Modulation of Virulence Factors during Trypanosoma cruzi Differentiation
Abstract
:1. Stage-Specific Proteins That Confer the Trypanosoma cruzi Virulence
2. Gene Expression Regulation of Significant Virulence Factors
2.1. Trans-Sialidases
2.2. Mucin and Amastin
2.3. GP82/GP90
3. The Importance of RNP Granules in Modulating Gene Expression during T. cruzi Development
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chagas, C. Nova Tripanozomiaze Humana: Estudos Sobre a Morfolojia e o Ciclo Evolutivo Do Schizotrypanum cruzi n. Gen., n. Sp., Ajente Etiolojico de Nova Entidade Morbida Do Homem. Mem. Inst. Oswaldo Cruz 1909, 1, 159–218. [Google Scholar] [CrossRef] [Green Version]
- Rassi, A.; Rassi, A.; Marcondes de Rezende, J. American Trypanosomiasis (Chagas Disease). Infect. Dis. Clin. N. Am. 2012, 26, 275–291. [Google Scholar] [CrossRef] [PubMed]
- Nussbaum, K.; Honek, J.; Cadmus, C.; Efferth, T. Trypanosomatid Parasites Causing Neglected Diseases. Curr. Med. Chem. 2010, 17, 1594–1617. [Google Scholar] [CrossRef] [PubMed]
- Mitra, A.; Mawson, A. Neglected Tropical Diseases: Epidemiology and Global Burden. Trop. Med. Infect. Dis. 2017, 2, 36. [Google Scholar] [CrossRef] [Green Version]
- Coura, J.R. The Main Sceneries of Chagas Disease Transmission. The Vectors, Blood and Oral Transmissions--a Comprehensive Review. Mem. Inst. Oswaldo Cruz 2015, 110, 277–282. [Google Scholar] [CrossRef] [Green Version]
- Horn, D. A Profile of Research on the Parasitic Trypanosomatids and the Diseases They Cause. PLoS Negl. Trop. Dis. 2022, 16, e0010040. [Google Scholar] [CrossRef]
- Brener, Z. Biology of Trypanosoma cruzi. Annu. Rev. Microbiol. 1973, 27, 347–382. [Google Scholar] [CrossRef]
- De Castro Neto, A.L.; da Silveira, J.F.; Mortara, R.A. Comparative Analysis of Virulence Mechanisms of Trypanosomatids Pathogenic to Humans. Front. Cell. Infect. Microbiol. 2021, 11, 669079. [Google Scholar] [CrossRef]
- Clayton, J. Chagas Disease 101. Nature 2010, 465, S4–S5. [Google Scholar] [CrossRef]
- Souza, W. Basic Cell Biology of Trypanosoma Cruzi. Curr. Pharm. Des. 2002, 8, 269–285. [Google Scholar] [CrossRef]
- Rodrigues, J.C.F.; Godinho, J.L.P.; de Souza, W. Biology of Human Pathogenic Trypanosomatids: Epidemiology, Lifecycle and Ultrastructure. In Proteins and Proteomics of Leishmania and Trypanosoma; Santos, A.L.S., Branquinha, M.H., d’Avila-Levy, C.M., Kneipp, L.F., Sodré, C.L., Eds.; Subcellular Biochemistry; Springer: Dordrecht, The Netherlands, 2014; Volume 74, pp. 1–42. ISBN 978-94-007-7304-2. [Google Scholar]
- Contreras, V.T.; Salles, J.M.; Thomas, N.; Morel, C.M.; Goldenberg, S. In Vitro Differentiation of Trypanosoma cruzi under Chemically Defined Conditions. Mol. Biochem. Parasitol. 1985, 16, 315–327. [Google Scholar] [CrossRef] [Green Version]
- Figueiredo, R.C.B.Q.; Rosa, D.S.; Soares, M.J. Differentiation of trypanosoma cruzi epimastigotes: Metacyclogenesis and adhesion to substrate are triggered by nutritional stress. J. Parasitol. 2000, 86, 1213–1218. [Google Scholar] [CrossRef]
- Krieger, M.A.; Ávila, A.R.; Ogatta, S.F.Y.; Plazanet-Menut, C.; Goldenberg, S. Differential Gene Expression during Trypanosoma cruzi Metacyclogenesis. Mem. Inst. Oswaldo Cruz 1999, 94, 165–168. [Google Scholar] [CrossRef] [Green Version]
- Avila, A.R.; Dallagiovanna, B.; Yamada-Ogatta, S.F.; Monteiro-Góes, V.; Fragoso, S.P.; Krieger, M.A.; Goldenberg, S. Stage-Specific Gene Expression during Trypanosoma cruzi Metacyclogenesis. Genet. Mol. Res. 2003, 2, 159–168. [Google Scholar]
- Contreras, V.; Morel, C.; Goldenberg, S. Stage Specific Gene Expression Precedes Morphological Changes during Trypanosoma cruzi Metacyclogenesis. Mol. Biochem. Parasitol. 1985, 14, 83–96. [Google Scholar] [CrossRef] [Green Version]
- Goldenberg, S.; Ávila, A.R. Aspects of Trypanosoma cruzi Stage Differentiation. In Advances in Parasitology; Elsevier: Amsterdam, The Netherlands, 2011; Volume 75, pp. 285–305. ISBN 978-0-12-385863-4. [Google Scholar]
- Bonaldo, M.C.; Souto-Padron, T.; de Souza, W.; Goldenberg, S. Cell-Substrate Adhesion during Trypanosoma cruzi Differentiation. J. Cell Biol. 1988, 106, 1349–1358. [Google Scholar] [CrossRef]
