Outlook on RNAi-Based Strategies for Controlling Culicoides Biting Midges
Abstract
:1. Introduction
2. Culicoides Biting Midges
3. Current Control Strategies
3.1. Cultural Control
3.2. Chemical Insecticides
3.3. Microbial Insecticides
4. RNAi for Insect Control
4.1. Mechanism and Function
4.2. Insecticidal Properties
4.3. Barriers to Implementation
5. Strategies to Enhance RNAi
5.1. Nanoparticles
5.2. RNA Structures
5.3. Bacterial Expression
5.4. Fungal Expression
5.5. Viruses
5.6. Algal Expression
6. Outlook for Controlling Culicoides Using RNAi
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mullen, G.R.; Murphree, C.S. Biting Midges (Ceratopogonidae). In Medical and Veterinary Entomology, 3rd ed.; Mullen, G.R., Durden, L.A., Eds.; Academic Press: San Diego, CA, USA, 2019; pp. 213–236. [Google Scholar]
- Kedmi, M.; Van Straten, M.; Ezra, E.; Galon, N.; Klement, E. Assessment of the productivity effects associated with epizootic hemorrhagic disease in dairy herds. J. Dairy Sci. 2010, 93, 2486–2495. [Google Scholar] [CrossRef]
- Carpenter, S.; Groschup, M.H.; Garros, C.; Felippe-Bauer, M.L.; Purse, B.V. Culicoides biting midges, arboviruses and public health in Europe. Antivir. Res. 2013, 100, 102–113. [Google Scholar] [CrossRef]
- Maclachlan, N.J.; Mayo, C.E. Potential strategies for control of bluetongue, a globally emerging, Culicoides-transmitted viral disease of ruminant livestock and wildlife. Antivir. Res. 2013, 99, 79–90. [Google Scholar] [CrossRef]
- Mayo, C.; McDermott, E.; Kopanke, J.; Stenglein, M.; Lee, J.; Mathiason, C.; Carpenter, M.; Reed, K.; Perkins, T.A. Ecological dynamics impacting bluetongue virus transmission in North America. Front. Vet. Sci. 2020, 7, 186. [Google Scholar] [CrossRef]
- Burruss, D.; Rodriguez, L.L.; Drolet, B.; Geil, K.; Pelzel-McCluskey, A.M.; Cohnstaedt, L.W.; Derner, J.D.; Peters, D.P.C. Predicting the geographic range of an invasive livestock disease across the contiguous USA under current and future climate conditions. Climate 2021, 9, 159. [Google Scholar] [CrossRef]
- Jimenez-Cabello, L.; Utrilla-Trigo, S.; Lorenzo, G.; Ortego, J.; Calvo-Pinilla, E. Epizootic hemorrhagic disease virus: Current knowledge and emerging perspectives. Microorganisms 2023, 11, 1339. [Google Scholar] [CrossRef]
- Rozo-Lopez, P.; Park, Y.; Drolet, B.S. Effect of constant temperatures on Culicoides sonorensis midge physiology and vesicular stomatitis virus infection. Insects 2022, 13, 372. [Google Scholar] [CrossRef]
- Niedbalski, W.; Fitzner, A. Impact of climate change on the occurrence and distribution of bluetongue in Europe. Med. Weter. 2018, 74, 634–639. [Google Scholar] [CrossRef]
- Pfannenstiel, R.S.; Mullens, B.A.; Ruder, M.G.; Zurek, L.; Cohnstaedt, L.W.; Nayduch, D. Management of North American Culicoides biting midges: Current knowledge and research needs. Vector-Borne Zoonotic Dis. 2015, 15, 374–384. [Google Scholar] [CrossRef]
- Mullens, B.A.; McDermott, E.G.; Gerry, A.C. Progress and knowledge gaps in Culicoides ecology and control. Vet. Ital. 2015, 51, 313–323. [Google Scholar]
- Venail, R.; Lhoir, J.; Fall, M.; del Rio, R.; Talavera, S.; Labuschagne, K.; Miranda, M.; Pages, N.; Venter, G.; Rakotoarivony, I.; et al. How do species, population and active ingredient influence insecticide susceptibility in Culicoides biting midges (Diptera: Ceratopogonidae) of veterinary importance? Parasites Vectors 2015, 8, 439. [Google Scholar] [CrossRef]
- Ben-Dov, E. Bacillus thuringiensis subsp. israelensis and its dipteran-specific toxins. Toxins 2014, 6, 1222–1243. [Google Scholar] [CrossRef]
- Foxi, C.; Delrio, G.; Luciano, P.; Mannu, R.; Ruiu, L. Comparative laboratory and field study of biorational insecticides for Culicoides biting midge management in larval developmental sites. Acta Trop. 2019, 198, 105097. [Google Scholar] [CrossRef]
