthanolic extractsUp to 97% mortality with 30 min of incubation[16]
Echinostoma caproniIn vitroRosaceaeHagenia abyssinicaFemale flowersCrude extract51 h (100 µg/mL)[8]
Fasciola hepaticaIn vitroFabaceaeAcacia farnesianaLeavesHexane, ethyl acetate, and methanolic extracts0% (500 mg/L)[17]
AsteraceaeArtemisia absinthium0% (500 mg/L)
Artemisia mexicana100% (500 mg/L)
PapaveraceaeBocconia frutescens100% (500 mg/L)
FabaceaeCajanus cajan100% (500 mg/L)
BoraginaceaeCordia spp.0% (500 mg/L)
MalvaceaeHibiscus rosa sinensis0% (500 mg/L)
VerbenaceaeLantana camara100% (500 mg/L)
FabaceaeLeucaena diversifolia0% (500 mg/L)
MeliaceaeMelia azedarach13% (500 mg/L)
LamiaceaeMentha sp.0% (500 mg/L)
Ocimum basilicum0% (500 mg/L)
PiperaceaePiper auritum100% (500 mg/L)
DysphaniaTeloxys ambrosioides0% (500 mg/L)
Fasciola larvae (sporocyst, redia, and cercaria)In vitroRosaceaePotentilla fulgensDried root powderEther, chloroform, methanolic, acetone, and ethanolic extracts8 h LC50 was 54.20 mg/L for sporocysts, 49.37 mg/L for redia, and 38.13 mg/L for cercaria[18]
Fasciola gigantica larvae (sporocysts, redia, and cerceria)In vivoAsparagaceaeAsparagus racemosusDried root powderEther, chloroform, methanolic, acetone, and ethanolic extracts2 h LC50 was 79.93%[19]
Fasciola gigantica and Taenia soliumIn vitroEuphorbiaceaeAcalypha wilkesianaExtractsMethanolic extracts of leaves, stems, and rootsAll extracts exhibited anthelmintic activity in vitro[20]
Fasciola hepaticaIn vitroRosaceaeHagenia abyssinicaFemale flowersCrude extract1 h (100 µg/mL)[8]
Fasciolopsis buskiIn vitroZingiberaceaeAlpinia nigraShootCrude alcoholic extract3.94 ± 0.06 h death time (20 mg/mL concentration)[21]
Gastrothylax crumeniferIn vitroFabaceaeSesbania sesban var. bicolorFresh leavesMethanolic extracts of dried plantsBetter than praziquantel[22]
CyperaceaeCyperus compressusRoots
AsparagaceaeAsparagus racemosusRoots
Hymenolepis diminuta and Syphacia obvelataIn vitro
In vivo
AsparagaceaeAsparagus racemosusRootsMethanolic extract53.88% and 24% reduction in EPG * and worm counts, respectively (30 mg/mL concentration)[23]
Hymenolepis diminutaIn vitroCyperaceaeCyperus compressusRootsMethanolic extract61.74% reduction in the EPG and 24% reduction in worm counts (30 mg/mL concentration)[24]
Hymenolepis diminutaIn vitroFabaceaeSesbania sesbanFresh LeavesMethanolic extract65.10%
reduction in EPG counts, 56% reduction in worm counts (30 mg/mL concentration)
[25]
Paramphistomum gracileIn vitroFabaceaeSenna alata, S. alexandrina, and S. occidentalisLeaf extractEthanolic extractsDose-dependent effects on motility and mortality[26]
Paramphistomum microbothriumIn vitroZygophyllaceaeBalanites aegyptiacaFruitsMethanolic extract200 µg/ml, at which distinct
damage to the whole body surface of the trematodes
[27]
Raillietina echinobothridaIn vitroAsteraceaeAcmella oleraceaLeavesMethanolic extract18.42 ± 0.95 h survival time (20 mg/mL concentration)[28]
Raillietina spiralisIn vitroMalvaceaeThespesia lampasRootsAqueous extracts51 ± 0.33 min death time (20 mg/mL concentration)[29]
Raillietina spiralisIn vitroMeliaceaeAzadirachta IndicaLeavesAqueous extract46 ± 0.53 min death time (20 mg/mL concentration)[30]
Raillietina spiralisIn vitroScrophulariaceaeVerbascum ThapsusFresh LeavesMethanolic extract86 ± 5 min death time (20 mg/mL concentration)[31]
Raillietina spiralisIn vitroAsteraceaeAchillea wilhelmsiiFresh LeavesMethanolic extract40 min death time (20 mg/mL concentration)[32]