- Ávila, A.R.; Yamada-Ogatta, S.F.; da Silva Monteiro, V.; Krieger, M.A.; Nakamura, C.V.; de Souza, W.; Goldenberg, S. Cloning and Characterization of the Metacyclogenin Gene, Which Is Specifically Expressed during Trypanosoma cruzi Metacyclogenesis. Mol. Biochem. Parasitol. 2001, 117, 169–177. [Google Scholar] [CrossRef]
- Dallagiovanna, B.; Plazanet-Menut, C.; Ogatta, S.F.Y.; Ävila, A.R.; Krieger, M.A.; Goldenberg, S. Trypanosoma cruzi: A Gene Family Encoding Chitin-Binding-like Proteins Is Posttranscriptionally Regulated during Metacyclogenesis. Exp. Parasitol. 2001, 99, 7–16. [Google Scholar] [CrossRef]
- Fragoso, S.P.; Plazanet-Menut, C.; Carreira, M.A.C.; Motta, M.C.; Dallagiovana, B.; Krieger, M.A.; Goldenberg, S. Cloning and Characterization of a Gene Encoding a Putative Protein Associated with U3 Small Nucleolar Ribonucleoprotein in Trypanosoma Cruzi. Mol. Biochem. Parasitol. 2003, 126, 113–117. [Google Scholar] [CrossRef]
- Schenkman, S.; Eichinger, D.; Pereira, M.E.A.; Nussenzweig, V. Structural and functional properties of trypanosoma trans-sialidase. Annu. Rev. Microbiol. 1994, 48, 499–523. [Google Scholar] [CrossRef]
- Teixeira, S.M.R.; Kirchhoff, L.V.; Donelson, J.E. Post-Transcriptional Elements Regulating Expression of MRNAs from the Amastin/Tuzin Gene Cluster of Trypanosoma cruzi. J. Biol. Chem. 1995, 270, 22586–22594. [Google Scholar] [CrossRef] [PubMed]
- Tomas, A.M.; Miles, M.A.; Kelly, J.M. Overexpression of Cruzipain, the Major Cysteine Proteinase of Trypanosoma cruzi, Is Associated with Enhanced Metacyclogenesis. Eur. J. Biochem. 1997, 244, 596–603. [Google Scholar] [CrossRef] [PubMed]
- Graham, S.V.; Wymer, B.; Barry, J.D. Activity of a Trypanosome Metacyclic Variant Surface Glycoprotein Gene Promoter Is Dependent upon Life Cycle Stage and Chromosomal Context. Mol. Cell. Biol. 1998, 18, 1137–1146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abuin, G.; Freitas-Junior, L.H.G.; Colli, W.; Alves, M.J.M.; Schenkman, S. Expression of Trans-Sialidase and 85-KDa Glycoprotein Genes in Trypanosoma cruzi Is Differentially Regulated at the Post-Transcriptional Level by Labile Protein Factors. J. Biol. Chem. 1999, 274, 13041–13047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramirez, J.L. Trypanosoma cruzi Genome 15 Years Later: What Has Been Accomplished? Trop. Med. Infect. Dis. 2020, 5, 129. [Google Scholar] [CrossRef]
- El-Sayed, N.M.; Myler, P.J.; Bartholomeu, D.C.; Nilsson, D.; Aggarwal, G.; Tran, A.-N.; Ghedin, E.; Worthey, E.A.; Delcher, A.L.; Blandin, G.; et al. The Genome Sequence of Trypanosoma cruzi, Etiologic Agent of Chagas Disease. Science 2005, 309, 409–415. [Google Scholar] [CrossRef] [Green Version]
- Berná, L.; Rodriguez, M.; Chiribao, M.L.; Parodi-Talice, A.; Pita, S.; Rijo, G.; Alvarez-Valin, F.; Robello, C. Expanding an Expanded Genome: Long-Read Sequencing of Trypanosoma Cruzi. Microb Genom 2018, 4, e000177. [Google Scholar] [CrossRef]
- Herreros-Cabello, A.; Callejas-Hernández, F.; Gironès, N.; Fresno, M. Trypanosoma Cruzi Genome: Organization, Multi-Gene Families, Transcription, and Biological Implications. Genes 2020, 11, 1196. [Google Scholar] [CrossRef]
- Amorim, J.C.; Batista, M.; da Cunha, E.S.; Lucena, A.C.R.; de Paula Lima, C.V.; Sousa, K.; Krieger, M.A.; Marchini, F.K. Quantitative Proteome and Phosphoproteome Analyses Highlight the Adherent Population during Trypanosoma cruzi Metacyclogenesis. Sci. Rep. 2017, 7, 9899. [Google Scholar] [CrossRef] [Green Version]
- Roberts, S.B.; Robichaux, J.L.; Chavali, A.K.; Manque, P.A.; Lee, V.; Lara, A.M.; Papin, J.A.; Buck, G.A. Proteomic and Network Analysis Characterize Stage-Specific Metabolism in Trypanosoma cruzi. BMC Syst. Biol. 2009, 3, 52. [Google Scholar] [CrossRef] [Green Version]
- Paba, J.; Santana, J.M.; Teixeira, A.R.L.; Fontes, W.; Sousa, M.V.; Ricart, C.A.O. Proteomic Analysis of the Human Pathogen Trypanosoma cruzi. Proteomics 2004, 4, 1052–1059. [Google Scholar] [CrossRef]
- Atwood, J.A.; Weatherly, D.B.; Minning, T.A.; Bundy, B.; Cavola, C.; Opperdoes, F.R.; Orlando, R.; Tarleton, R.L. The Trypanosoma cruzi Proteome. Science 2005, 309, 473–476. [Google Scholar] [CrossRef]