- Borkent, A.; Dominiak, P. Catalog of the biting midges of the world (Diptera: Ceratopogonidae). Zootaxa 2020, 4787. [Google Scholar] [CrossRef]
- Lehiy, C.J.; Drolet, B.S. The salivary secretome of the biting midge, Culicoides sonorensis. PeerJ 2014, 2, e426. [Google Scholar] [CrossRef]
- Purse, B.V.; Carpenter, S.; Venter, G.J.; Bellis, G.; Mullens, B.A. Bionomics of temperate and tropical Culicoides midges: Knowledge gaps and consequences for transmission of Culicoides-borne viruses. Annu. Rev. Entomol. 2015, 60, 373–392. [Google Scholar] [CrossRef]
- Braverman, Y.; Chizov-Ginzburg, A.; Eldor, H.; Mumcuoglu, K.Y. Overview and features of larval developmental sites of biting midges species associated with livestock in Israel with implications to their control. Vet. Parasitol. Reg. Stud. Rep. 2018, 14, 204–211. [Google Scholar] [CrossRef]
- Barcelo, C.; Purse, B.V.; Estrada, R.; Lucientes, J.; Miranda, M.A.; Searle, K.R. Environmental drivers of adult seasonality and abundance of biting midges Culicoides (Diptera: Ceratopogonidae), bluetongue vector species in Spain. J. Med. Entomol. 2021, 58, 350–364. [Google Scholar] [CrossRef]
- Dinh, E.T.N.; Gomez, J.P.; Orange, J.P.; Morris, M.A.; Sayler, K.A.; McGregor, B.L.; Blosser, E.M.; Burkett-Cadena, N.D.; Wisely, S.M.; Blackburn, J.K. Modeling abundance of Culicoides stellifer, a candidate orbivirus vector, indicates nonrandom hemorrhagic disease risk for White-Tailed Deer (Odocoileus virginianus). Viruses 2021, 13, 1328. [Google Scholar] [CrossRef]
- Ayala, M.M.; Le Gall, V.L.; Marti, D.A.; Walantus, L.H.; Spinelli, G.R. Population fluctuation of Culicoides insignis Lutz (Diptera: Ceratopogonidae) in Posadas, Misiones, Argentina. Rev. Soc. Entomol. Argent. 2018, 77, 16–20. [Google Scholar] [CrossRef]
- Lakew, B.T.; Nicholas, A.H.; Walkden-Brown, S.W. Spatial and temporal distribution of Culicoides species in the New England region of New South Wales, Australia between 1990 and 2018. PLoS ONE 2021, 16, e0249468. [Google Scholar] [CrossRef]
- McDermott, E.G.; Lysyk, T.J. Sampling considerations for adult and immature Culicoides (Diptera: Ceratopogonidae). J. Insect Sci. 2020, 20, 2. [Google Scholar] [CrossRef]
- McDermott, E.G.; Mullens, B.A. The dark side of light traps. J. Med. Entomol. 2018, 55, 251–261. [Google Scholar] [CrossRef]
- Sanz-Bernardo, B.; Suckoo, R.; Haga, I.R.; Wijesiriwardana, N.; Harvey, A.; Basu, S.; Larner, W.; Rooney, S.; Sy, V.; Langlands, Z.; et al. The acquisition and retention of lumpy skin disease virus by blood-feeding insects is influenced by the source of virus, the insect body part, and the time since feeding. J. Virol. 2022, 96, e0075122. [Google Scholar] [CrossRef]
- Behar, A.; Friedgut, O.; Rotenberg, D.; Zalesky, O.; Izhaki, O.; Yulzary, A.; Rot, A.; Wolkomirsky, R.; Zamir, L.; Hmd, F.; et al. Insights on transmission, spread, and possible endemization of selected arboviruses in Israel-interim results from five-year surveillance. Vet. Sci. 2022, 9, 65. [Google Scholar] [CrossRef]
- Rushton, J.; Lyons, N. Economic impact of bluetongue: A review of the effects on production. Vet. Ital. 2015, 51, 401–406. [Google Scholar] [CrossRef]
- Barcelo, C.; Searle, K.R.; Estrada, R.; Lucientes, J.; Miranda, M.A.; Purse, B.V. The use of path analysis to determine effects of environmental factors on the adult seasonality of Culicoides (Diptera: Ceratopogonidae) vector species in Spain. Bull. Entomol. Res. 2023, 113, 402–411. [Google Scholar] [CrossRef]
- Gao, H.; Wang, L.; Ma, J.; Gao, X.; Xiao, J.; Wang, H. Modeling the current distribution suitability and future dynamics of Culicoides imicola under climate change scenarios. PeerJ 2021, 9, e12308. [Google Scholar] [CrossRef]
- Lysyk, T.J.; Couloigner, I.; Massolo, A.; Cork, S.C. Relationship between weather and changes in annual and seasonal abundance of Culicoides sonorensis (Diptera: Ceratopogonidae) in Alberta. J. Med. Entomol. 2023, 60, 90–101. [Google Scholar] [CrossRef]