Raillietina spiralisIn vitroLauraceaeCinnamomum camphoraLeavesAqueous extracts47 ± 0.54 min death time (20 mg/mL concentration)[33]
Raillietina spiralisIn vitroVerbenaceaeClerodendron inermeLeavesAqueous extracts45 ± 0.52 min death time (20 mg/mL concentration)[34]
Raillietina tetragonaIn vitroPoaceaeImperata cylindricaUnderground parts (rhizomes and roots)Chloroform (medium polar solvent)Dose-dependent anthelmintic activity[35]
Schistosoma mansoniIn vitroApocynaceaeRauwolfia vomitoriaStem bark and rootsEthanolic extractHigh activity against cercariae and adult worms[36]
Syphacia obvelataIn vitroCyperaceaeCyperus compressusRootsMethanolic extract28.92% reduction in the EPG and 33.85% reduction in worm counts (30 mg/mL concentration)[24]
Syphacia obvelataIn vitroFabaceaeSesbania sesbanFresh leavesMethanolic extractEPG
and worm counts reduced by 34.32% and 47.08%,
respectively (30 mg/mL concentration)
[25]
Schistosoma mansoniIn vivoAsteraceaeBaccharis trimeraLeavesCrude dichloromethane extract (DE) and aqueous fraction (AF)98% (AF) 97% (DE)[37]
Tanacetum vulgareAerial partsCrude extract and Essential oil100%[38]
Schistosoma mansoniIn vitroRosaceaeHagenia abyssinicaFemale flowersCrude extract3 h (100 µg/mL)[8]
Schistosoma mansoniIn vitroEuphorbiaceaeEuphorbia conspicuaLeavesLeaf extract100%
(100 µg/mL)
[39]
PiperaceaePiper chabaFruitsMethylene chloride extractStrongest activity[40]
Taenia soliumIn vitroAsclepiadaceaePergularia daemiaLeavesEthanolic extract210.00 ± 0.52 min death time (25 mg/mL concentration)[41]
Aqueous extract221.12 ± 0.61
Taenia tetragonaIn vitroAsteraceaeAcmella oleraceaLeavesHexane extractThe lethal concentration (LC50) of the plant extract was 5128.61 ppm on T. tetragona and 8921.50 ppm on A. perspicillum[42]
* EPG: Egg per gram.
Table 2. List of anthelmintic plants and their extracts effective against roundworms (Nematoda).
Table 2. List of anthelmintic plants and their extracts effective against roundworms (Nematoda).
ParasiteStudy ModelPlant FamilyPlant NamePlant Part UsedExtract/CompoundLC50 *References
Allolobophora caliginosaIn vitroFabaceaeIndigofera oblongifoliaLeavesLeaf extracts15 ± 2 and 8.6 ± 1 h survival time with leaf extracts at 200 mg/mL and 300 mg/mL, respectively[43]
Ancylostoma caninum, Haemonchus placei, andCyathostominsIn vivoEbenaceaeDiospyros anisandraLeaves and barkExtracts and active compoundsWide-spectrum anthelmintic activity[44]
Ascardia galliIn vitroMalvaceaeThespesia lampasRootsAqueous extracts43 ± 0.86 min death time (20 mg/mL concentration)[29]
Ascardia galliIn vitroMimosaceaeAcacia oxyphyllaFresh stemsEthanolic extracts55.17  h  ±  1.04 h death time (0. 5 mg/ mL concentration)[45]
Ascardia galliIn vitroMeliaceaeAzadirachta IndicaLeavesAqueous extract46 ± 0.26 min death time (20 mg/mL concentration)[30]
Ascardia galliIn vitroScrophulariaceaeVerbascum ThapsusFresh LeavesMethanolic extract81 ± 4 min death time (20 mg/mL concentration)[31]
Ascardia galliIn vitroAsteraceaeAchillea wilhelmsiiFresh LeavesMethanolic extract40 min death time (20 mg/mL concentration)[32]
Ascardia galliIn vitroLauraceaeCinnamomum camphoraLeavesAqueous extracts52 ± 0.43 min death time (20 mg/mL concentration)[33]
Ascardia galliIn vitroVerbenaceaeClerodendron inermeLeavesAqueous extracts50 ± 0.31 min death time (20 mg/mL concentration)[34]
Ascardia galli and Pheretima posthumaIn vitroMalvaceaeMalvastrum coromandelianumLeavesMethanolic and ethyl acetate extractsSignificant anthelmintic activity[46]