- Parodi-Talice, A.; Monteiro-Goes, V.; Arrambide, N.; Avila, A.R.; Duran, R.; Correa, A.; Dallagiovanna, B.; Cayota, A.; Krieger, M.; Goldenberg, S.; et al. Proteomic Analysis of Metacyclic Trypomastigotes Undergoing Trypanosoma cruzi Metacyclogenesis. J. Mass Spectrom. 2007, 42, 1422–1432. [Google Scholar] [CrossRef]
- Queiroz, R.M.L.; Charneau, S.; Bastos, I.M.D.; Santana, J.M.; Sousa, M.V.; Roepstorff, P.; Ricart, C.A.O. Cell Surface Proteome Analysis of Human-Hosted Trypanosoma cruzi Life Stages. J. Proteome Res. 2014, 13, 3530–3541. [Google Scholar] [CrossRef]
- San Francisco, J.; Astudillo, C.; Vega, J.L.; Catalán, A.; Gutiérrez, B.; Araya, J.E.; Zailberger, A.; Marina, A.; García, C.; Sanchez, N.; et al. Trypanosoma cruzi Pathogenicity Involves Virulence Factor Expression and Upregulation of Bioenergetic and Biosynthetic Pathways. Virulence 2022, 13, 1827–1848. [Google Scholar] [CrossRef]
- Minning, T.A.; Weatherly, D.B.; Atwood, J.; Orlando, R.; Tarleton, R.L. The Steady-State Transcriptome of the Four Major Life-Cycle Stages of Trypanosoma cruzi. BMC Genom. 2009, 10, 370. [Google Scholar] [CrossRef] [Green Version]
- Smircich, P.; Eastman, G.; Bispo, S.; Duhagon, M.A.; Guerra-Slompo, E.P.; Garat, B.; Goldenberg, S.; Munroe, D.J.; Dallagiovanna, B.; Holetz, F.; et al. Ribosome Profiling Reveals Translation Control as a Key Mechanism Generating Differential Gene Expression in Trypanosoma cruzi. BMC Genom. 2015, 16, 443. [Google Scholar] [CrossRef] [Green Version]
- Berná, L.; Chiribao, M.L.; Greif, G.; Rodriguez, M.; Alvarez-Valin, F.; Robello, C. Transcriptomic Analysis Reveals Metabolic Switches and Surface Remodeling as Key Processes for Stage Transition in Trypanosoma cruzi. PeerJ 2017, 5, e3017. [Google Scholar] [CrossRef] [Green Version]
- Cruz-Saavedra, L.; Vallejo, G.A.; Guhl, F.; Messenger, L.A.; Ramírez, J.D. Transcriptional Remodeling during Metacyclogenesis in Trypanosoma cruzi I. Virulence 2020, 11, 968–979. [Google Scholar] [CrossRef]
- Geiger, A.; Bossard, G.; Sereno, D.; Pissarra, J.; Lemesre, J.-L.; Vincendeau, P.; Holzmuller, P. Escaping Deleterious Immune Response in Their Hosts: Lessons from Trypanosomatids. Front. Immunol. 2016, 7, 212. [Google Scholar] [CrossRef] [Green Version]
- De Pablos, L.M.; Osuna, A. Multigene Families in Trypanosoma cruzi and Their Role in Infectivity. Infect. Immun. 2012, 80, 2258–2264. [Google Scholar] [CrossRef] [PubMed]
- Belew, A.T.; Junqueira, C.; Rodrigues-Luiz, G.F.; Valente, B.M.; Oliveira, A.E.R.; Polidoro, R.B.; Zuccherato, L.W.; Bartholomeu, D.C.; Schenkman, S.; Gazzinelli, R.T.; et al. Comparative Transcriptome Profiling of Virulent and Non-Virulent Trypanosoma cruzi Underlines the Role of Surface Proteins during Infection. PLoS Pathog. 2017, 13, e1006767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pech-Canul, Á. de la C.; Monteón, V.; Solís-Oviedo, R.-L. A Brief View of the Surface Membrane Proteins from Trypanosoma cruzi. J. Parasitol. Res. 2017, 2017, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cardoso, M.S.; Reis-Cunha, J.L.; Bartholomeu, D.C. Evasion of the Immune Response by Trypanosoma cruzi during Acute Infection. Front. Immunol. 2016, 6, 659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Bejarano, O.H.; Avendaño, C.; Patarroyo, M.A. Mechanisms Associated with Trypanosoma cruzi Host Target Cell Adhesion, Recognition and Internalization. Life 2021, 11, 534. [Google Scholar] [CrossRef] [PubMed]
- Mucci, J.; Lantos, A.B.; Buscaglia, C.A.; Leguizamón, M.S.; Campetella, O. The Trypanosoma cruzi Surface, a Nanoscale Patchwork Quilt. Trends Parasitol. 2017, 33, 102–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schenkman, S.; Ferguson, M.A.J.; Heise, N.; Cardoso de Almeida, M.L.; Mortara, R.A.; Yoshida, N. Mucin-like Glycoproteins Linked to the Membrane by Glycosylphosphatidylinositol Anchor Are the Major Acceptors of Sialic Acid in a Reaction Catalyzed by Trans-Sialidase in Metacyclic Forms of Trypanosoma cruzi. Mol. Biochem. Parasitol. 1993, 59, 293–303. [Google Scholar] [CrossRef] [PubMed]
- Schenkman, S.; Jiang, M.-S.; Hart, G.W.; Nussenzweig, V. A Novel Cell Surface Trans-Sialidase of Trypanosoma cruzi Generates a Stage-Specific Epitope Required for Invasion of Mammalian Cells. Cell 1991, 65, 1117–1125. [Google Scholar] [CrossRef]