- Mohlmann, T.W.R.; Keeling, M.J.; Wennergren, U.; Favia, G.; Santman-Berends, I.; Takken, W.; Koenraadt, C.J.M.; Brand, S.P.C. Biting midge dynamics and bluetongue transmission: A multiscale model linking catch data with climate and disease outbreaks. Sci. Rep. 2021, 11, 1892. [Google Scholar] [CrossRef]
- Carpenter, S.; Mellor, P.S.; Torr, S.J. Control techniques for Culicoides biting midges and their application in the UK and northwestern Palaearctic. Med. Vet. Entomol. 2008, 22, 175–187. [Google Scholar] [CrossRef] [PubMed]
- Benelli, G.; Buttazzoni, L.; Canale, A.; D’Andrea, A.; Del Serrone, P.; Delrio, G.; Foxi, C.; Mariani, S.; Savini, G.; Vadivalagan, C.; et al. Bluetongue outbreaks: Looking for effective control strategies against Culicoides vectors. Res. Vet. Sci. 2017, 115, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Harrup, L.; Miranda, M.; Carpenter, S. Advances in control techniques for Culicoides and future prospects. Vet. Ital. 2016, 52, 247–264. [Google Scholar] [CrossRef] [PubMed]
- Mayo, C.; Lee, J.; Kopanke, J.; MacLachlan, N.J. A review of potential bluetongue virus vaccine strategies. Vet. Microbiol. 2017, 206, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Chanda, M.M.; Carpenter, S.; Prasad, G.; Sedda, L.; Henrys, P.A.; Gajendragad, M.R.; Purse, B.V. Livestock host composition rather than land use or climate explains spatial patterns in bluetongue disease in South India. Sci. Rep. 2019, 9, 4229. [Google Scholar] [CrossRef]
- Carvelli, A.; Sala, M.; Autorino, G.L.; Scicluna, M.T.; Iacoponi, F.; Rombola, P.; Scaramozzino, P. A cross-sectional serosurvey in a sheep population in central Italy following a bluetongue epidemic. PLoS ONE 2019, 14, e0208074. [Google Scholar] [CrossRef] [PubMed]
- Cappai, S.; Loi, F.; Coccollone, A.; Contu, M.; Capece, P.; Fiori, M.; Canu, S.; Foxi, C.; Rolesu, S. Retrospective analysis of bluetongue farm risk profile definition, based on biology, farm management practices and climatic data. Prev. Vet. Med. 2018, 155, 75–85. [Google Scholar] [CrossRef]
- Cuellar, A.C.; Kjaer, L.J.; Baum, A.; Stockmarr, A.; Skovgard, H.; Nielsen, S.A.; Andersson, M.G.; Lindstrom, A.; Chirico, J.; Luehken, R.; et al. Monthly variation in the probability of presence of adult Culicoides populations in nine European countries and the implications for targeted surveillance. Parasites Vectors 2018, 11, 608. [Google Scholar] [CrossRef]
- Duric, S.; Mirilovic, M.; Magas, V.; Bacic, D.; Stanimirovic, Z.; Stanojevic, S.; Stanojevic, S. Simulation of the transmission by vectors of bluetongue disease and analysis of the control strategy. Acta Vet.-Beogr. 2018, 68, 269–287. [Google Scholar] [CrossRef]
- Grewar, J.D.; Weyer, C.T.; Venter, G.J.; van Helden, L.S.; Burger, P.; Guthrie, A.J.; Coetzee, P.; Labuschagne, K.; Buhrmann, G.; Parker, B.J.; et al. A field investigation of an African horse sickness outbreak in the controlled area of South Africa in 2016. Transbound. Emerg. Dis. 2019, 66, 743–751. [Google Scholar] [CrossRef]
- Villard, P.; Munoz, F.; Balenghien, T.; Baldet, T.; Lancelot, R.; Henaux, V. Modeling Culicoides abundance in mainland France: Implications for surveillance. Parasites Vectors 2019, 12, 391. [Google Scholar] [CrossRef] [PubMed]
- Collins, A.B.; Mee, J.F.; Doherty, M.; Barrett, D.; England, M.E. Culicoides biting midges as arbovirus vectors. Vet. Irel. J. 2015, 5, 476–478. [Google Scholar]
- Yang, J.; Zhang, M.; Wang, Z.; Zhou, L.; Zhang, Q.; Chen, J.; Pu, L.; Zhang, C.; Liu, G. Fauna and a new record of hematophagous midges (Diptera: Ceratopogonidae) in Hekou county, Yunnan province, China. Chin. J. Vector Biol. Control 2018, 29, 367–372. [Google Scholar]
- Duan, Y.L.; Bellis, G.; Li, L.; Li, H.C.; Miao, H.S.; Kou, M.L.; Liao, F.; Wang, Z.; Gao, L.; Li, J.Z. Potential vectors of bluetongue virus in high altitude areas of Yunnan Province, China. Parasites Vectors 2019, 12, 464. [Google Scholar] [CrossRef]