Ascaris lumbricoidesIn vitroMusaceaeMusa paradisiaca, M. sapientum, and M. nanaRootsMethanol root extractsDeath time 151.39 ± 0.1 min at 200 mg/mL[47]
Ascaris lumbricoidesIn vitroAsclepiadaceaePergularia daemiaLeavesEthanolic Extract98.42 ± 0.57 min death time (25 mg/mL concentration)[41]
Aqueous Extract109.91 ± 0.49 min death time (25 mg/mL concentration)
Ascaris suum L3 larvaeIn vitroLythraceaePunica granatumFruit PeelEthanolic extractsEC50 values 164%[48]
RutaceaeZanthoxylum zanthoxyloidesRootsEC50 values 97%
RutaceaeClausena anisataRootsEC50 values 74%
Ascaris suum L3 larvaeIn vitro Acetone/water extractsAscaris suum L3 migratory inhibition activity EC50 ** values[49]
PinaceaePinus sylvestrisBark48.2%
FabaceaeOnobrychis viciifoliaWhole plant41.9%
FabaceaeTrifolium repensFlowers98.4%
GrossulariaceaeRibes nigrumLeaves91.8%
Ribes rubrumLeaves86%
Brugia malayiIn vivoPiperaceaePiper betleLeavesMethanolic extractsModerate activity[50]
Brugia malayiIn vitro/
In vivo
ApiaceaeTrachyspermum ammiDried fruitsMethanolic extracts58.93%[51]
Brugia malayiIn vivoCaesalpiniaceaeCaesalpinia bonducellaSeed kernelsEthanolic extracts96.0% microfilaricidal
and 100% sterilization in females
[52]
Butanolic extracts
Aqueous fraction
Brugia malayiIn vivo/
In vitro
VerbenaceaeLantana camaraStemEthanolic extracts43.05% adulticidal activity; sterilization of 76% of surviving
females
[53]
Brugia pahangiIn vitroAsteraceaeNeurolaena lobataLeavesEthanolic extractsCompletely immotile after 24 h incubation at 500 μg/mL concentration[54]
Caenorhabditis elegansIn vitroLaminaceaeTetradenia ripariaLeavesEthyl acetate extractsMost effective minimum lethal concentration value was 0.004 mg/mL[55]
Caenorhabditis elegansIn vitroCombretaceaeAnogeissus leiocarpusStem barkEthanolic extracts72 h LC50 was between 0.38 and 4.00 mg/mL[56]
MeliaceaeKhaya senegalensisLeaves
EuphorbiaceaeEuphorbia hirta
AnnonaceaeAnnona senegalensisAqueous extracts
ApocynaceaeParquetina nigrescens
Caenorhabditis elegansIn vitroSapindaceaeAcer rubrumLeavesEthanolic extractsKilled 50% (LC50) or 90% (LC90) of the nematodes in 24 h[57]
FagaceaeQuercus alba
RosaceaeRosa multiflora
AnarcardiaceaeRhus typhina
FabaceaeRobinia pseudoacacia
Lespedeza cuneataLeaves and stems
Caenorhabditis elegansIn vitroMeliaceaeKhaya senegalensisStem barkEthanolic and aqueous extracts72 h LC50 was between 0.38 and 4.00 mg/mL[56]
CombretaceaeAnogeissus leiocarpusLeaves
EuphorbiaceaeEuphorbia hirta
AnnonaceaeAnnona senegalensis
ApocynaceaeParquetina nigrescens
FabaceaeSenna petersiana
Caenorhabditis elegansIn vitroPlumbaginaceaePlumbago indicaRootMethylene chlorideStrongest activity[40]
Cooperia spp. In vitroFabaceaeLeucaena leucocephalaFresh leavesAqueous extract52.02 ± 12.39 of egg hatching within 48 h of exposure[58]
Eudrilus eugeniaeIn vitroLamiaceaeOcimum basilicumFruitsEthanol and hexane extracts213.39 ± 1.05 and 362.98 ± 1.54 death time of ethanolic extract and hexane extract, respectively, at 250 μg/mL concentration[59]
Gastrointestinal nematodesIn vitro/
In vivo
LamiaceaePrunella vulgaris
Whole plantPhenolic compoundsHighest nematode motility (100%) with higher concentrations of methanolic extracts (50 mg/ mL)[60]
Gastrointestinal nematodes
In vivo
LythraceaePunica granatumFruit peel
Pomegranate peel extract
7 days after the first and second doses, 85–97% decrease in fecal egg count (FEC)[61]
Gastrointestinal nematodesIn vitroMoringaceaeMoringa oleifera lectinSeedsDistilled water homogenization40.4% of eggs unhatched at 250 μg/mL dose[62]