- Pereira, M.E.; Loures, M.A.; Villalta, F.; Andrade, A.F. Lectin Receptors as Markers for Trypanosoma cruzi. Developmental Stages and a Study of the Interaction of Wheat Germ Agglutinin with Sialic Acid Residues on Epimastigote Cells. J. Exp. Med. 1980, 152, 1375–1392. [Google Scholar] [CrossRef] [Green Version]
- Alves, M.J.M.; Colli, W. Role of the Gp85/Trans-Sialidase Superfamily of Glycoproteins in the Interaction of Trypanosoma cruzi with Host Structures. In Molecular Mechanisms of Parasite Invasion; Burleigh, B.A., Soldati-Favre, D., Eds.; Subcellular Biochemistry; Springer: New York, NY, USA, 2008; Volume 47, pp. 58–69. ISBN 978-0-387-78266-9. [Google Scholar]
- Nardy, A.F.F.R.; Freire-de-Lima, C.G.; Pérez, A.R.; Morrot, A. Role of Trypanosoma cruzi Trans-Sialidase on the Escape from Host Immune Surveillance. Front. Microbiol. 2016, 7, 348. [Google Scholar] [CrossRef] [Green Version]
- Alves, M.J.M.; Kawahara, R.; Viner, R.; Colli, W.; Mattos, E.C.; Thaysen-Andersen, M.; Larsen, M.R.; Palmisano, G. Comprehensive Glycoprofiling of the Epimastigote and Trypomastigote Stages of Trypanosoma cruzi. J. Proteom. 2017, 151, 182–192. [Google Scholar] [CrossRef]
- Buscaglia, C.A.; Campo, V.A.; Frasch, A.C.C.; Di Noia, J.M. Trypanosoma cruzi Surface Mucins: Host-Dependent Coat Diversity. Nat. Rev. Microbiol. 2006, 4, 229–236. [Google Scholar] [CrossRef]
- de Lederkremer, R.M.; Agusti, R. Chapter 7 Glycobiology of Trypanosoma cruzi. In Advances in Carbohydrate Chemistry and Biochemistry; Elsevier: Amsterdam, The Netherlands, 2009; Volume 62, pp. 311–366. ISBN 978-0-12-374743-3. [Google Scholar]
- Lantos, A.B.; Carlevaro, G.; Araoz, B.; Ruiz Diaz, P.; de Los Milagros Camara, M.; Buscaglia, C.A.; Bossi, M.; Yu, H.; Chen, X.; Bertozzi, C.R.; et al. Sialic Acid Glycobiology Unveils Trypanosoma cruzi Trypomastigote Membrane Physiology. PLoS Pathog. 2016, 12, e1005559. [Google Scholar] [CrossRef] [Green Version]
- Buscaglia, C.A.; Campo, V.A.; Di Noia, J.M.; Torrecilhas, A.C.T.; De Marchi, C.R.; Ferguson, M.A.J.; Frasch, A.C.C.; Almeida, I.C. The Surface Coat of the Mammal-Dwelling Infective Trypomastigote Stage of Trypanosoma cruzi Is Formed by Highly Diverse Immunogenic Mucins. J. Biol. Chem. 2004, 279, 15860–15869. [Google Scholar] [CrossRef] [Green Version]
- Urban, I.; Boiani Santurio, L.; Chidichimo, A.; Yu, H.; Chen, X.; Mucci, J.; Agüero, F.; Buscaglia, C.A. Molecular Diversity of the Trypanosoma cruzi TcSMUG Family of Mucin Genes and Proteins. Biochem. J. 2011, 438, 303–313. [Google Scholar] [CrossRef] [Green Version]
- Mortara, R.A. Trypanosoma cruzi: Amastigotes and Trypomastigotes Interact with Different Structures on the Surface of HeLa Cells. Exp. Parasitol. 1991, 73, 1–14. [Google Scholar] [CrossRef]
- Gonzalez, M.S.; Souza, M.S.; Garcia, E.S.; Nogueira, N.F.S.; Mello, C.B.; Cánepa, G.E.; Bertotti, S.; Durante, I.M.; Azambuja, P.; Buscaglia, C.A. Trypanosoma cruzi TcSMUG L-Surface Mucins Promote Development and Infectivity in the Triatomine Vector Rhodnius Prolixus. PLoS Negl. Trop. Dis. 2013, 7, e2552. [Google Scholar] [CrossRef] [Green Version]
- de Castro Neto, A.L.; da Silveira, J.F.; Mortara, R.A. Role of Virulence Factors of Trypanosomatids in the Insect Vector and Putative Genetic Events Involved in Surface Protein Diversity. Front. Cell. Infect. Microbiol. 2022, 12, 807172. [Google Scholar] [CrossRef]
- Atwood, J.A.; Minning, T.; Ludolf, F.; Nuccio, A.; Weatherly, D.B.; Alvarez-Manilla, G.; Tarleton, R.; Orlando, R. Glycoproteomics of Trypanosoma cruzi Trypomastigotes Using Subcellular Fractionation, Lectin Affinity, and Stable Isotope Labeling. J. Proteome Res. 2006, 5, 3376–3384. [Google Scholar] [CrossRef]
- Bartholomeu, D.C.; Cerqueira, G.C.; Leão, A.C.A.; daRocha, W.D.; Pais, F.S.; Macedo, C.; Djikeng, A.; Teixeira, S.M.R.; El-Sayed, N.M. Genomic Organization and Expression Profile of the Mucin-Associated Surface Protein (Masp) Family of the Human Pathogen Trypanosoma cruzi. Nucleic Acids Res. 2009, 37, 3407–3417. [Google Scholar] [CrossRef] [Green Version]