- Mayo, C.E.; Osborne, C.J.; Mullens, B.A.; Gerry, A.C.; Gardner, I.A.; Reisen, W.K.; Barker, C.M.; Maclachlan, N.J. Seasonal variation and impact of waste-water lagoons as larval habitat on the population dynamics of Culicoides sonorensis (Diptera:Ceratpogonidae) at two dairy farms in northern California. PLoS ONE 2014, 9, e89633. [Google Scholar] [CrossRef]
- Kameke, D.; Kampen, H.; Wacker, A.; Werner, D. Field studies on breeding sites of Culicoides Latreille (Diptera: Ceratopogonidae) in agriculturally used and natural habitats. Sci. Rep. 2021, 11, 10007. [Google Scholar] [CrossRef]
- McGregor, B.L.; Runkel, A.E.; Wisely, S.M.; Burkett-Cadena, N.D. Vertical stratification of Culicoides biting midges at a Florida big game preserve. Parasites Vectors 2018, 11, 505. [Google Scholar] [CrossRef] [PubMed]
- McGregor, B.L.; Sloyer, K.E.; Sayler, K.A.; Goodfriend, O.; Krauer, J.M.C.; Acevedo, C.; Zhang, X.; Mathias, D.; Wisely, S.M.; Burkett-Cadena, N.D. Field data implicating Culicoides stellifer and Culicoides venustus (Diptera: Ceratopogonidae) as vectors of epizootic hemorrhagic disease virus. Parasites Vectors 2019, 12, 258. [Google Scholar] [CrossRef]
- McGregor, B.L.; Stenn, T.; Sayler, K.A.; Blosser, E.M.; Blackburn, J.K.; Wisely, S.M.; Burkett-Cadena, N.D. Host use patterns of Culicoides spp. biting midges at a big game preserve in Florida, USA, and implications for the transmission of orbiviruses. Med. Vet. Entomol. 2019, 33, 110–120. [Google Scholar] [CrossRef]
- Sloyer, K.E.; Acevedo, C.; Runkel, A.E.; Burkett-Cadena, N.D. Host associations of biting midges (Diptera: Ceratopogonidae: Culicoides) near sentinel chicken surveillance locations in Florida, USA. J. Am. Mosq. Control Assoc. 2019, 35, 200–206. [Google Scholar] [CrossRef]
- Erram, D.; Blosser, E.M.; Burkett-Cadena, N. Habitat associations of Culicoides species (Diptera: Ceratopogonidae) abundant on a commercial cervid farm in Florida, USA. Parasites Vectors 2019, 12, 367. [Google Scholar] [CrossRef]
- Erram, D.; Burkett-Cadena, N. Laboratory studies on the oviposition stimuli of Culicoides stellifer (Diptera: Ceratopogonidae), a suspected vector of Orbiviruses in the United States. Parasites Vectors 2018, 11, 300. [Google Scholar] [CrossRef] [PubMed]
- Wong, N.D.; McDermott, E.G.; Murillo, A.C.; Mullens, B.A. Field distribution and density of Culicoides sonorensis (Diptera: Ceratopogonidae) eggs in dairy wastewater habitats. J. Med. Entomol. 2018, 55, 392–397. [Google Scholar] [CrossRef] [PubMed]
- Murchie, A.K.; Thompson, G.M.; Clawson, S.; Brown, A.; Gordon, A.W.; Jess, S. Field evaluation of deltamethrin and ivermectin applications to cattle on Culicoides host-alighting, blood-feeding, and emergence. Viruses 2019, 11, 731. [Google Scholar] [CrossRef]
- Meloni, G.; Cossu, M.; Foxi, C.; Vento, L.; Circosta, S.; Burrai, E.; Masala, S.; Goffredo, M.; Satta, G. Combined larvicidal and adulticidal treatments to control Culicoides biting midges (Diptera: Ceratopogonidae): Results of a pilot study. Vet. Parasitol. 2018, 257, 28–33. [Google Scholar] [CrossRef]
- Benelli, G.; Pavela, R. Beyond mosquitoes-essential oil toxicity and repellency against bloodsucking insects. Ind. Crop. Prod. 2018, 117, 382–392. [Google Scholar] [CrossRef]
- Cavallaro, M.C.; Main, A.R.; Liber, K.; Phillips, I.D.; Headley, J.V.; Peru, K.M.; Morrissey, C.A. Neonicotinoids and other agricultural stressors collectively modify aquatic insect communities. Chemosphere 2019, 226, 945–955. [Google Scholar] [CrossRef]
- Pisa, L.W.; Amaral-Rogers, V.; Belzunces, L.P.; Bonmatin, J.M.; Downs, C.A.; Goulson, D.; Kreutzweiser, D.P.; Krupke, C.; Liess, M.; McField, M.; et al. Effects of neonicotinoids and fipronil on non-target invertebrates. Environ. Sci. Pollut. Res. 2015, 22, 68–102. [Google Scholar] [CrossRef] [PubMed]
- Giddings, J.M.; Arts, G.; Hommen, U. The relative sensitivity of macrophyte and algal species to herbicides and fungicides: An analysis using species sensitivity distributions. Integr. Environ. Assess. Manag. 2013, 9, 308–318. [Google Scholar] [CrossRef]
- Hua, J.; Relyea, R. The effect of a common pyrethroid insecticide on wetland communities. Environ. Res. Commun. 2019, 1, 015003. [Google Scholar] [CrossRef]
- Ansari, M.; Walker, M.; Dyson, P. Fungi as biocontrol agents of Culicoides biting midges, the putative vectors of bluetongue disease. Vector-Borne Zoonotic Dis. 2019, 19, 395–399. [Google Scholar] [CrossRef] [PubMed]
- Lacey, L.A.; Kline, D.L. Laboratory bioassay of Bacillus thuringiensis (H-14) against Culicoides spp. and Leptoconops spp. (Ceratopogonidae). Mosq. News 1983, 43, 502–503. [Google Scholar]
- Frouz, J.A.N.; Lobinske, R.J.; Yaqub, A.; Ali, A. Larval gut pH profile in pestiferous Chironomus crassicaudatus and Glyptotendipes paripes (Chironomidae: Diptera) in reference to the toxicity potential of Bacillus thuringiensis serovar israelensis. J. Am. Mosq. Control Assoc. 2007, 23, 355–358. [Google Scholar] [CrossRef] [PubMed]
- Zhu, K.Y.; Palli, S.R. Mechanisms, applications, and challenges of insect RNA interference. Annu. Rev. Entomol. 2020, 65, 293–311. [Google Scholar] [CrossRef] [PubMed]
- Mongelli, V.; Saleh, M.C. Bugs are not to be silenced: Small RNA pathways and antiviral responses in insects. Annu. Rev. Virol. 2016, 3, 573–589. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Wang, Y.; Fan, Y.; Abbas, M.; Ma, E.; Cooper, A.M.W.; Silver, K.; Zhu, K.Y.; Zhang, J. Multiple Argonaute family genes contribute to the siRNA-mediated RNAi pathway in Locusta migratoria. Pestic. Biochem. Physiol. 2020, 170, 104700. [Google Scholar] [CrossRef]
- Scott, J.G.; Michel, K.; Bartholomay, L.C.; Siegfried, B.D.; Hunter, W.B.; Smagghe, G.; Zhu, K.Y.; Douglas, A.E. Towards the elements of successful insect RNAi. J. Insect Physiol. 2013, 59, 1212–1221. [Google Scholar] [CrossRef]
- Mysore, K.; Hapairai, L.K.; Sun, L.; Harper, E.I.; Chen, Y.; Eggleson, K.K.; Realey, J.S.; Scheel, N.D.; Severson, D.W.; Wei, N.; et al. Yeast interfering RNA larvicides targeting neural genes induce high rates of Anopheles larval mortality. Malar. J. 2017, 16, 461. [Google Scholar] [CrossRef]
- Zhu, K.Y.; Merzendorfer, H.; Zhang, W.; Zhang, J.; Muthukrishnan, S. Biosynthesis, turnover, and functions of chitin in insects. Annu. Rev. Entomol. 2016, 61, 177–196. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, J.; Zhu, K.Y. Chitosan/double-stranded RNA nanoparticle-mediated RNA interference to silence chitin synthase genes through larval feeding in the African malaria mosquito (Anopheles gambiae). Insect Mol. Biol. 2010, 19, 683–693. [Google Scholar] [CrossRef]
- Lopez, S.B.G.; Guimaraes-Ribeiro, V.; Rodriguez, J.V.G.; Dorand, F.; Salles, T.S.; Sa-Guimaraes, T.E.; Alvarenga, E.S.L.; Melo, A.C.A.; Almeida, R.V.; Moreira, M.F. RNAi-based bioinsecticide for Aedes mosquito control. Sci. Rep. 2019, 9, 4038. [Google Scholar] [CrossRef]
- Munawar, K.; Alahmed, A.M.; Khalil, S.M.S. Delivery methods for RNAi in mosquito larvae. J. Insect Sci. 2020, 20, 12. [Google Scholar] [CrossRef] [PubMed]
- Joga, M.R.; Zotti, M.J.; Smagghe, G.; Christiaens, O. RNAi efficiency, systemic properties, and novel delivery methods for pest insect control: What we know so far. Front. Physiol. 2016, 7, 553. [Google Scholar] [CrossRef] [PubMed]
- Cooper, A.M.; Silver, K.; Zhang, J.; Park, Y.; Zhu, K.Y. Molecular mechanisms influencing efficiency of RNA interference in insects. Pest Manag. Sci. 2019, 75, 18–28. [Google Scholar] [CrossRef] [PubMed]
- Singh, I.K.; Singh, S.; Mogilicherla, K.; Shukla, J.N.; Palli, S.R. Comparative analysis of double-stranded RNA degradation and processing in insects. Sci. Rep. 2017, 7, 17059. [Google Scholar] [CrossRef] [PubMed]
- Cooper, A.M.W.; Song, H.; Shi, X.; Yu, Z.; Lorenzen, M.; Silver, K.; Zhang, J.; Zhu, K.Y. Molecular characterizations of double-stranded RNA degrading nuclease genes from Ostrinia nubilalis. Insects 2020, 11, 652. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Fan, Y.; Zhang, J.; Cooper, A.M.; Silver, K.; Li, D.; Li, T.; Ma, E.; Zhu, K.Y.; Zhang, J. Contributions of dsRNases to differential RNAi efficiencies between the injection and oral delivery of dsRNA in Locusta migratoria. Pest Manag. Sci. 2019, 75, 1707–1717. [Google Scholar] [CrossRef]
- Lei, J.; Tan, Y.; List, F.; Puckett, R.; Tarone, A.M.; Vargo, E.L.; Zhu-Salzman, K. Cloning and functional characterization of a double-stranded RNA-degrading nuclease in the Tawny Crazy Ant (Nylanderia fulva). Front. Physiol. 2022, 13, 833652. [Google Scholar] [CrossRef]
- Giesbrecht, D.; Heschuk, D.; Wiens, I.; Boguski, D.; LaChance, P.; Whyard, S. RNA interference is enhanced by knockdown of double-stranded RNases in the Yellow Fever Mosquito Aedes Aegypti. Insects 2020, 11, 327. [Google Scholar] [CrossRef]
- Tayler, A.; Heschuk, D.; Giesbrecht, D.; Park, J.Y.; Whyard, S. Efficiency of RNA interference is improved by knockdown of dsRNA nucleases in tephritid fruit flies. Open Biol. 2019, 9, 190198. [Google Scholar] [CrossRef]
- Silver, K.; Cooper, A.M.; Zhu, K.Y. Strategies for enhancing the efficiency of RNA interference in insects. Pest Manag. Sci. 2021, 77, 2645–2658. [Google Scholar] [CrossRef]
- Christiaens, O.; Whyard, S.; Velez, A.M.; Smagghe, G. Double-stranded RNA technology to control insect pests: Current status and challenges. Front. Plant Sci. 2020, 11, 451. [Google Scholar] [CrossRef]
- Zhang, X.; Mysore, K.; Flannery, E.; Michel, K.; Severson, D.W.; Zhu, K.Y.; Duman-Scheel, M. Chitosan/interfering RNA nanoparticle mediated gene silencing in disease vector mosquito larvae. J. Vis. Exp. 2015, 97, e52523. [Google Scholar] [CrossRef]
- Das, S.; Debnath, N.; Cui, Y.; Unrine, J.; Palli, S.R. Chitosan, carbon quantum dot, and silica nanoparticle mediated dsRNA delivery for gene silencing in Aedes aegypti: A comparative analysis. ACS Appl. Mater. Interfaces 2015, 7, 19530–19535. [Google Scholar] [CrossRef] [PubMed]
- Paquette, C.C.; Phanse, Y.; Perry, J.L.; Sanchez-Vargas, I.; Airs, P.M.; Dunphy, B.M.; Xu, J.; Carlson, J.O.; Luft, J.C.; DeSimone, J.M.; et al. Biodistribution and trafficking of hydrogel nanoparticles in adult mosquitoes. PLoS Negl. Trop. Dis. 2015, 9, e0003745. [Google Scholar] [CrossRef]
- Abbasi, R.; Heschuk, D.; Kim, B.; Whyard, S. A novel paperclip double-stranded RNA structure demonstrates clathrin-independent uptake in the mosquito Aedes aegypti. Insect Biochem. Mol. Biol. 2020, 127, 103492. [Google Scholar] [CrossRef] [PubMed]
- Duman-Scheel, M. Saccharomyces cerevisiae (Baker’s Yeast) as an interfering RNA expression and delivery system. Curr. Drug Targets 2019, 20, 942–952. [Google Scholar] [CrossRef] [PubMed]
- Shen, T.; Liu, K.; Miao, D.; Cao, R.; Chen, P. Effective inhibition of Japanese encephalitis virus replication by shRNAs targeting various viral genes in vitro and in vivo. Virology 2014, 454–455, 48–59. [Google Scholar] [CrossRef]
- Tng, P.Y.L.; Carabajal Paladino, L.Z.; Anderson, M.A.E.; Adelman, Z.N.; Fragkoudis, R.; Noad, R.; Alphey, L. Intron-derived small RNAs for silencing viral RNAs in mosquito cells. PLoS Negl. Trop. Dis. 2022, 16, e0010548. [Google Scholar] [CrossRef]
- Khajuria, C.; Ivashuta, S.; Wiggins, E.; Flagel, L.; Moar, W.; Pleau, M.; Miller, K.; Zhang, Y.; Ramaseshadri, P.; Jiang, C.; et al. Development and characterization of the first dsRNA-resistant insect population from western corn rootworm, Diabrotica virgifera virgifera LeConte. PLoS ONE 2018, 13, e0197059. [Google Scholar] [CrossRef]
- Ahn, S.-J.; Donahue, K.; Koh, Y.; Martin, R.R.; Choi, M.-Y. Microbial-based double-stranded RNA production to develop cost-effective RNA interference application for insect pest management. Int. J. Insect Sci. 2019, 11. [Google Scholar] [CrossRef]
- Taracena, M.; Hunt, C.; Pennington, P.; Andrew, D.; Jacobs-Lorena, M.; Dotson, E.; Wells, M. Effective oral RNA interference (RNAi) administration to adult Anopheles gambiae mosquitoes. J. Vis. Exp. 2022, 181, e63266. [Google Scholar] [CrossRef]
- Islam, M.T.; Davis, Z.; Chen, L.; Englaender, J.; Zomorodi, S.; Frank, J.; Bartlett, K.; Somers, E.; Carballo, S.M.; Kester, M.; et al. Minicell-based fungal RNAi delivery for sustainable crop protection. Microb. Biotechnol. 2021, 14, 1847–1856. [Google Scholar] [CrossRef] [PubMed]
- Taracena, M.L.; Oliveira, P.L.; Almendares, O.; Umana, C.; Lowenberger, C.; Dotson, E.M.; Paiva-Silva, G.O.; Pennington, P.M. Genetically modifying the insect gut microbiota to control Chagas disease vectors through systemic RNAi. PLoS Negl. Trop. Dis. 2015, 9, e0003358. [Google Scholar] [CrossRef] [PubMed]
- Leonard, S.P.; Powell, J.E.; Perutka, J.; Geng, P.; Heckmann, L.C.; Horak, R.D.; Davies, B.W.; Ellington, A.D.; Barrick, J.E.; Moran, N.A. Engineered symbionts activate honey bee immunity and limit pathogens. Science 2020, 367, 573–576. [Google Scholar] [CrossRef] [PubMed]
- Mysore, K.; Li, P.; Wang, C.-W.; Hapairai, L.K.; Scheel, N.D.; Realey, J.S.; Sun, L.; Severson, D.W.; Wei, N.; Duman-Scheel, M. Characterization of a broad-based mosquito yeast interfering RNA larvicide with a conserved target site in mosquito semaphorin-1a genes. Parasites Vectors 2019, 12, 256. [Google Scholar] [CrossRef]
- Mysore, K.; Sun, L.; Hapairai, L.K.; Wang, C.W.; Igiede, J.; Roethele, J.B.; Scheel, N.D.; Scheel, M.P.; Li, P.; Wei, N.; et al. A yeast RNA-interference pesticide targeting the Irx gene functions as a broad-based mosquito larvicide and adulticide. Insects 2021, 12, 986. [Google Scholar] [CrossRef]
- Mysore, K.; Sun, L.; Hapairai, L.K.; Wang, C.W.; Roethele, J.B.; Igiede, J.; Scheel, M.P.; Scheel, N.D.; Li, P.; Wei, N.; et al. A broad-based mosquito yeast interfering RNA pesticide targeting Rbfox1 represses notch signaling and kills both larvae and adult mosquitoes. Pathogens 2021, 10, 1251. [Google Scholar] [CrossRef]
- Mysore, K.; Hapairai, L.K.; Sun, L.; Li, P.; Wang, C.W.; Scheel, N.D.; Lesnik, A.; Igiede, J.; Scheel, M.P.; Wei, N.; et al. Characterization of a dual-action adulticidal and larvicidal interfering RNA pesticide targeting the Shaker gene of multiple disease vector mosquitoes. PLoS Negl. Trop. Dis. 2020, 14, e0008479. [Google Scholar] [CrossRef]
- Kolliopoulou, A.; Taning, C.N.T.; Smagghe, G.; Swevers, L. Viral delivery of dsRNA for control of insect agricultural pests and vectors of human disease: Prospects and challenges. Front. Physiol. 2017, 8, 399. [Google Scholar] [CrossRef]
- Gu, J.; Liu, M.; Deng, Y.; Peng, H.; Chen, X. Development of an efficient recombinant mosquito densovirus-mediated RNA interference system and its preliminary application in mosquito control. PLoS ONE 2011, 6, e21329. [Google Scholar] [CrossRef]
- Ortola, B.; Cordero, T.; Hu, X.; Daros, J.A. Intron-assisted, viroid-based production of insecticidal circular double-stranded RNA in Escherichia coli. RNA Biol. 2021, 18, 1846–1857. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Wang, S.; Ou, R.; Samrakandi, M.; Beerntsen, B.; Sayre, R. Development of an RNAi based microalgal larvicide to control mosquitoes. Malar. World 2013, 4, 387. [Google Scholar]
- Fei, X.; Zhang, Y.; Ding, L.; Li, Y.; Deng, X. Controlling the development of the dengue vector Aedes aegypti using HR3 RNAi transgenic Chlamydomonas. PLoS ONE 2020, 15, e0240223. [Google Scholar] [CrossRef] [PubMed]
- Fei, X.; Zhang, Y.; Ding, L.; Xiao, S.; Xie, X.; Li, Y.; Deng, X. Development of an RNAi-based microalgal larvicide for the control of Aedes aegypti. Parasites Vectors 2021, 14, 387. [Google Scholar] [CrossRef]
- Fei, X.; Xiao, S.; Huang, X.; Li, Z.; Li, X.; He, C.; Li, Y.; Zhang, X.; Deng, X. Control of Aedes mosquito populations using recombinant microalgae expressing short hairpin RNAs and their effect on plankton. PLoS Negl. Trop. Dis. 2023, 17, e0011109. [Google Scholar] [CrossRef]
- Mosey, M.; Douchi, D.; Knoshaug, E.P.; Laurens, L.M.L. Methodological review of genetic engineering approaches for non-model algae. Algal Res. 2021, 54, 102221. [Google Scholar] [CrossRef]
- Schnettler, E.; Ratinier, M.; Watson, M.; Shaw, A.E.; McFarlane, M.; Varela, M.; Elliott, R.M.; Palmarini, M.; Kohl, A. RNA interference targets arbovirus replication in Culicoides cells. J. Virol. 2013, 87, 2441–2454. [Google Scholar] [CrossRef]
- Mills, M.K.; Nayduch, D.; Michel, K. Inducing RNA interference in the arbovirus vector, Culicoides sonorensis. Insect Mol. Biol. 2015, 24, 105–114. [Google Scholar] [CrossRef]
- Piazzoni, M.; Negri, A.; Brambilla, E.; Giussani, L.; Pitton, S.; Caccia, S.; Epis, S.; Bandi, C.; Locarno, S.; Lenardi, C. Biodegradable floating hydrogel baits as larvicide delivery systems against mosquitoes. Soft Matter 2022, 18, 6443–6452. [Google Scholar] [CrossRef]
- Erlandson, M.A.; Toprak, U.; Hegedus, D.D. Role of the peritrophic matrix in insect-pathogen interactions. J. Insect Physiol. 2019, 117, 103894. [Google Scholar] [CrossRef] [PubMed]
- Mysore, K.; Sun, L.; Li, P.; Roethele, J.B.; Misenti, J.K.; Kosmach, J.; Igiede, J.; Duman-Scheel, M. A conserved female-specific requirement for the GGT gene in mosquito larvae facilitates RNAi-mediated sex separation in multiple species of disease vector mosquitoes. Pathogens 2022, 11, 169. [Google Scholar] [CrossRef] [PubMed]
- Whyard, S.; Erdelyan, C.N.; Partridge, A.L.; Singh, A.D.; Beebe, N.W.; Capina, R. Silencing the buzz: A new approach to population suppression of mosquitoes by feeding larvae double-stranded RNAs. Parasites Vectors 2015, 8, 96. [Google Scholar] [CrossRef]
- Dietz-Pfeilstetter, A.; Mendelsohn, M.; Gathmann, A.; Klinkenbuss, D. Considerations and regulatory approaches in the USA and in the EU for dsRNA-based externally applied pesticides for plant protection. Front. Plant Sci. 2021, 12, 682387. [Google Scholar] [CrossRef]
- Romeis, J.; Widmer, F. Assessing the risks of topically applied dsRNA-based products to non-target arthropods. Front. Plant Sci. 2020, 11, 679. [Google Scholar] [CrossRef]
- Petrick, J.S.; Frierdich, G.E.; Carleton, S.M.; Kessenich, C.R.; Silvanovich, A.; Zhang, Y.; Koch, M.S. Corn rootworm-active RNA DvSnf7: Repeat dose oral toxicology assessment in support of human and mammalian safety. Regul. Toxicol. Pharmacol. 2016, 81, 57–68. [Google Scholar] [CrossRef]
- Stewart, A.T.M.; Winter, N.; Igiede, J.; Hapairai, L.K.; James, L.D.; Feng, R.S.; Mohammed, A.; Severson, D.W.; Duman-Scheel, M. Community acceptance of yeast interfering RNA larvicide technology for control of Aedes mosquitoes in Trinidad. PLoS ONE 2020, 15, e0237675. [Google Scholar] [CrossRef] [PubMed]
- Shults, P.; Cohnstaedt, L.W.; Adelman, Z.N.; Brelsfoard, C. Next-generation tools to control biting midge populations and reduce pathogen transmission. Parasites Vectors 2021, 14, 31. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osborne, C.J.; Cohnstaedt, L.W.; Silver, K.S. Outlook on RNAi-Based Strategies for Controlling Culicoides Biting Midges. Pathogens 2023, 12, 1251. https://doi.org/10.3390/pathogens12101251
Osborne CJ, Cohnstaedt LW, Silver KS. Outlook on RNAi-Based Strategies for Controlling Culicoides Biting Midges. Pathogens. 2023; 12(10):1251. https://doi.org/10.3390/pathogens12101251
Chicago/Turabian StyleOsborne, Cameron J., Lee W. Cohnstaedt, and Kristopher S. Silver. 2023. "Outlook on RNAi-Based Strategies for Controlling Culicoides Biting Midges" Pathogens 12, no. 10: 1251. https://doi.org/10.3390/pathogens12101251
APA StyleOsborne, C. J., Cohnstaedt, L. W., & Silver, K. S. (2023). Outlook on RNAi-Based Strategies for Controlling Culicoides Biting Midges. Pathogens, 12(10), 1251. https://doi.org/10.3390/pathogens12101251