Gastrointestinal nematodesIn vitroPhyllanthaceaeBridelia ferrugineaLeavesMethanolic and
acetone extracts
The number of eggs that hatched was reduced in a concentration-dependent manner (p  <  0.01) upon treatment[63]
CombretaceaeCombretum glutinosum
RubiaceaeMitragyna inermis
Gastrointestinal nematodes of goatsIn vitroVitaceaeCissus quadrangularisAerial partsAqueous (cold and boiled) and methanolic extractsStatistically significant effect[64]
AsphodelaceaeAloe marlothiiLeaves
MimosoideaeAlbizia anthelminticaBark
VitaceaeCissus rotundifoliaBark
AnacardiaceaeSclerocarya birreaBark
FabaceaeVachellia xanthophloeaBark
Gastrointestinal nematodes of sheepIn vivoPunicaceaePunica granatumFruit (seeds and peel)Boiled extracts8–40% (21st day)[65]
AsteraceaeArtemisia campestrisWhole plant3–36% (21st day)
SalicaceaeSalix capreaBark and leaves7–40% (21st day)
Gastrointestinal nematodes of sheepIn vitroMyrtaceaePsidium cattleianumFruitsHydroalcoholic extract80% in the inhibition of larval migration[66]
Gastrointestinal nematodes of sheepIn vitroPunicaceaeAqueous PomegranateFruit pulpMethanolic and gallic acid extractsSignificant inhibition of egg hatching within 48 h of exposure, highlighting a high (>82%) efficacy in vitro at all tested doses[67]
Gastrothylax crumeniferIn vitroMenispermaceaeTinospora cordifoliaPlant stemsAlcoholic and aqueous extractsmortality rate of 100% at concentration of 100 mg/mL[68]
Haemonchus contortusIn vitroAsteraceaeArtemisia maritimaWhole plantsMethanolic extracts84.5%[69]
Artemisia vestita87.2%
Haemonchus contortusIn vitroEricaceaeArctostaphylos uva-ursiLeavesMethanolic extracts95.8 ± 0.5% inhibition in DMSO[70]
AnacardiaceaeRhus glabra90.2 ± 0.9%
inhibition in DMSO
AsteraceaeBalsamorhiza sagittata88.1 ± 1.2% inhibition in DMSO
RanunculaceaeCaltha palustris86.5 ± 1.2% inhibition in DMSO
BoraginaceaeCynoglossum officinale84.7 ± 1.0% inhibition in DMSO
AsteraceaeSolidago mollis82.8 ± 1.4%
inhibition in DMSO
AsteraceaeCentaurea stoebe78.1 ± 1.5% inhibition in DMSO
FabaceaeGlycyrrhiza lepidota77.6 ± 2.3% inhibition in DMSO
AnacardiaceaeRhus aromatica100% inhibition in DMSO
AsteraceaeEricameria nauseosa100% inhibition in DMSO
ApiaceaePerideridia gairdneri100% inhibition in DMSO
GeraniaceaeGeranium viscosissimum100% inhibition in DMSO
AsteraceaeChrysothamnus viscidiflora100% inhibition in DMSO
AsteraceaeLiatris punctataRoots100% inhibition in DMSO
FabaceaeMelilotus albaLeaves100% inhibition in DMSO
FabaceaeMelilotus officinalis100% inhibition in DMSO
PapaveraceaeSanguinaria canadensisRoots98.5 ± 0.3%
inhibition in DMSO
OrobanchaceaePedicularis racemosaLeaves74.2 ± 0.9% inhibition in DMSO
LamiaceaeStachys palustris72.9 ± 1.8% inhibition in DMSO
LamiaceaeAgastache foeniculum70.05 ± 0.7% inhibition in DMSO
LamiaceaeMonarda fistulosa69.5 ± 1.5% inhibition in DMSO
FabaceaePediomelum argophyllum69.7 ± 1.8% inhibition in DMSO
LamiaceaeLycopus americanus76.0 ± 2.3% inhibition in DMSO
RanunculaceaeClematis ligusticifolia68.7 ± 2.0% inhibition in DMSO
AmaryllidaceaeAllium cernuum68.4 ± 1.3% inhibition in DMSO
AsteraceaeConyza canadensis76.8 ± 2.1% Inhibition in MOPS
CornaceaeCornus sericea57.4 ± 3.1% inhibition in DMSO
RosaceaeRubus idaeus51.9 ± 1.6% inhibition in DMSO
RanunculaceaeActaea rubra45.2 ± 1.5% Inhibition in DMSO
CaprifoliaceaeSymphoricarpos occidentalis43.1 ± 3.3% Inhibition in DMSO
AsteraceaeArtemisia ludoviciana40.8 ± 2.0% inhibition in DMSO