- De Pablos, L.M.; González, G.G.; Solano Parada, J.; Seco Hidalgo, V.; Díaz Lozano, I.M.; Gómez Samblás, M.M.; Cruz Bustos, T.; Osuna, A. Differential Expression and Characterization of a Member of the Mucin-Associated Surface Protein Family Secreted by Trypanosoma cruzi. Infect. Immun. 2011, 79, 3993–4001. [Google Scholar] [CrossRef] [PubMed]
- Latchman, D.S. Gene Regulation. Br. Med. J. 1992, 304, 1103–1105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clayton, C. Regulation of Gene Expression in Trypanosomatids: Living with Polycistronic Transcription. Open Biol. 2019, 9, 190072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chávez, S.; Urbaniak, M.D.; Benz, C.; Smircich, P.; Garat, B.; Sotelo-Silveira, J.R.; Duhagon, M.A. Extensive Translational Regulation through the Proliferative Transition of Trypanosoma cruzi Revealed by Multi-Omics. mSphere 2021, 6, e00366-21. [Google Scholar] [CrossRef] [PubMed]
- Lasda, E.L.; Blumenthal, T. Trans-Splicing. Wiley Interdiscip. Rev. RNA 2011, 2, 417–434. [Google Scholar] [CrossRef]
- Michaeli, S. Trans-Splicing in Trypanosomes: Machinery and Its Impact on the Parasite Transcriptome. Future Microbiol. 2011, 6, 459–474. [Google Scholar] [CrossRef]
- Lipshitz, H.D.; Smibert, C.A. Mechanisms of RNA Localization and Translational Regulation. Curr. Opin. Genet. Dev. 2000, 10, 476–488. [Google Scholar] [CrossRef]
- Kishore, S.; Luber, S.; Zavolan, M. Deciphering the Role of RNA-Binding Proteins in the Post-Transcriptional Control of Gene Expression. Brief. Funct. Genom. 2010, 9, 391–404. [Google Scholar] [CrossRef] [Green Version]
- Romagnoli, B.A.A.; Holetz, F.B.; Alves, L.R.; Goldenberg, S. RNA Binding Proteins and Gene Expression Regulation in Trypanosoma cruzi. Front. Cell. Infect. Microbiol. 2020, 10, 56. [Google Scholar] [CrossRef] [Green Version]
- Kislauskis, E.; Singer, R. Determinants of MRNA Localization. Curr. Opin. Cell Biol. 1992, 4, 975–978. [Google Scholar] [CrossRef]
- Shepard, K.A.; Gerber, A.P.; Jambhekar, A.; Takizawa, P.A.; Brown, P.O.; Herschlag, D.; DeRisi, J.L.; Vale, R.D. Widespread Cytoplasmic MRNA Transport in Yeast: Identification of 22 Bud-Localized Transcripts Using DNA Microarray Analysis. Proc. Natl. Acad. Sci. USA 2003, 100, 11429–11434. [Google Scholar] [CrossRef]
- Seco-Hidalgo, V.; Osuna, A.; de Pablos, L.M. Characterizing Cell Heterogeneity Using PCR Fingerprinting of Surface Multigene Families in Protozoan Parasites. In Cellular Heterogeneity; Barteneva, N.S., Vorobjev, I.A., Eds.; Methods in Molecular Biology; Springer: New York, NY, USA, 2018; Volume 1745, pp. 277–286. ISBN 978-1-4939-7679-9. [Google Scholar]
- Seco-Hidalgo, V.; Osuna, A.; Pablos, L.M.D. To Bet or Not to Bet: Deciphering Cell to Cell Variation in Protozoan Infections. Trends Parasitol. 2015, 31, 350–356. [Google Scholar] [CrossRef]
- Tyler, K.M.; Engman, D.M. The Life Cycle of Trypanosoma cruzi Revisited. Int. J. Parasitol. 2001, 31, 472–481. [Google Scholar] [CrossRef]
- Sabalette, K.B.; Romaniuk, M.A.; Noé, G.; Cassola, A.; Campo, V.A.; De Gaudenzi, J.G. The RNA-Binding Protein TcUBP1 up-Regulates an RNA Regulon for a Cell Surface–Associated Trypanosoma cruzi Glycoprotein and Promotes Parasite Infectivity. J. Biol. Chem. 2019, 294, 10349–10364. [Google Scholar] [CrossRef]
- Di Noia, J.M.; Buscaglia, C.A.; De Marchi, C.R.; Almeida, I.C.; Frasch, A.C.C. A Trypanosoma cruzi Small Surface Molecule Provides the First Immunological Evidence That Chagas’ Disease Is Due to a Single Parasite Lineage. J. Exp. Med. 2002, 195, 401–413. [Google Scholar] [CrossRef] [Green Version]
- Calderano, S.G.; Junior, M.Y.N.; Marini, M.; Nunes, N.O.; Reis, M.S.; Patané, J.S.L.; da Silveira, J.F.; da Cunha, J.P.C.; Elias, M.C. Identification of Novel Interspersed DNA Repetitive Elements in the Trypanosoma cruzi Genome Associated with the 3'UTRs of Surface Multigenic Families. Genes 2020, 11, 1235. [Google Scholar] [CrossRef]
- D’Orso, I.; Frasch, A.C.C. TcUBP-1, an MRNA Destabilizing Factor from Trypanosomes, Homodimerizes and Interacts with Novel AU-Rich Element- and Poly(A)-Binding Proteins Forming a Ribonucleoprotein Complex. J. Biol. Chem. 2002, 277, 50520–50528. [Google Scholar] [CrossRef] [Green Version]