AsteraceaeArtemisia frigida36.2 ± 1.65% inhibition in DMSO
AsteraceaeTanacetum vulgare33.5 ± 2.0% inhibition in DMSO
CleomaceaeCleome serrulata23.9 ± 1.7% Inhibition in DMSO
OnagraceaeEpilobium angustifolium23.2 ± 3.5% inhibition in DMSO
FagaceaeQuercus macrocarpa18.3 ± 2.2% Inhibition in DMSO
SalicaceaeSalix exigua5.9 ± 0.7%
Inhibition in DMSO
Haemonchus contortusIn vitroAsteraceaeArtemisia absinthiumLeavesCrude aqueous and ethanolic extractsAqueous extracts exhibited greater anthelmintic activity[71]
Haemonchus contortusIn vitroRutaceaeCitrus aurantifoliaEssential oils from fruit peelOil extractsOil has limonene (56.37%), β-pinene (11.86%) and γ-terpinene (11.42%)[72]
AnnonaceaeAnnona muricataLeavesAqueous extractsAqueous extract of A. muricata leaves at serial dilutions of 50%, 25%, 12.5% and 6.25% inhibited the motility of L3 by 83.29%, 89.08%, 74.62% and 30.47% respectively
Haemonchus contortusIn vitroAnacardiaceaeMyracrodruon urundeuvaSeedsEthanolic and hexane extractsInhibition of larval development (LC50 = 0.29 mg mL−1)[73]
Haemonchus contortusIn vitroLiliaceaeAllium sativumBulbsEthanolic extracts84.0 ± 4.3[74]
AsphodelaceaeAloe feroxLeaves86.9 ± 2.9
BromeliaceaeAnanas comosus100 ± 1.0
CaricaceaeCarica papaya76.0 ± 5.1
MoraceaeFicus benjamina78.1 ± 3.5
MoraceaeFicus ingens78.1 ± 5.7
MoraceaeFicus carica (brown)56.3 ± 2.8
MoraceaeFicus carica (white)74.1 ± 7.9
MoraceaeFicus indica44.5 ± 7.0
MoraceaeFicus lutea60.0 ± 6.3
MoraceaeFicus elastica77.8 ± 6.6
MoraceaeFicus natalensis68.8 ± 7.2
MoraceaeFicus sur81.3 ± 5.6
MoraceaeFicus sycomorus6.3 ± 4.3
MoraceaeFicus ornamental thai60.0 ± 1.7
LamiaceaeLeonotis leonurus56.5 ± 6.1
MoraceaeMelia azedarach66.7 ± 4.4
FabaceaePeltophorum africanum65.2 ± 4.0
AmaryllidaceaeScadoxus puniceus59.4 ± 8.2
FabaceaeLespedeza cuneata100 ± 1.6
LeguminosaeTephrosia inandensis64.0 ± 7.8
CanellaceaeWarburgia ugandensis81.5 ± 3.5
CanellaceaeWarburgia salutaris80.8 ± 3.4
CucurbitaceaeCucumis myriocarpus60.0 ± 5.7
ZingiberaceaeZingiber officinaleRhizomes72.0 ± 2.5
Haemonchus contortusIn vitroAsteraceaeVernonia amygdalinaLeavesHot water extractsIneffective[75]
AnnonaceaeAnnona senegalensisStem barks88.5%
Haemonchus contortusIn vivoFabaceaeAcacia niloticaLeavesWithout extraction10% reduction in worm[76]
Acacia karroo34% reduction in worm
Haemonchus contortusIn vitro and
In vivo
AmaranthaceaeChenopodium ambrosioidesLeaves and stemsOrganic maceration96.3% (invitro), 45.8% (in vivo) at 40 mg/mL dose[77]
SimaroubaceaeCastela tortuosa78.9% (in vitro) 27.1% (in vivo) at 20 mg/mL dose
Haemonchus contortusIn vivo and
In vitro
LamiaceaeMentha pulegiumAerial partsHydroethanolic extract91.58% inhibition in the egg hatch assay at 8 mg/mL after 48 h. 65.2% inhibition at 8 mg/mL after 8 h in adult worm motility[78]
Haemonchus contortusIn vitroApocynaceaeTylophora IndicaLeavesMethanolic extract100% mortality after 6 h exposure at 50 mg/mL of concentration[79]
Haemonchus contortusIn vitroPassifloraceaeTurnera ulmifoliaLeaves and rootsHydroacetonic and hydroalcoholic extractsThe highest egg hatching inhibition with the lowest LC50 value of 430 μg/mL (95%, CI 400–460 μg/mL)[80]
FabaceaeParkia platycephalaLeaves and seedsLC50 1340, 95% CI 1170-1550 μg/mL
FabaceaeDimorphandra gardnerianaLeaves and barkIneffective
Haemonchus contortusIn vitroLauraceaePersea americanaDried seedsHot water extracts76.9 ± 7.2% effective in 500 μg/mL dose[81]
Haemonchus contortusIn vitro and
In vivo
AsteraceaeArtemisia absinthiumWhole plantCrude methanolic extractsStrong anthelmintic effect[82]
MalvaceaeMalva sylvestris
Haemonchus contortusIn vitroAsteraceaeArtemisia herba-albaStems and leavesCrude methanolic extracts98.67% inhibition of egg hatching at 1 mg/mL concentration[83]
PunicaceaePunica granatumPeel and rootsEggs unhatched at the end of the observation period
Haemonchus contortusIn vitroAsteraceaeArtemisia vulgarisLeavesAqueous and ethanolic extracts%100[84]
Haemonchus contortusIn vitroFagaceaeCastanea sativaStems and leavesEthanolic extractsAll plants showed some anthelmintic activity on both L3 larvae and adult worms)[85]
FabaceaeSarothamnus scopariusStems and leaves
PinaceaePinus sylvestrisStems and leaves
FagaceaeQuercus roburLeaves
OleaceaeFraxinus excelsiorLeaves
BetulaceaeCorylus avellanaLeaves
EricaceaeErica erigenaStems and leaves
FabaceaeAcacia holosericea
Acacia salicina
CupressaceaeCallitris endlicheri
Casuarina cunninghamiana
LauraceaeNeolitsea dealbata
Haemonchus contortusIn vivoAsteraceaeArtemisia absinthiumWhole plantAqueous and methanolic extracts4.3–67.2%
reduction in EPG
[86]
Haemonchus contortusIn vitroAsteraceaeArtemisia absinthiumAerial partsCrude aqueous extractsWorm motility inhibition was 73.6%[87]
Crude ethanolic extractsWorm motility inhibition was 94.7%
Haemonchus contortusIn vivoAnacardiaceaePistacia lentiscusLeavesAcetone extractsSignificant decreases in egg excretion[88]
FagaceaeQuercus coccifera
Onobrychis viciifolia
Ceratonia siliqua
Medicago sativa
Haemonchus contortus eggsIn vitroCombretaceaeTerminalia glaucescensLeavesMethanolic extracts87.55% inhibition of egg hatching at the 100 µg/mL dose[89]
Haemonchus contortus eggsIn vitroLamiaceaeLeucas martinicensisStems and barkCrude aqueous and hydroalcoholic extractsComplete inhibition of egg hatching at the 1 mg/mL dose[90]
Leonotis ocymifoliaAerial parts
FabaceaeSenna occidentalisLeaves
PolygonaceaeRumex abyssinicusStems and bark
LeguminosaeAlbizia schimperiana
Haemonchus contortus eggs and larvaeIn vitroFabaceaeAcacia farnesianaDried podsHydroalcoholic extracts100% ovicidal and 75.2% larvicidal activity at the 50 mg/mL dose[91]
Haemonchus contortus eggs and larvaeIn vitroFabaceaeSenegalia gaumeriLeavesMethanolic extractsOvicidal effect in the morula stage[92]
Haemonchus spp.In vitroCasuarinaceaeAllocasuarina torulosaFresh leavesMethanolic extracts64.14–89.83% exposure at the 30 mg/mL concentration[93]
FabaceaeAcacia holosericea
Acacia salicina
CupressaceaeCallitris endlicheri
CasuarinaceaeCasuarina cunninghamiana
LauraceaeNeolitsea dealbata
Onchocerca gutturosaIn vitroAnnonaceaePolyalthia suaveolensBarkHexane extractsSignificant inhibitory effect on the vitality of adult male worms[94]
EuphorbiaceaeDiscoglypremna caloneura
Onchocerca ochengiIn vitroSalicaceaeHomalium africanumLeavesHexane methylene chloride extractsSignificant effect[95]
Parascaris equorumIn vitroAsteraceaeArtemisia dracunculusLeavesMethanolic extracts90% inhibition of egg hatching and high larvicidal effect at concentrations ≥100 mg/mL[96]
MyrtaceaeEucalyptus camadulensisLeaves
LamiaceaeMentha pulegiumAerial parts
LamiaceaeZataria multifloraAerial parts
LiliaceaeAllium sativumBulbs
Pheretima posthumaIn vitroNyctaginaceaeBougainvillea spectabilisCrude extract of flowersEthanolic and
aqueous extracts
39 min (time of death) at a concentration of 50 mg/mL[97]