- Jackson, A.P. The Evolution of Amastin Surface Glycoproteins in Trypanosomatid Parasites. Mol. Biol. Evol. 2010, 27, 33–45. [Google Scholar] [CrossRef] [Green Version]
- Kangussu-Marcolino, M.M.; de Paiva, R.M.C.; Araújo, P.R.; de Mendonça-Neto, R.P.; Lemos, L.; Bartholomeu, D.C.; Mortara, R.A.; daRocha, W.D.; Teixeira, S.M.R. Distinct Genomic Organization, MRNA Expression and Cellular Localization of Members of Two Amastin Sub-Families Present in Trypanosoma cruzi. BMC Microbiol. 2013, 13, 10. [Google Scholar] [CrossRef] [Green Version]
- Cruz, M.C.; Souza-Melo, N.; da Silva, C.V.; DaRocha, W.D.; Bahia, D.; Araújo, P.R.; Teixeira, S.R.; Mortara, R.A. Trypanosoma cruzi: Role of δ-Amastin on Extracellular Amastigote Cell Invasion and Differentiation. PLoS ONE 2012, 7, e51804. [Google Scholar] [CrossRef] [Green Version]
- Coughlin, B.C.; Teixeira, S.M.R.; Kirchhoff, L.V.; Donelson, J.E. Amastin MRNA Abundance in Trypanosoma cruzi Is Controlled by a 3′-Untranslated Region Position-Dependent Cis-Element and an Untranslated Region-Binding Protein. J. Biol. Chem. 2000, 275, 12051–12060. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Díaz, L.; Silva, T.C.; Teixeira, S.M.R. Involvement of an RNA Binding Protein Containing Alba Domain in the Stage-Specific Regulation of Beta-Amastin Expression in Trypanosoma cruzi. Mol. Biochem. Parasitol. 2017, 211, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, M.I.; de Ruiz, R.C.; Araya, J.E.; Da Silveira, J.F.; Yoshida, N. Involvement of the Stage-Specific 82-Kilodalton Adhesion Molecule of Trypanosoma cruzi Metacyclic Trypomastigotes in Host Cell Invasion. Infect. Immun. 1993, 61, 3636–3641. [Google Scholar] [CrossRef] [Green Version]
- Gentil, L.G.; Cordero, E.M.; do Carmo, M.S.; dos Santos, M.R.M.; da Silveira, J.F. Posttranscriptional Mechanisms Involved in the Control of Expression of the Stage-Specific GP82 Surface Glycoprotein in Trypanosoma cruzi. Acta Trop. 2009, 109, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Bayer-Santos, E.; Gentil, L.G.; Cordero, E.M.; Corrêa, P.R.C.; da Silveira, J.F. Regulatory Elements in the 3′ Untranslated Region of the GP82 Glycoprotein Are Responsible for Its Stage-Specific Expression in Trypanosoma cruzi Metacyclic Trypomastigotes. Acta Trop. 2012, 123, 230–233. [Google Scholar] [CrossRef]
- Bayer-Santos, E.; Cunha-e-Silva, N.L.; Yoshida, N.; Franco da Silveira, J. Expression and Cellular Trafficking of GP82 and GP90 Glycoproteins during Trypanosoma cruzi Metacyclogenesis. Parasites Vectors 2013, 6, 127. [Google Scholar] [CrossRef] [Green Version]
- Myler, P.J.; Audleman, L.; deVos, T.; Hixson, G.; Kiser, P.; Lemley, C.; Magness, C.; Rickel, E.; Sisk, E.; Sunkin, S.; et al. Leishmania Major Friedlin Chromosome 1 Has an Unusual Distribution of Protein-Coding Genes. Proc. Natl. Acad. Sci. USA 1999, 96, 2902–2906. [Google Scholar] [CrossRef] [Green Version]
- De Gaudenzi, J.G.; Noé, G.; Campo, V.A.; Frasch, A.C.; Cassola, A. Gene Expression Regulation in Trypanosomatids. Essays Biochem. 2011, 51, 31–46. [Google Scholar] [CrossRef] [Green Version]
- Clayton, C. Gene Expression in Kinetoplastids. Curr. Opin. Microbiol. 2016, 32, 46–51. [Google Scholar] [CrossRef]
- Sutton, R.E.; Boothroyd, J.C. Evidence for Trans Splicing in Trypanosomes. Cell 1986, 47, 527–535. [Google Scholar] [CrossRef]
- Murphy, W.J.; Watkins, K.P.; Agabian, N. Identification of a Novel Y Branch Structure as an Intermediate in Trypanosome MRNA Processing: Evidence for Trans Splicing. Cell 1986, 47, 517–525. [Google Scholar] [CrossRef]
- Parker, R.; Sheth, U. P Bodies and the Control of MRNA Translation and Degradation. Mol. Cell 2007, 25, 635–646. [Google Scholar] [CrossRef]
- Buchan, J.R.; Parker, R. Eukaryotic Stress Granules: The Ins and Outs of Translation. Mol. Cell 2009, 36, 932–941. [Google Scholar] [CrossRef] [Green Version]
- Decker, C.J.; Parker, R. P-Bodies and Stress Granules: Possible Roles in the Control of Translation and MRNA Degradation. Cold Spring Harb. Perspect. Biol. 2012, 4, a012286. [Google Scholar] [CrossRef] [Green Version]
- Tauber, D.; Tauber, G.; Parker, R. Mechanisms and Regulation of RNA Condensation in RNP Granule Formation. Trends Biochem. Sci. 2020, 45, 764–778. [Google Scholar] [CrossRef]