Pheretima posthumaIn vitroAcanthaceaeBarleria buxifoliaLeavesEthanolic extract89.00 ± 1.82 min for death time at a concentration of 100 mg/mL[98]
Pheretima posthumaIn vitroPlumbaginaceaePlumbagozeylanicaLeavesMethanolic Extract81 ± 1.5 min death time (concentration of 20 mg/mL)[99]
Water Extract228 ± 1.2 min death time (concentration of 20 mg/mL
Strongyloides venezuelensisIn vitroSiparunaceaeSiparuna guianensisLeavesHexane extractsSignificant inhibitory effect on the vitality of adult male worms[100]
Toxocara vitulorumIn vitroZygophyllaceaeBalanites aegyptiacaFruitsMethanolic extract120 μg/ml after 24 h complete disruption of the muscle cells[101]
Teladorsagia circumcincta L1 larvaeIn vivoFabaceaePhaseolus vulgarisSeedsLectin purificationWorm burden
4416 ± 878 (control)
3475 ± 792 (treated)
[102]
Trichostrongylus colubriformis L1 larvaeWorm burden
6708 ± 414 (control)
6500 ± 295.5 (treated)
Trichostrongylus colubriformisIn vivoMoraceaeArtocarpus integrifoliaWhole plantEthanolic extractsReduced concentration of nematode eggs (2.3 mg semi-purified PHA lectin/kg LW/day)[102]
FabaceaeCanavalia ensiformis
FabaceaePhaseolus vulgaris
FabaceaeMaackia murensis
FabaceaeRobinia pseudoacacia
MoraceaeMaclura pomifera
FabaceaeDolichos biflorus
PoaceaeTriticum vulgare
AmaryllidaceaeGalanthus nivalis
RosaceaeRosa multiflora
* LC50: Lethal concentration. ** EC50: Effective concentration.
Table 3. Candidate natural substances with anthelmintic effects.
Table 3. Candidate natural substances with anthelmintic effects.
CompoundParasite SpeciesStudy ModelReported MortalityReference
A penta-substituted pyridine alkaloidSchistosoma mansoniIn vitro100%[103]
Essential oilEchinococcus granulosus (protoscolex)In vitro79.22% scolicidal activity with the 20 mg/mL dose during 60 min[104]
Essential oil (Thymoquinone)Echinococcus granulosus(protoscolex)In vitro100% scolicidal activity with the 1 mg/mL dose after 10 min[12]
Essential oilHaemonchus contortusIn vitro and in vivo33.3% and 87.5% inhibition motility for flower essential oil[105]
29.1% and 75% for leaf
essential oil
87.2%
Lectin purificationTeladorsagia circumcincta (L1)In vivoWorm burden
4416 ± 878 (control)
3475 ± 792 (treated)
[102]
Trichostrongylus colubriformis (L1) Worm burden
6708 ± 414 (control)
6500 ± 295.5 (treated)
TanninCooperia spp.In vivoHigher activity[106]
Cysteine proteinases (CP)Hymenolepis diminutaIn vitroCP extracts exhibited anthelmintic activity in vitro[107]
PristimerinAnticestodalInvitro
In vivo
EPG by 94 ± 5%, 8 ± 4%, 6 ± 3%, and 97 ± 4%, respectively[60]
Ursolic acidBrugia malayiInvitro
In vivo
86% inhibition[108]
Withaferin ABrugia malayiIn vivo4.3% reduced parasite load using 8 μg/mL within 24 h[109,110]
Galactolipid-1
Galactolipid-2 Galactolipid-3
Galactolipid-4
Brugia malayiIn vitro
In vivo
Fraction F1: 80%; Fraction F2: 30%; Fraction F3: 40%;
Fraction F4: 100%
(31.25 μg/mL)
[111]
CurcuminSchistosoma mansoniIn vitro100% mortality in male and female[112]
AporphineAnisakis simplex and
Hymenolepis nana
In vitroNo cestocidal and nematocidal effects against H. nana and A. simplex[113]
Derived saponinsDonkey Gastrointestinal NematodesIn vitroSignificant (p < 0.05) inhibition of nematode egg hatching (>80%)[114]
Maclura pomifera agglutininTeladorsagia circumcinctaIn vivoDirect anthelmintic effect on nematode fecundity and an indirect effect by enhancing local immune responses in the host[102]
TanninsTeladorsagia circumcincta, Haemonchus contortus, and Trichostrongylus colubriformisIn vitroLarval migration inhibition assay on third-stage larvae (L3) and adult worm