- Cassola, A. RNA Granules Living a Post-Transcriptional Life: The Trypanosome’s Case. Curr. Chem. Biol. 2011, 5, 108–117. [Google Scholar] [CrossRef]
- Kramer, S. RNA in Development: How Ribonucleoprotein Granules Regulate the Life Cycles of Pathogenic Protozoa: RNP Granules Regulate the Life Cycles of Pathogenic Protozoa. WIREs RNA 2014, 5, 263–284. [Google Scholar] [CrossRef]
- Romaniuk, M.A.; Frasch, A.C.; Cassola, A. Translational Repression by an RNA-Binding Protein Promotes Differentiation to Infective Forms in Trypanosoma cruzi. PLoS Pathog. 2018, 14, e1007059. [Google Scholar] [CrossRef]
- Holetz, F.B.; Correa, A.; Ávila, A.R.; Nakamura, C.V.; Krieger, M.A.; Goldenberg, S. Evidence of P-Body-like Structures in Trypanosoma cruzi. Biochem. Biophys. Res. Commun. 2007, 356, 1062–1067. [Google Scholar] [CrossRef]
- Cassola, A.; De Gaudenzi, J.G.; Frasch, A.C. Recruitment of MRNAs to Cytoplasmic Ribonucleoprotein Granules in Trypanosomes: MRNA Granules in Trypanosomes. Mol. Microbiol. 2007, 65, 655–670. [Google Scholar] [CrossRef] [PubMed]
- Holetz, F.B.; Alves, L.R.; Probst, C.M.; Dallagiovanna, B.; Marchini, F.K.; Manque, P.; Buck, G.; Krieger, M.A.; Correa, A.; Goldenberg, S. Protein and MRNA Content of TcDHH1-Containing MRNPs in Trypanosoma cruzi: DHH1-MRNPs in Trypanosoma Cruzi. FEBS J. 2010, 277, 3415–3426. [Google Scholar] [CrossRef] [PubMed]
- da Costa, J.F.; Ferrarini, M.G.; Nardelli, S.C.; Goldenberg, S.; Ávila, A.R.; Holetz, F.B. Trypanosoma cruzi XRNA Granules Colocalise with Distinct MRNP Granules at the Nuclear Periphery. Mem. Inst. Oswaldo Cruz 2018, 113, e170531. [Google Scholar] [CrossRef] [PubMed]
- Kedersha, N.; Anderson, P. Mammalian Stress Granules and Processing Bodies. Methods Enzymol. 2007, 431, 61–81. [Google Scholar] [CrossRef] [PubMed]
- Eulalio, A.; Behm-Ansmant, I.; Izaurralde, E. P Bodies: At the Crossroads of Post-Transcriptional Pathways. Nat. Rev. Mol. Cell Biol. 2007, 8, 9–22. [Google Scholar] [CrossRef] [PubMed]
- Anderson, P.; Kedersha, N. Stress Granules: The Tao of RNA Triage. Trends Biochem. Sci. 2008, 33, 141–150. [Google Scholar] [CrossRef]
- Kolev, N.G.; Ullu, E.; Tschudi, C. The Emerging Role of RNA-Binding Proteins in the Life Cycle of Trypanosoma brucei: Trypanosoma brucei RNA-Binding Proteins. Cell Microbiol. 2014, 16, 482–489. [Google Scholar] [CrossRef] [Green Version]
- Clayton, C. The Regulation of Trypanosome Gene Expression by RNA-Binding Proteins. PLoS Pathog. 2013, 9, e1003680. [Google Scholar] [CrossRef] [Green Version]
- Alves, L.R. RNA-Binding Proteins Related to Stress Response and Differentiation in Protozoa. World J. Biol. Chem. 2016, 7, 78. [Google Scholar] [CrossRef]
- Oliveira, C.; Faoro, H.; Alves, L.R.; Goldenberg, S. RNA-Binding Proteins and Their Role in the Regulation of Gene Expression in Trypanosoma cruzi and Saccharomyces Cerevisiae. Genet. Mol. Biol. 2017, 40, 22–30. [Google Scholar] [CrossRef] [Green Version]
- Cassola, A.; Frasch, A.C. An RNA Recognition Motif Mediates the Nucleocytoplasmic Transport of a Trypanosome RNA-Binding Protein. J. Biol. Chem. 2009, 284, 35015–35028. [Google Scholar] [CrossRef] [Green Version]
- Cassola, A.; Romaniuk, M.A.; Primrose, D.; Cervini, G.; D’Orso, I.; Frasch, A.C. Association of UBP1 to Ribonucleoprotein Complexes Is Regulated by Interaction with the Trypanosome Ortholog of the Human Multifunctional P32 Protein: Trypanosome RNA-Binding Protein Regulation. Mol. Microbiol. 2015, 97, 1079–1096. [Google Scholar] [CrossRef]
- De Gaudenzi, J.G.; D’Orso, I.; Frasch, A.C.C. RNA Recognition Motif-Type RNA-Binding Proteins in Trypanosoma cruzi Form a Family Involved in the Interaction with Specific Transcripts in Vivo. J. Biol. Chem. 2003, 278, 18884–18894. [Google Scholar] [CrossRef] [Green Version]
- Aravind, L.; Iyer, L.M.; Anantharaman, V. The two faces of Alba: The evolutionary connection between proteins participating in chromatin structure and RNA metabolism. Genome Biol. 2003, 4, R64. [Google Scholar] [CrossRef] [Green Version]
- Subota, I.; Rotureau, B.; Blisnick, T.; Ngwabyt, S.; Durand-Dubief, M.; Engstler, M.; Bastin, P. ALBA Proteins Are Stage Regulated during Trypanosome Development in the Tsetse Fly and Participate in Differentiation. Mol. Biol. Cell 2011, 22, 4205–4219. [Google Scholar] [CrossRef]
- Mani, J.; Güttinger, A.; Schimanski, B.; Heller, M.; Acosta-Serrano, A.; Pescher, P.; Späth, G.; Roditi, I. Alba-Domain Proteins of Trypanosoma brucei Are Cytoplasmic RNA-Binding Proteins That Interact with the Translation Machinery. PLoS ONE 2011, 6, e22463. [Google Scholar] [CrossRef] [Green Version]
- Bevkal, S.; Naguleswaran, A.; Rehmann, R.; Kaiser, M.; Heller, M.; Roditi, I. An Alba-Domain Protein Required for Proteome Remodelling during Trypanosome Differentiation and Host Transition. PLoS Pathog. 2021, 17, e1009239. [Google Scholar] [CrossRef]
- Chame, D.F.; Souza, D.D.L.; Vieira, H.G.S.; Tahara, E.B.; Macedo, A.M.; Machado, C.R.; Franco, G.R. Trypanosoma cruzi RNA-Binding Protein ALBA30 Aggregates into Cytoplasmic Foci under Nutritional Stress. Parasitol. Res. 2020, 119, 749–753. [Google Scholar] [CrossRef]
- Archer, S.K.; Luu, V.-D.; de Queiroz, R.A.; Brems, S.; Clayton, C. Trypanosoma brucei PUF9 Regulates MRNAs for Proteins Involved in Replicative Processes over the Cell Cycle. PLoS Pathog. 2009, 5, e1000565. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; McLachlan, J.; Zamore, P.D.; Hall, T.M.T. Modular Recognition of RNA by a Human Pumilio-Homology Domain. Cell 2002, 110, 501–512. [Google Scholar] [CrossRef] [Green Version]
- Dallagiovanna, B.; Correa, A.; Probst, C.M.; Holetz, F.; Smircich, P.; de Aguiar, A.M.; Mansur, F.; da Silva, C.V.; Mortara, R.A.; Garat, B.; et al. Functional Genomic Characterization of MRNAs Associated with TcPUF6, a Pumilio-like Protein from Trypanosoma cruzi. J. Biol. Chem. 2008, 283, 8266–8273. [Google Scholar] [CrossRef] [Green Version]
- Alves, L.R.; Oliveira, C.; Mörking, P.A.; Kessler, R.L.; Martins, S.T.; Romagnoli, B.A.A.; Marchini, F.K.; Goldenberg, S. The MRNAs Associated to a Zinc Finger Protein from Trypanosoma cruzi Shift during Stress Conditions. RNA Biol. 2014, 11, 921–933. [Google Scholar] [CrossRef] [PubMed]
- Tavares, T.S.; Mügge, F.L.B.; Grazielle-Silva, V.; Valente, B.M.; Goes, W.M.; Oliveira, A.E.R.; Belew, A.T.; Guarneri, A.A.; Pais, F.S.; El-Sayed, N.M.; et al. A Trypanosoma cruzi Zinc Finger Protein That Is Implicated in the Control of Epimastigote-Specific Gene Expression and Metacyclogenesis. Parasitology 2021, 148, 1171–1185. [Google Scholar] [CrossRef] [PubMed]
- Wippel, H.H.; Inoue, A.H.; Vidal, N.M.; da Costa, J.F.; Marcon, B.H.; Romagnoli, B.A.A.; Santos, M.D.M.; Carvalho, P.C.; Goldenberg, S.; Alves, L.R. Assessing the Partners of the RBP9-MRNP Complex in Trypanosoma cruzi Using Shotgun Proteomics and RNA-Seq. RNA Biol. 2018, 15, 1106–1118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández-Moya, S.M.; García-Pérez, A.; Kramer, S.; Carrington, M.; Estévez, A.M. Alterations in DRBD3 Ribonucleoprotein Complexes in Response to Stress in Trypanosoma Brucei. PLoS ONE 2012, 7, e48870. [Google Scholar] [CrossRef] [Green Version]
- Kramer, S.; Bannerman-Chukualim, B.; Ellis, L.; Boulden, E.A.; Kelly, S.; Field, M.C.; Carrington, M. Differential Localization of the Two T. Brucei Poly(A) Binding Proteins to the Nucleus and RNP Granules Suggests Binding to Distinct MRNA Pools. PLoS ONE 2013, 8, e54004. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, C.; Holetz, F.B.; Alves, L.R.; Ávila, A.R. Modulation of Virulence Factors during Trypanosoma cruzi Differentiation. Pathogens 2023, 12, 32. https://doi.org/10.3390/pathogens12010032
Oliveira C, Holetz FB, Alves LR, Ávila AR. Modulation of Virulence Factors during Trypanosoma cruzi Differentiation. Pathogens. 2023; 12(1):32. https://doi.org/10.3390/pathogens12010032
Chicago/Turabian StyleOliveira, Camila, Fabíola Barbieri Holetz, Lysangela Ronalte Alves, and Andréa Rodrigues Ávila. 2023. "Modulation of Virulence Factors during Trypanosoma cruzi Differentiation" Pathogens 12, no. 1: 32. https://doi.org/10.3390/pathogens12010032
APA StyleOliveira, C., Holetz, F. B., Alves, L. R., & Ávila, A. R. (2023). Modulation of Virulence Factors during Trypanosoma cruzi Differentiation. Pathogens, 12(1), 32. https://doi.org/10.3390/pathogens12010032