motility inhibition assay
[85]
Essential oilGastrointestinal nematodesIn vitro33.30% inhibition motility[105]
87.50% inhibition motility
SaponinsGastrointestinal nematodesIn vitroStrong anthelmintic activity[115]
Donkey strongylesIn vitroStrong anthelmintic activity[116]
TanninsTrichostrongylus colubriformisIn vitroLarval migration inhibition assay on third-stage larvae (L3) and adult worms[85]
Condensed and hydrolyzable tanninsCaenorhabditis elegansIn vitroKilled 50% (LC50) or 90% (LC90) of nematodes in 24 h[57]
TanninsTrichostrongylus colubriformisIn vitroLarval migration inhibition assay on third-stage larvae (L3) and adult worms[85]
Flavonoids, condensed tannins, and gallotanninCaenorhabditis elegansIn vitroMinimum lethal concentration was 0.13–0.52 mg/mL[117]
Methylene chlorideCaenorhabditis elegansIn vitroStrongest effect[40]
Tannins, phenolic compounds, and steroidsHaemonchus contortusIn vitro,
In vivo
100% inhibition of egg hatching, highest activity for adult motility, and larvicidal assay[118]
Antimicrobial agents, alkaloids, flavonoids, tannins, and phenolsHaemonchus contortusIn vitroHigh activity for adulticidal and egg hatching inhibition[119]
PolyphenolsCaenorhabditis elegansIn vitro and in vivoInhibition of larval migration[120]
Phenolic compoundsGastrointestinal nematodesIn vitro
In vivo
Highest nematode motility (100%) in the higher concentrations of methanolic extract (50 mg/mL)[60]
Presence of saponin, alkaloids, flavonoids, and tanninsHaemonchus contortusIn vitroHigh mortality rate[121]
Presence of eugenol and asaroneMoniezia expansaIn vitro100 mg/mL concentration and the time taken for the paralysis of the parasite amounts to 66.3 ± 0.03 min and death was recorded after 93.2 ± 0.09 min[122]
Proanthocyanidins and flavonoidsHaemonchus contortusIn vitroLarval migration inhibition and adult worms’ motility inhibition[123]
Essential oilsNeoechinorhynchus buttnerae, endoparasite of Colossoma macropomumIn vitroAll essential oils showed 100% anthelmintic efficacy within 24 h[124]
100% mortality was observed in the group treated with 100 mg/mL of herbal complexHaemonchus contortusIn vitroAnthelmintic potential[125]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Ahmed, H.; Kilinc, S.G.; Celik, F.; Kesik, H.K.; Simsek, S.; Ahmad, K.S.; Afzal, M.S.; Farrakh, S.; Safdar, W.; Pervaiz, F.; et al. An Inventory of Anthelmintic Plants across the Globe. Pathogens 2023, 12, 131. https://doi.org/10.3390/pathogens12010131

AMA Style

Ahmed H, Kilinc SG, Celik F, Kesik HK, Simsek S, Ahmad KS, Afzal MS, Farrakh S, Safdar W, Pervaiz F, et al. An Inventory of Anthelmintic Plants across the Globe. Pathogens. 2023; 12(1):131. https://doi.org/10.3390/pathogens12010131

Chicago/Turabian Style

Ahmed, Haroon, Seyma Gunyakti Kilinc, Figen Celik, Harun Kaya Kesik, Sami Simsek, Khawaja Shafique Ahmad, Muhammad Sohail Afzal, Sumaira Farrakh, Waseem Safdar, Fahad Pervaiz, and et al. 2023. "An Inventory of Anthelmintic Plants across the Globe" Pathogens 12, no. 1: 131. https://doi.org/10.3390/pathogens12010131

APA Style

Ahmed, H., Kilinc, S. G., Celik, F., Kesik, H. K., Simsek, S., Ahmad, K. S., Afzal, M. S., Farrakh, S., Safdar, W., Pervaiz, F., Liaqat, S., Zhang, J., & Cao, J. (2023). An Inventory of Anthelmintic Plants across the Globe. Pathogens, 12(1), 131. https://doi.org/10.3390/pathogens12010131

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop