Plants and Their Derivatives as Promising Therapeutics for Sustainable Control of Honeybee (Apis mellifera) Pathogens
Abstract
:1. Introduction
2. Mechanisms of Action
2.1. Antibacterial Activity
2.2. Antifungal Activity
2.3. Antiviral Activity
2.4. Acaricidal Activity
3. Control of Honeybee Pathogens and Parasites via NPs
3.1. Paenibacillus larvae and Melissococcus plutonius
3.2. Nosema spp.
3.3. Ascosphaera apis
3.4. Viruses
3.5. Varroa destructor
4. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Klein, A.-M.; Vaissiere, B.E.; Cane, J.H.; Steffan-Dewenter, I.; Cunningham, S.A.; Kremen, C.; Tscharntke, T. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B Biol. Sci. 2007, 274, 303–313. [Google Scholar] [CrossRef] [PubMed]
- Gallai, N.; Salles, J.-M.; Settele, J.; Vaissière, B.E. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 2009, 68, 810–821. [Google Scholar] [CrossRef]
- Potts, S.G.; Biesmeijer, J.C.; Kremen, C.; Neumann, P.; Schweiger, O.; Kunin, W.E. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 2010, 25, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Il’iasov, R.A.; Gaǐfullina, L.R.; Saltykova, E.S.; Poskriakov, A.V.; Nikolenko, A.G. Defensins in the honeybee antinfectious protection. Zhurnal Evoliutsionnoi Biokhimii I Fiziol. 2012, 48, 425–432. [Google Scholar]
- Lu, H.L.; St. Leger, R.J. Insect Immunity to Entomopathogenic Fungi. Adv. Genet. 2016, 94, 251–285. [Google Scholar] [CrossRef]
- Bava, R.; Castagna, F.; Piras, C.; Musolino, V.; Lupia, C.; Palma, E.; Britti, D.; Musella, V. Entomopathogenic Fungi for Pests and Predators Control in Beekeeping. Vet. Sci. 2022, 9, 95. [Google Scholar] [CrossRef]
- Nardoni, S.; D’Ascenzi, C.; Rocchigiani, G.; Papini, R.A.; Pistelli, L.; Formato, G.; Najar, B.; Mancianti, F. Stonebrood and chalkbrood in Apis mellifera causing fungi: In vitro sensitivity to some essential oils. Nat. Prod. Res. 2018, 32, 385–390. [Google Scholar] [CrossRef]
- Bava, R.; Castagna, F.; Piras, C.; Palma, E.; Cringoli, G.; Musolino, V.; Lupia, C.; Perri, M.R.; Statti, G.; Britti, D.; et al. In vitro evaluation of acute toxicity of five Citrus spp. Essential oils towards the parasitic mite Varroa destructor. Pathogens 2021, 10, 1182. [Google Scholar] [CrossRef]
- Formato, G.; Rivera-Gomis, J.; Bubnic, J.; Martín-Hernández, R.; Milito, M.; Croppi, S.; Higes, M. Nosemosis Prevention and Control. Appl. Sci. 2022, 12, 783. [Google Scholar] [CrossRef]
- Carreck, N.L.; Ball, B.V.; Martin, S.J. Honey bee colony collapse and changes in viral prevalence associated with Varroa destructor. J. Apic. Res. 2010, 49, 93–94. [Google Scholar] [CrossRef]
- Parveen, N.; Miglani, R.; Kumar, A.; Dewali, S.; Kumar, K.; Sharma, N.; Bisht, S.S. Honey bee pathogenesis posing threat to its global population: A short review. Proc. Indian Natl. Sci. Acad. 2022, 88, 11–32. [Google Scholar] [CrossRef]
- Castagna, F.; Bava, R.; Piras, C.; Carresi, C.; Musolino, V.; Lupia, C.; Marrelli, M.; Conforti, F.; Palma, E.; Britti, D. Green Veterinary Pharmacology for Honey Bee Welfare and Health: Origanum heracleoticum L. (Lamiaceae) Essential Oil for the Control of the Apis mellifera Varroatosis. Vet. Sci. 2022, 9, 124. [Google Scholar] [CrossRef] [PubMed]
- Mutinelli, F. European legislation governing the authorization of veterinary medicinal products with particular reference to the use of drugs for the control of honey bee diseases. Apiacta 2003, 38, 156–168. [Google Scholar]
- Li, F.-S.; Weng, J.-K. Demystifying traditional herbal medicine with modern approach. Nat. Plants 2017, 3, 17109. [Google Scholar] [CrossRef] [PubMed]
- Boadu, A.A.; Asase, A. Documentation of herbal medicines used for the treatment and management of human diseases by some communities in southern Ghana. Evid.-Based Complement. Altern. Med. 2017, 2017, 3043061. [Google Scholar] [CrossRef]
- Lin, J.H.; Kaphle, K.; Wu, L.S.; Yang, N.Y.J.; Lu, G.; Yu, C.; Yamada, H.; Rogers, P.A.M. Sustainable veterinary medicine for the new era. Rev. Sci. Tech. Int. Des Épizooties 2003, 22, 949–964. [Google Scholar] [CrossRef]
- Bosco, F.; Ruga, S.; Citraro, R.; Leo, A.; Guarnieri, L.; Maiuolo, J.; Oppedisano, F.; Macrì, R.; Scarano, F.; Nucera, S. The Effects of Andrographis paniculata (Burm. F.) Wall. Ex Nees and Andrographolide on Neuroinflammation in the Treatment of Neurodegenerative Diseases. Nutrients 2023, 15, 3428. [Google Scholar] [CrossRef]
- Maiuolo, J.; Bulotta, R.M.; Oppedisano, F.; Bosco, F.; Scarano, F.; Nucera, S.; Guarnieri, L.; Ruga, S.; Macri, R.; Caminiti, R. Potential Properties of Natural Nutraceuticals and Antioxidants in Age-Related Eye Disorders. Life 2022, 13, 77. [Google Scholar] [CrossRef]
- Štrbac, F.; Bosco, A.; Maurelli, M.P.; Ratajac, R.; Stojanović, D.; Simin, N.; Orčić, D.; Pušić, I.; Krnjajić, S.; Sotiraki, S.; et al. Anthelmintic Properties of Essential Oils to Control Gastrointestinal Nematodes in Sheep—In Vitro and In Vivo Studies. Vet. Sci. 2022, 9, 93. [Google Scholar] [CrossRef]
- Castagna, F.; Bava, R.; Musolino, V.; Piras, C.; Cardamone, A.; Carresi, C.; Lupia, C.; Bosco, A.; Rinaldi, L.; Cringoli, G. Potential new therapeutic approaches based on Punica granatum fruits compared to synthetic anthelmintics for the sustainable control of gastrointestinal nematodes in sheep. Animals 2022, 12, 2883. [Google Scholar] [CrossRef]
- Rosell, G.; Quero, C.; Coll, J.; Guerrero, A. Biorational insecticides in pest management. J. Pestic. Sci. 2008, 33, 103–121. [Google Scholar] [CrossRef]
- Isman, M.B. Plant essential oils for pest and disease management. Crop Prot. 2000, 19, 603–608. [Google Scholar] [CrossRef]
- Grdiša, M.; Gršić, K. Botanical insecticides in plant protection. Agric. Conspec. Sci. 2013, 78, 85–93. [Google Scholar]
- Parimelazhagan, T. Pharmacological Assays of Plant-Based Natural Products; Springer: Berlin/Heidelberg, Germany, 2015; Volume 71, ISBN 3319268112. [Google Scholar]
- Balandrin, M.F.; Kinghorn, A.D.; Farnsworth, N.R. Plant-derived natural products in drug discovery and development: An overview. In Human Medicinal Agents from Plants; ACS Publications: Washington, DC, USA, 1993. [Google Scholar]
- Elliott, M.; Chithan, K. The impact of plant flavonoids on mammalian biology: Implications for immunity, inflammation and cancer. In The Flavonoids Advances in Research Since 1986; Routledge: London, UK, 2017; pp. 619–652. [Google Scholar]
- Khanikor, B.; Bora, D. Effect of plant based essential oil on immune response of silkworm, Antheraea assama Westwood (Lepidoptera: Saturniidae). Int. J. Ind. Entomol. 2012, 25, 139–146. [Google Scholar] [CrossRef]
- Lee, A.N.; Werth, V.P. Activation of autoimmunity following use of immunostimulatory herbal supplements. Arch. Dermatol. 2004, 140, 723–727. [Google Scholar] [CrossRef]
- Grela, E.R.; Sembratowicz, I.; Czech, A. Immunostimmulatory activity of herbs. Med. Weter. 1998, 54, 152–158. [Google Scholar]
- Mollace, V.; Sacco, I.; Janda, E.; Malara, C.; Ventrice, D.; Colica, C.; Visalli, V.; Muscoli, S.; Ragusa, S.; Muscoli, C. Hypolipemic and hypoglycaemic activity of bergamot polyphenols: From animal models to human studies. Fitoterapia 2011, 82, 309–316. [Google Scholar] [CrossRef]
- Gliozzi, M.; Macrì, R.; Coppoletta, A.R.; Musolino, V.; Carresi, C.; Scicchitano, M.; Bosco, F.; Guarnieri, L.; Cardamone, A.; Ruga, S. From diabetes care to heart failure management: A potential therapeutic approach combining SGLT2 inhibitors and plant extracts. Nutrients 2022, 14, 3737. [Google Scholar] [CrossRef]
- Maiuolo, J.; Musolino, V.; Guarnieri, L.; Macrì, R.; Coppoletta, A.R.; Cardamone, A.; Serra, M.; Gliozzi, M.; Bava, I.; Lupia, C. Ferula communis L.(Apiaceae) Root Acetone-Water Extract: Phytochemical Analysis, Cytotoxicity and In Vitro Evaluation of Estrogenic Properties. Plants 2022, 11, 1905. [Google Scholar] [CrossRef]
- Catella, C.; Camero, M.; Lucente, M.S.; Fracchiolla, G.; Sblano, S.; Tempesta, M.; Martella, V.; Buonavoglia, C.; Lanave, G. Virucidal and antiviral effects of Thymus vulgaris essential oil on feline coronavirus. Res. Vet. Sci. 2021, 137, 44–47. [Google Scholar] [CrossRef]
- Piras, C.; Tilocca, B.; Castagna, F.; Roncada, P.; Britti, D.; Palma, E. Plants with Antimicrobial Activity Growing in Italy: A Pathogen-Driven Systematic Review for Green Veterinary Pharmacology Applications. Antibiotics 2022, 11, 919. [Google Scholar] [CrossRef] [PubMed]
- Alippi, A.M.; Ringuelet, J.A.; Cerimele, E.L.; Re, M.S.; Henning, C.P. Antimicrobial activity of some essential oils against Paenibacillus larvae, the causal agent of American foulbrood disease. J. Herbs. Spices Med. Plants 1996, 4, 9–16. [Google Scholar] [CrossRef]
- Fuselli, S.R.; de la Rosa, S.B.G.; Gende, L.B.; Eguaras, M.J.; Fritz, R. Antimicrobial activity of some Argentinean wild plant essential oils against Paenibacillus larvae larvae, causal agent of American foulbrood (AFB). J. Apic. Res. 2006, 45, 2–7. [Google Scholar] [CrossRef]
- Bava, R.; Castagna, F.; Palma, E.; Musolino, V.; Carresi, C.; Cardamone, A.; Lupia, C.; Marrelli, M.; Conforti, F.; Roncada, P. Phytochemical Profile of Foeniculum vulgare Subsp. piperitum Essential Oils and Evaluation of Acaricidal Efficacy against Varroa destructor in Apis mellifera by In Vitro and Semi-Field Fumigation Tests. Vet. Sci. 2022, 9, 684. [Google Scholar] [CrossRef]
- Bendifallah, L.; Belguendouz, R.; Hamoudi, L.; Arab, K. Biological activity of the Salvia officinalis L. (Lamiaceae) essential oil on Varroa destructor infested honeybees. Plants 2018, 7, 44. [Google Scholar] [CrossRef]
- Sabahi, Q.; Gashout, H.; Kelly, P.G.; Guzman-Novoa, E. Continuous release of oregano oil effectively and safely controls Varroa destructor infestations in honey bee colonies in a northern climate. Exp. Appl. Acarol. 2017, 72, 263–275. [Google Scholar] [CrossRef]
- Knobloch, K.; Pauli, A.; Iberl, B.; Weigand, H.; Weis, N. Antibacterial and antifungal properties of essential oil components. J. Essent. Oil Res. 1989, 1, 119–128. [Google Scholar] [CrossRef]
- Knobloch, K.; Weigand, H.; Weis, N.; Schwarm, H.M.; Vigenschow, H. Action of Terpenoids on Energy Metabolism; Walter de Gruyter: Berlin, Germany, 1986. [Google Scholar]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef]
- Denyer, S.P. Biocide-induced damage to the bacterial cytoplasmic membrane. Mech. Action Chem. Biocides 1991, 27, 171–187. [Google Scholar]
- Lambert, R.J.W.; Skandamis, P.N.; Coote, P.J.; Nychas, G. A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J. Appl. Microbiol. 2001, 91, 453–462. [Google Scholar] [CrossRef]
- Weidenmaier, C.; Peschel, A. Teichoic acids and related cell-wall glycopolymers in Gram-positive physiology and host interactions. Nat. Rev. Microbiol. 2008, 6, 276–287. [Google Scholar] [CrossRef] [PubMed]
- Ratledge, C.; Wilkinson, S.G. Microbial Lipids; Academic Press: Cambridge, MA, USA, 1988; Volume 1. [Google Scholar]
- Devi, K.P.; Nisha, S.A.; Sakthivel, R.; Pandian, S.K. Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. J. Ethnopharmacol. 2010, 130, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Zhou, K.; Zhou, W.; Li, P.; Liu, G.; Zhang, J.; Dai, Y. Mode of action of pentocin 31-1: An antilisteria bacteriocin produced by Lactobacillus pentosus from Chinese traditional ham. Food Control 2008, 19, 817–822. [Google Scholar] [CrossRef]
- Denyer, S.P.; Hugo, W.B. Mechanisms of antibacterial action-a summary. Soc. Appl. Bacteriol. Tech. Ser. 1991, 27, 331–334. [Google Scholar]
- Sikkema, J.A.N.; de Bont, J.A.; Poolman, B. Mechanisms of membrane toxicity of hydrocarbons. Microbiol. Rev. 1995, 59, 201–222. [Google Scholar] [CrossRef]
- Dorman, H.; Deans, S.G. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J. Appl. Microbiol. 2000, 88, 308–316. [Google Scholar] [CrossRef]
- Ultee, A.; Bennik, M.H.J.; Moezelaar, R. The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Appl. Environ. Microbiol. 2002, 68, 1561–1568. [Google Scholar] [CrossRef]
- Juven, B.J.; Kanner, J.; Schved, F.; Weisslowicz, H. Factors that interact with the antibacterial action of thyme essential oil and its active constituents. J. Appl. Bacteriol. 1994, 76, 626–631. [Google Scholar] [CrossRef]
- Holetz, F.B.; Pessini, G.L.; Sanches, N.R.; Cortez, D.A.G.; Nakamura, C.V.; Dias Filho, B.P. Screening of some plants used in the Brazilian folk medicine for the treatment of infectious diseases. Mem. Inst. Oswaldo Cruz 2002, 97, 1027–1031. [Google Scholar] [CrossRef]
- Yutani, M.; Hashimoto, Y.; Ogita, A.; Kubo, I.; Tanaka, T.; Fujita, K. Morphological changes of the filamentous fungus Mucor mucedo and inhibition of chitin synthase activity induced by anethole. Phyther. Res. 2011, 25, 1707–1713. [Google Scholar] [CrossRef]
- Gogoi, P.; Baruah, P.; Nath, S.C. Microbiological Research. Effects of Citrus sinensis (L.) Osbeck epicarp essential oil on growth and morphogenesis of Aspergillus niger (L.) Van Tieghem. Microbiol. Res. 2008, 163, 337–344. [Google Scholar]
- İşcan, G.; İşcan, A.; Demirci, F. Anticandidal effects of thymoquinone: Mode of action determined by transmission electron microscopy (TEM). Nat. Prod. Commun. 2016, 11, 1934578X1601100726. [Google Scholar] [CrossRef]
- Karpiński, T.M. Essential oils of Lamiaceae family plants as antifungals. Biomolecules 2020, 10, 103. [Google Scholar] [CrossRef] [PubMed]
- D’auria, F.D.; Tecca, M.; Strippoli, V.; Salvatore, G.; Battinelli, L.; Mazzanti, G. Antifungal activity of Lavandula angustifolia essential oil against Candida albicans yeast and mycelial form. Med. Mycol. 2005, 43, 391–396. [Google Scholar] [CrossRef] [PubMed]
- de Sant’Anna, J.R.; da Silva Franco, C.C.; Miyamoto, C.T.; Cunico, M.M.; Miguel, O.G.; Côcco, L.C.; Yamamoto, C.I.; Junior, C.C.; de Castro-Prado, M.A.A. Genotoxicity of Achillea millefolium essential oil in diploid cells of Aspergillus nidulans. Phytother. Res. Int. J. Devoted Pharmacol. Toxicol. Eval. Nat. Prod. Deriv. 2009, 23, 231–235. [Google Scholar]
- Chen, Y.; Zeng, H.; Tian, J.; Ban, X.; Ma, B.; Wang, Y. Antifungal mechanism of essential oil from Anethum graveolens seeds against Candida albicans. J. Med. Microbiol. 2013, 62, 1175–1183. [Google Scholar] [CrossRef]
- Haque, E.; Irfan, S.; Kamil, M.; Sheikh, S.; Hasan, A.; Ahmad, A.; Lakshmi, V.; Nazir, A.; Mir, S.S. Terpenoids with antifungal activity trigger mitochondrial dysfunction in Saccharomyces cerevisiae. Microbiology 2016, 85, 436–443. [Google Scholar] [CrossRef]
- Perlin, D.S.; Seto-Young, D.; Monk, B.C. The plasma membrane H (+)-ATPase of fungi. A candidate drug target? Ann. N. Y. Acad. Sci. 1997, 834, 609–617. [Google Scholar] [CrossRef]
- Ahmad, A.; Khan, A.; Manzoor, N. Reversal of efflux mediated antifungal resistance underlies synergistic activity of two monoterpenes with fluconazole. Eur. J. Pharm. Sci. 2013, 48, 80–86. [Google Scholar] [CrossRef]
- Wani, A.R.; Yadav, K.; Khursheed, A.; Rather, M.A. An updated and comprehensive review of the antiviral potential of essential oils and their chemical constituents with special focus on their mechanism of action against various influenza and coronaviruses. Microb. Pathog. 2021, 152, 104620. [Google Scholar] [CrossRef]
- Vimalanathan, S.; Hudson, J. Anti-influenza virus activity of essential oils and vapors. Am. J. Essent. Oils Nat. Prod. 2014, 2, 47–53. [Google Scholar]
- Ma, L.; Yao, L. Antiviral effects of plant-derived essential oils and their components: An updated review. Molecules 2020, 25, 2627. [Google Scholar] [CrossRef]
- Feriotto, G.; Marchetti, N.; Costa, V.; Beninati, S.; Tagliati, F.; Mischiati, C. Chemical Composition of Essential Oils from Thymus vulgaris, Cymbopogon citratus, and Rosmarinus officinalis, and Their Effects on the HIV-1 Tat Protein Function. Chem. Biodivers. 2018, 15, e1700436. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Patel, K.B.; Booth, L.J.; Metcalf, J.P.; Lin, H.-K.; Wu, W. Protective essential oil attenuates influenza virus infection: An in vitro study in MDCK cells. BMC Complement. Altern. Med. 2010, 10, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Setzer, W.N. Essential oils as complementary and alternative medicines for the treatment of influenza. Am. J. Essent. Oil Nat. Prod 2016, 4, 16–22. [Google Scholar]
- Nagy, M.M.; Al-Mahdy, D.A.; Abd El Aziz, O.M.; Kandil, A.M.; Tantawy, M.A.; El Alfy, T.S.M. Chemical composition and antiviral activity of essential oils from Citrus reshni hort. ex Tanaka (Cleopatra mandarin) cultivated in Egypt. J. Essent. Oil Bear. Plants 2018, 21, 264–272. [Google Scholar] [CrossRef]
- Ortega-Cuadros, M.; de Guevara, E.E.A.; Castillo, A.D.M.; Castañeda, C.G.; Amarís, G.C.; Tofiño-Rivera, A.P. Actividad biologica de los aceites esenciales del arbusto Lippia alba (Verbenaceae). Rev. Biol. Trop. 2020, 68, 344–360. [Google Scholar]
- Jackwood, M.W.; Rosenbloom, R.; Petteruti, M.; Hilt, D.A.; McCall, A.W.; Williams, S.M. Avian coronavirus infectious bronchitis virus susceptibility to botanical oleoresins and essential oils in vitro and in vivo. Virus Res. 2010, 149, 86–94. [Google Scholar] [CrossRef]
- Shaddel-Telli, A.-A.; Maheri-Sis, N.; Aghajanzadeh-Golshani, A.; Asadi-Dizaji, A.; Cheragi, H.; Mousavi, M. Using medicinal plants for controlling Varroa mite in honey bee colonies. J. Anim. Vet. Adv 2008, 7, 328–330. [Google Scholar]
- Gonzalez-Gomez, R.; Otero-Colina, G.; Villanueva-Jiménez, J.A.; Pérez-Amaro, J.A.; Soto-Hernández, R.M. Azadirachta indica toxicity and repellence of Varroa destructor (Acari: Varroidae). Agrociencia 2006, 40, 741–751. [Google Scholar]
- Schenk, P.; Imdorf, A.; Fluri, P. Effects of neem oil on Varroa mites and bees. Am. Bee J. 2001, 141, 878–879. [Google Scholar]
- Melathopoulos, A.P.; Winston, M.L.; Whittington, R.; Higo, H.; Le Doux, M. Field evaluation of neem and canola oil for the selective control of the honey bee (Hymenoptera: Apidae) mite parasites Varroa jacobsoni (Acari: Varroidae) and Acarapis woodi (Acari: Tarsonemidae). J. Econ. Entomol. 2000, 93, 559–567. [Google Scholar] [CrossRef]
- Nerio, L.S.; Olivero-Verbel, J.; Stashenko, E. Repellent activity of essential oils: A review. Bioresour. Technol. 2010, 101, 372–378. [Google Scholar] [CrossRef] [PubMed]
- Waliwitiya, R.; Kennedy, C.J.; Lowenberger, C.A. Larvicidal and oviposition-altering activity of monoterpenoids, trans-anithole and rosemary oil to the yellow fever mosquito Aedes aegypti (Diptera: Culicidae). Pest Manag. Sci. Former. Pestic. Sci. 2009, 65, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Rajendran, S.; Sriranjini, V. Plant products as fumigants for stored-product insect control. J. Stored Prod. Res. 2008, 44, 126–135. [Google Scholar] [CrossRef]
- Isman, M.B. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu. Rev. Entomol. 2006, 51, 45–66. [Google Scholar] [CrossRef]
- Ryan, M.F.; Byrne, O. Plant-insect coevolution and inhibition of acetylcholinesterase. J. Chem. Ecol. 1988, 14, 1965–1975. [Google Scholar] [CrossRef]
- Orhan, I.; Şenol, F.S.; Gülpinar, A.R.; Kartal, M.; Şekeroglu, N.; Deveci, M.; Kan, Y.; Şener, B. Acetylcholinesterase inhibitory and antioxidant properties of Cyclotrichium niveum, Thymus praecox subsp. caucasicus var. caucasicus, Echinacea purpurea and E. pallida. Food Chem. Toxicol. 2009, 47, 1304–1310. [Google Scholar] [CrossRef]
- Perry, N.S.L.; Houghton, P.J.; Jenner, P.; Keith, A.; Perry, E.K. Salvia lavandulaefolia essential oil inhibits cholinesterase in vivo. Phytomedicine 2002, 9, 48–51. [Google Scholar] [CrossRef]
- Kang, J.S.; Kim, E.; Lee, S.H.; Park, I.K. Inhibition of acetylcholinesterases of the pinewood nematode, Bursaphelenchus xylophilus, by phytochemicals from plant essential oils. Pestic. Biochem. Physiol. 2013, 105, 50–56. [Google Scholar] [CrossRef]
- Yeom, H.J.; Jung, C.S.; Kang, J.; Kim, J.; Lee, J.H.; Kim, D.S.; Kim, H.S.; Park, P.S.; Kang, K.S.; Park, I.K. Insecticidal and acetylcholine esterase inhibition activity of asteraceae plant essential oils and their constituents against adults of the German cockroach (blattella germanica). J. Agric. Food Chem. 2015, 63, 2241–2248. [Google Scholar] [CrossRef] [PubMed]
- Picollo, M.I.; Toloza, A.C.; Mougabure Cueto, G.; Zygadlo, J.; Zerba, E. Anticholinesterase and pediculicidal activities of monoterpenoids. Fitoterapia 2008, 79, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Seo, S.-M.; Kim, J.; Kang, J.; Koh, S.-H.; Ahn, Y.-J.; Kang, K.-S.; Park, I.-K. Fumigant toxicity and acetylcholinesterase inhibitory activity of 4 Asteraceae plant essential oils and their constituents against Japanese termite (Reticulitermes speratus Kolbe). Pestic. Biochem. Physiol. 2014, 113, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Park, C.G.; Jang, M.; Yoon, K.A.; Kim, J. Insecticidal and acetylcholinesterase inhibitory activities of Lamiaceae plant essential oils and their major components against Drosophila suzukii (Diptera: Drosophilidae). Ind. Crops Prod. 2016, 89, 507–513. [Google Scholar] [CrossRef]
- Reegan, A.D.; Stalin, A.; Paulraj, M.G.; Balakrishna, K.; Ignacimuthu, S.; Al-Dhabi, N.A. In silico molecular docking of niloticin with acetylcholinesterase 1 (AChE1) of Aedes aegypti L. (Diptera: Culicidae): A promising molecular target. Med. Chem. Res. 2016, 25, 1411–1419. [Google Scholar] [CrossRef]
- Anderson, J.A.; Coats, J.R. Acetylcholinesterase inhibition by nootkatone and carvacrol in arthropods. Pestic. Biochem. Physiol. 2012, 102, 124–128. [Google Scholar] [CrossRef]
- Enan, E. Insecticidal activity of essential oils: Octopaminergic sites of action. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2001, 130, 325–337. [Google Scholar] [CrossRef]
- Enan, E.E. Molecular and pharmacological analysis of an octopamine receptor from American cockroach and fruit fly in response to plant essential oils. Arch. Insect Biochem. Physiol. 2005, 59, 161–171. [Google Scholar] [CrossRef]
- Price, D.N.; Berry, M.S. Comparison of effects of octopamine and insecticidal essential oils on activity in the nerve cord, foregut, and dorsal unpaired median neurons of cockroaches. J. Insect Physiol. 2006, 52, 309–319. [Google Scholar] [CrossRef]
- Kostyukovsky, M.; Rafaeli, A.; Gileadi, C.; Demchenko, N.; Shaaya, E. Activation of octopaminergic receptors by essential oil constituents isolated from aromatic plants: Possible mode of action against insect pests. Pest Manag. Sci. 2002, 58, 1101–1106. [Google Scholar] [CrossRef]
- Pflüger, H.-J.; Stevenson, P.A. Evolutionary aspects of octopaminergic systems with emphasis on arthropods. Arthropod Struct. Dev. 2005, 34, 379–396. [Google Scholar] [CrossRef]
- Enan, E.E. Insecticidal action of terpenes and phenols to the cockroaches: Effect on octopamine receptors. In Proceedings of the International Symposium on Crop Protection, Gent, Belgium, 5 May 1998. [Google Scholar]
- Priestley, C.M.; Williamson, E.M.; Wafford, K.A.; Sattelle, D.B. Thymol, a constituent of thyme essential oil, is a positive allosteric modulator of human GABAA receptors and a homo-oligomeric GABA receptor from Drosophila melanogaster. Br. J. Pharmacol. 2003, 140, 1363–1372. [Google Scholar] [CrossRef]
- Hansen, H.; Brødsgaard, C.J. American foulbrood: A review of its biology, diagnosis and control. Bee World 1999, 80, 5–23. [Google Scholar] [CrossRef]
- Ellis, J.D.; Munn, P.A. The worldwide health status of honey bees. Bee World 2005, 86, 88–101. [Google Scholar] [CrossRef]
- Genersch, E. American Foulbrood in honeybees and its causative agent, Paenibacillus larvae. J. Invertebr. Pathol. 2010, 103, S10–S19. [Google Scholar] [CrossRef] [PubMed]
- Bamrick, J.F. Resistance to American foulbrood in honey bees: VI. Spore germination in larvae of different ages. J. Invertebr. Pathol. 1967, 9, 30–34. [Google Scholar] [CrossRef]
- Davidson, E.W. Ultrastructure of American foulbrood disease pathogenesis in larvae of the worker honey bee, Apis mellifera. J. Invertebr. Pathol. 1973, 21, 53–61. [Google Scholar] [CrossRef]
- Yue, D.; Nordhoff, M.; Wieler, L.H.; Genersch, E. Fluorescence in situ hybridization (FISH) analysis of the interactions between honeybee larvae and Paenibacillus larvae, the causative agent of American foulbrood of honeybees (Apis mellifera). Environ. Microbiol. 2008, 10, 1612–1620. [Google Scholar] [CrossRef]
- Thompson, H.M.; Waite, R.J.; Wilkins, S.; Brown, M.A.; Bigwood, T.; Shaw, M.; Ridgway, C.; Sharman, M. Effects of European foulbrood treatment regime on oxytetracycline levels in honey extracted from treated honeybee (Apis mellifera) colonies and toxicity to brood. Food Addit. Contam. 2005, 22, 573–578. [Google Scholar] [CrossRef]
- Thompson, H.M.; Brown, M.A. Is contact colony treatment with antibiotics an effective control for European foulbrood? Bee World 2001, 82, 130–138. [Google Scholar] [CrossRef]
- Bailey, L. The pathogenicity for honey-bee larvae of microorganisms associated with European foulbrood. J. Insect Pathol. 1963, 5, 198–205. [Google Scholar]
- Otten, C. A general overview on AFB and EFB pathogen, way of infection, multiplication, clinical symptoms and outbreak. Apiacta 2003, 38, 106–113. [Google Scholar]
- Bailey, L. European foulbrood. Am. Bee J. 1961, 101, 89–92. [Google Scholar]
- Forsgren, E.; Locke, B.; Sircoulomb, F.; Schäfer, M.O. Bacterial diseases in honeybees. Curr. Clin. Microbiol. Rep. 2018, 5, 18–25. [Google Scholar] [CrossRef]
- Mutinelli, F. The spread of pathogens through trade in honey bees and their products (including queen bees and semen): Overview and recent developments. Rev. Sci. Tech. 2011, 30, 257. [Google Scholar] [CrossRef]
- Murat, G.; Ferat, G. Stress Factors on Honey Bees (Apis mellifera L.) and The Components of Their Defense System Against Diseases, Parasites, and Pests. Mellifera 2019, 19, 7–20. [Google Scholar]
- Forsgren, E. European foulbrood in honey bees. J. Invertebr. Pathol. 2010, 103, S5–S9. [Google Scholar] [CrossRef] [PubMed]
- Ribarits, A.; Riegler, B.; Köglberger, H.; Derakhshifar, I.; Moosbeckhofer, R. 3. European Foulbrood (EFB). Guidel. Sustain. Manag. Honey Bee Dis. Eur. 2020, 24, 22–26. [Google Scholar]
- Pietropaoli, M.; Skerl, M.S.; Cazier, J.; Riviere, M.-P.; Tiozzo, B.; Eggenhoeffner, R.; Gregorc, A.; Haefeker, W.; Higes, M.; Ribarits, A.; et al. BPRACTICES Project: Towards a Sustainable European Beekeeping. Bee World 2020, 97, 66–69. [Google Scholar] [CrossRef]
- Lewis, K.; Ausubel, F.M. Prospects for plant-derived antibacterials. Nat. Biotechnol. 2006, 24, 1504–1507. [Google Scholar] [CrossRef]
- Damiani, N.; Fernández, N.J.; Porrini, M.P.; Gende, L.B.; Álvarez, E.; Buffa, F.; Brasesco, C.; Maggi, M.D.; Marcangeli, J.A.; Eguaras, M.J. Laurel leaf extracts for honeybee pest and disease management: Antimicrobial, microsporicidal, and acaricidal activity. Parasitol. Res. 2014, 113, 701–709. [Google Scholar] [CrossRef] [PubMed]
- Fuselli, S.R.; SB, G.D.L.R.; Gende, L.B.; Eguaras, M.J.; Fritz, R. Inhibition of Paenibacillus larvae employing a mixture of essential oils and thymol. Rev. Argent. Microbiol. 2006, 38, 89–92. [Google Scholar] [PubMed]
- Santos, R.C.V.; dos Santos Alves, C.F.; Schneider, T.; Lopes, L.Q.S.; Aurich, C.; Giongo, J.L.; Brandelli, A.; de Almeida Vaucher, R. Antimicrobial activity of Amazonian oils against Paenibacillus species. J. Invertebr. Pathol. 2012, 109, 265–268. [Google Scholar] [CrossRef]
- Alippi, A.M. Ensayos de Campo para la evaluar efectividad de algunos aceites esenciales [Field trials for evaluation of some essential oils efficiency]. Vida Apic. 2001, 108, 41–46. [Google Scholar]
- Fuselli, S.R.; Gende, L.B.; de la Rosa, S.B.G.; Eguaras, M.J.; Fritz, R. Inhibition of Paenibacillus larvae subsp. larvae by the essential oils of two wild plants and their emulsifying agents. Span. J. Agric. Res. 2005, 3, 220–224. [Google Scholar] [CrossRef]
- Kloucek, P.; Flesar, J.; Kokoska, L.; Nedorostová, L.; Titera, D. Activity of essential oils in vapour phase against Paenibacillus larvae. Planta Med. 2008, 74, PE27. [Google Scholar] [CrossRef]
- Gende, L.B.; Maggi, M.D.; Damiani, N.; Fritz, R.; Eguaras, M.J.; Floris, I. Advances in the apiary control of the honeybee American Foulbrood with Cinnamon (Cinnamomum zeylanicum) essential oil. Bull. Insectology 2009, 62, 93–97. [Google Scholar]
- Cecotti, R.; Carpana, E.; Falchero, L.; Paoletti, R.; Tava, A. Determination of the volatile fraction of Polygonum bistorta L. at different growing stages and evaluation of its antimicrobial activity against two major honeybee (Apis mellifera) pathogens. Chem. Biodivers. 2012, 9, 359–369. [Google Scholar] [CrossRef] [PubMed]
- Kuzyšinová, K.; Mudroňová, D.; Toporčák, J.; Nemcová, R.; Molnár, L.; Maďari, A.; Vaníková, S.; Kožár, M. Testing of inhibition activity of essential oils against Paenibacillus larvae—The causative agent of American foulbrood. Acta Vet. Brno 2014, 83, 9–12. [Google Scholar] [CrossRef]
- Pellegrini, M.C.; Alonso-Salces, R.M.; Umpierrez, M.L.; Rossini, C.; Fuselli, S.R. Chemical Composition, Antimicrobial Activity, and Mode of Action of Essential Oils against Paenibacillus larvae, Etiological Agent of American Foulbrood on Apis mellifera. Chem. Biodivers. 2017, 14, e1600382. [Google Scholar] [CrossRef]
- Reyes, M.G.; Torres, M.J.; Maggi, M.D.; Marioli, J.M.; Gil, R.R.; Sosa, V.E.; Uriburu, M.L.; Audisio, M.C. In vitro inhibition of Paenibacillus larvae by different extracts and pure compounds from Flourensia spp. Ind. Crops Prod. 2013, 50, 758–763. [Google Scholar] [CrossRef]
- Hernández-López, J.; Crockett, S.; Kunert, O.; Hammer, E.; Schuehly, W.; Bauer, R.; Crailsheim, K.; Riessberger-Gallé, U. In vitro growth inhibition by Hypericum extracts and isolated pure compounds of Paenibacillus larvae, a lethal disease affecting honeybees worldwide. Chem. Biodivers. 2014, 11, 695–708. [Google Scholar] [CrossRef] [PubMed]
- Anjum, S.I.; Ayaz, S.; Shah, A.H.; Khan, S.; Khan, S.N. Controlling honeybee pathogen by using neem and Barbaka plant extracts. Biotechnol. Biotechnol. Equip. 2015, 29, 901–906. [Google Scholar] [CrossRef]
- González, M.J.; Marioli, J.M. Antibacterial activity of water extracts and essential oils of various aromatic plants against Paenibacillus larvae, the causative agent of American Foulbrood. J. Invertebr. Pathol. 2010, 104, 209–213. [Google Scholar] [CrossRef]
- Sabate, D.C.; Gonzalez, M.J.; Porrini, M.P.; Eguaras, M.J.; Audisio, M.C.; Marioli, J.M. Synergistic effect of surfactin from Bacillus subtilis C4 and Achyrocline satureioides extracts on the viability of Paenibacillus larvae. World J. Microbiol. Biotechnol. 2012, 28, 1415–1422. [Google Scholar] [CrossRef]
- González, M.J.; Beoletto, V.G.; Agnese, A.M.; Audisio, M.C.; Marioli, J.M. Purification of substances from Achyrocline satureioides with inhibitory activity against Paenibacillus larvae, the causal agent of American foulbrood in honeybees’ larvae. Appl. Biochem. Biotechnol. 2015, 175, 3349–3359. [Google Scholar] [CrossRef]
- Gende, L.B.; Principal, J.; Maggi, M.D.; Palacios, S.M.; Fritz, R.; Eguaras, M.J. Extracto de Melia azedarach y aceites esenciales de Cinnamomun zeylanicum, Mentha piperita y Lavandula officinalis como controlde Paenibacillus larvae. Zootec. Trop. 2008, 26, 151–156. [Google Scholar]
- Boligon, A.A.; de Brum, T.F.; Zadra, M.; Piana, M.; dos Santos Alves, C.F.; Fausto, V.P.; dos Santos Barboza, V., Jr.; de Almeida Vaucher, R.; Santos, R.C.V.; Athayde, M.L. Antimicrobial activity of Scutia buxifolia against the honeybee pathogen Paenibacillus larvae. J. Invertebr. Pathol. 2013, 112, 105–107. [Google Scholar] [CrossRef]
- Piana, M.; de Brum, T.F.; Boligon, A.A.; Alves, C.F.S.; de Freitas, R.B.; Nunes, L.T.; Mossmann, N.J.; Janovik, V.; Jesus, R.S.; Vaucher, R.A. In vitro growth-inhibitory effect of Brazilian plants extracts against Paenibacillus larvae and toxicity in bees. An. Acad. Bras. Cienc. 2015, 87, 1041–1047. [Google Scholar] [CrossRef]
- Kim, J.; Park, S.; Shin, Y.-K.; Kang, H.; Kim, K.-Y. In vitro antibacterial activity of macelignan and corosolic acid against the bacterial bee pathogens Paenibacillus larvae and Melissococcus plutonius. Acta Vet. Brno 2018, 87, 277–284. [Google Scholar] [CrossRef]
- Hassona, N.M.K. Using natural products to control foulbrood diseases in honey bee Apis mellifera L. colonies under egyptian conditions. Menoufia J. Plant Prot. 2017, 2, 153–165. [Google Scholar] [CrossRef]
- Kevan, S.D.; Nasr, M.E.; Kevan, P.G. Natural oils and other substances for mite control in honey bees. Hivelights 1999, 12, 15–16. [Google Scholar]
- Albo, G.N.; Henning, C.; Ringuelet, J.; Reynaldi, F.J.; De Giusti, M.R.; Alippi, A.M. Evaluation of some essential oils for the control and prevention of American Foulbrood disease in honey bees. Apidologie 2003, 34, 417–427. [Google Scholar] [CrossRef]
- Fries, I. Nosema ceranae in European honey bees (Apis mellifera). J. Invertebr. Pathol. 2010, 103, S73–S79. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-Y. Interactions Microsporidies-Insectes In Vivo: Dissémination de Nosema bombycis (Microsporidia) dans son Hôte Bombyx mori (Lepidoptera) et Caractérisation de Protéines Structurales Majeures de N. bombycis Impliquées dans L’invasion. Doctoral Dissertation, Université Blaise Pascal-Clermont-Ferrand II, Université d’Auvergne-Clermont-Ferrand I, Clermont-Ferrand, France, 2007. [Google Scholar]
- Maistrello, L.; Lodesani, M.; Costa, C.; Leonardi, F.; Marani, G.; Caldon, M.; Mutinelli, F.; Granato, A. Screening of natural compounds for the control of nosema disease in honeybees (Apis mellifera). Apidologie 2008, 39, 436–445. [Google Scholar] [CrossRef]
- Glavinic, U.; Blagojevic, J.; Ristanic, M.; Stevanovic, J.; Lakic, N.; Mirilovic, M.; Stanimirovic, Z. Use of thymol in Nosema ceranae control and health improvement of infected honey bees. Insects 2022, 13, 574. [Google Scholar] [CrossRef]
- Bravo, J.; Carbonell, V.; Sepúlveda, B.; Delporte, C.; Valdovinos, C.E.; Martín-Hernández, R.; Higes, M. Antifungal activity of the essential oil obtained from Cryptocarya alba against infection in honey bees by Nosema ceranae. J. Invertebr. Pathol. 2017, 149, 141–147. [Google Scholar] [CrossRef]
- Mitrea, I.L. In vitro” studies on using natural essential oils in treatment of Nosemosis in honey bees: Determination of the therapeutic dose. Sci. Work. Ser. C Vet. Med. 2017, 63, 165–170. [Google Scholar]
- Kim, J.H.; Park, J.K.; Lee, J.K. Evaluation of Antimicrosporidian Activity of Plant Extracts on. J. Apic. Sci. 2016, 60, 167–178. [Google Scholar]
- Lee, J.K.; Kim, J.H.; Mina, J.; Rangachari, B.; Park, J.K. Anti-nosemosis activity of Aster scaber and Artemisia dubia aqueous extracts. J. Apic. Sci. 2018, 62, 27. [Google Scholar] [CrossRef]
- Ptaszyńska, A.A.; Załuski, D. Extracts from Eleutherococcus senticosus (Rupr. et Maxim.) Maxim. roots: A new hope against honeybee death caused by nosemosis. Molecules 2020, 25, 4452. [Google Scholar] [CrossRef]
- Kunat, M.; Wagner, G.K.; Staniec, B.; Jaszek, M.; Matuszewska, A.; Stefaniuk, D.; Ptaszyńska, A.A. Aqueous extracts of jet-black ant Lasius fuliginosus nests for controlling nosemosis, a disease of honeybees caused by fungi of the genus Nosema. Eur. Zool. J. 2020, 87, 770–780. [Google Scholar] [CrossRef]
- Glavinic, U.; Stevanovic, J.; Ristanic, M.; Rajkovic, M.; Davitkov, D.; Lakic, N.; Stanimirovic, Z. Potential of fumagillin and Agaricus blazei mushroom extract to reduce Nosema ceranae in honey bees. Insects 2021, 12, 282. [Google Scholar] [CrossRef] [PubMed]
- Glavinic, U.; Rajkovic, M.; Vunduk, J.; Vejnovic, B.; Stevanovic, J.; Milenkovic, I.; Stanimirovic, Z. Effects of Agaricus bisporus mushroom extract on honey bees infected with Nosema ceranae. Insects 2021, 12, 915. [Google Scholar] [CrossRef] [PubMed]
- Nanetti, A.; Ugolini, L.; Cilia, G.; Pagnotta, E.; Malaguti, L.; Cardaio, I.; Matteo, R.; Lazzeri, L. Seed meals from Brassica nigra and Eruca sativa control artificial Nosema ceranae infections in Apis mellifera. Microorganisms 2021, 9, 949. [Google Scholar] [CrossRef] [PubMed]
- Arismendi, N.; Vargas, M.; López, M.D.; Barría, Y.; Zapata, N. Promising antimicrobial activity against the honey bee parasite Nosema ceranae by methanolic extracts from Chilean native plants and propolis. J. Apic. Res. 2018, 57, 522–535. [Google Scholar] [CrossRef]
- Mura, A.; Pusceddu, M.; Theodorou, P.; Angioni, A.; Floris, I.; Paxton, R.J.; Satta, A. Propolis consumption reduces Nosema ceranae infection of European honey bees (Apis mellifera). Insects 2020, 11, 124. [Google Scholar] [CrossRef]
- Suwannapong, G.; Maksong, S.; Phainchajoen, M.; Benbow, M.E.; Mayack, C. Survival and health improvement of Nosema infected Apis florea (Hymenoptera: Apidae) bees after treatment with propolis extract. J. Asia. Pac. Entomol. 2018, 21, 437–444. [Google Scholar] [CrossRef]
- Naree, S.; Ellis, J.D.; Benbow, M.E.; Suwannapong, G. The use of propolis for preventing and treating Nosema ceranae infection in western honey bee (Apis mellifera Linnaeus, 1787) workers. J. Apic. Res. 2021, 60, 686–696. [Google Scholar] [CrossRef]
- Cilia, G.; Garrido, C.; Bonetto, M.; Tesoriero, D.; Nanetti, A. Effect of Api-Bioxal® and ApiHerb® treatments against Nosema ceranae infection in Apis mellifera investigated by two qPCR methods. Vet. Sci. 2020, 7, 125. [Google Scholar] [CrossRef]
- Wood, M. Microbes help bees battle chalkbrood. Agric. Res. 1998, 46, 16. [Google Scholar]
- Starks, P.T.; Blackie, C.A.; Seeley, T.D. Fever in honeybee colonies. Naturwissenschaften 2000, 87, 229–231. [Google Scholar] [CrossRef] [PubMed]
- Gochnauer, T.A.; Boch, R.; Margetts, V.J. Inhibition of Ascosphaera apis by citral and geraniol. J. Invertebr. Pathol. 1979, 34, 57–61. [Google Scholar] [CrossRef]
- Calderone, N.W.; Shimanuki, H.; Allen-Wardell, G. An in vitro evaluation of botanical compounds for the control of the honeybee pathogens Bacillus larvae and Ascosphaera apis, and the secondary invader B. alvei. J. Essent. Oil Res. 1994, 6, 279–287. [Google Scholar] [CrossRef]
- Dellacasa, A.D.; Bailac, P.N.; Ponzi, M.I.; Ruffinengo, S.R.; Eguaras, M.J. In vitro activity of essential oils from San Luis-Argentina against Ascosphaera apis. J. Essent. Oil Res. 2003, 15, 282–285. [Google Scholar] [CrossRef]
- Davis, G.; Ward, W. Control of Chalkbrood Disease with Natural Products; RIRDC: Wagga Wagga, Australia, 2003. [Google Scholar]
- Ruffinengo, S.R.; Maggi, M.; Fuselli, S.; Floris, I.; Clemente, G.; Firpo, N.H.; Bailac, P.N.; Ponzi, M.I. Laboratory evaluation of Heterothalamus alienus essential oil against different pests of Apis mellifera. J. Essent. Oil Res. 2006, 18, 704–707. [Google Scholar] [CrossRef]
- El-enain, A.; Aldel-Rahman, M.F.; Abo-Elyousr, K.A.M. Inhibitory activity of certain natural products on the growth of Ascosphaera apıs. Ass. Univ. Bull. Environ. Res 2009, 12, 99–106. [Google Scholar]
- Gabriel, K.T.; Kartforosh, L.; Crow, S.A.; Cornelison, C.T. Antimicrobial activity of essential oils against the fungal pathogens Ascosphaera apis and Pseudogymnoascus destructans. Mycopathologia 2018, 183, 921–934. [Google Scholar] [CrossRef]
- Ansari, M.J.; Al-Ghamdi, A.; Usmani, S.; Khan, K.A.; Alqarni, A.S.; Kaur, M.; Al-Waili, N. In vitro evaluation of the effects of some plant essential oils on Ascosphaera apis, the causative agent of Chalkbrood disease. Saudi J. Biol. Sci. 2017, 24, 1001–1006. [Google Scholar] [CrossRef]
- Kloucek, P.; Smid, J.; Flesar, J.; Havlik, J.; Titera, D.; Rada, V.; Drabek, O.; Kokoska, L. In vitro inhibitory activity of essential oil vapors against Ascosphaera apis. Nat. Prod. Commun. 2012, 7, 1934578X1200700237. [Google Scholar] [CrossRef]
- Pusceddu, M.; Floris, I.; Mangia, N.P.; Angioni, A.; Satta, A. In vitro activity of several essential oils extracted from aromatic plants against Ascosphaera apis. Vet. Sci. 2021, 8, 80. [Google Scholar] [CrossRef] [PubMed]
- Nazzi, F.; Brown, S.P.; Annoscia, D.; Del Piccolo, F.; Di Prisco, G.; Varricchio, P.; Vedova, G.D.; Cattonaro, F.; Caprio, E.; Pennacchio, F. Synergistic parasite-pathogen interactions mediated by host immunity can drive the collapse of honeybee colonies. PLoS Pathog. 2012, 8, e1002735. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Chen, Y.; Zhang, S.; Chen, S.; Li, W.; Yan, L.; Shi, L.; Wu, L.; Sohr, A.; Su, S. Viral infection affects sucrose responsiveness and homing ability of forager honey bees, Apis mellifera L. PLoS ONE 2013, 8, e77354. [Google Scholar] [CrossRef]
- Boncristiani, H.F.; Evans, J.D.; Chen, Y.; Pettis, J.; Murphy, C.; Lopez, D.L.; Simone-Finstrom, M.; Strand, M.; Tarpy, D.R.; Rueppell, O. In vitro infection of pupae with Israeli acute paralysis virus suggests disturbance of transcriptional homeostasis in honey bees (Apis mellifera). PLoS ONE 2013, 8, e73429. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.P.; Pettis, J.S.; Corona, M.; Chen, W.P.; Li, C.J.; Spivak, M.; Visscher, P.K.; DeGrandi-Hoffman, G.; Boncristiani, H.; Zhao, Y. Israeli acute paralysis virus: Epidemiology, pathogenesis and implications for honey bee health. PLoS Pathog. 2014, 10, e1004261. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, Y.; Hammond, J.; Hsu, H.; Evans, J.; Feldlaufer, M. Multiple virus infections in the honey bee and genome divergence of honey bee viruses. J. Invertebr. Pathol. 2004, 87, 84–93. [Google Scholar] [CrossRef]
- Aurori, A.C.; Bobiş, O.; Dezmirean, D.S.; Mărghitaş, L.A.; Erler, S. Bay laurel (Laurus nobilis) as potential antiviral treatment in naturally BQCV infected honeybees. Virus Res. 2016, 222, 29–33. [Google Scholar] [CrossRef]
- Boncristiani, D.L.; Tauber, J.P.; Palmer-Young, E.C.; Cao, L.; Collins, W.; Grubbs, K.; Lopez, J.A.; Meinhardt, L.W.; Nguyen, V.; Oh, S. Impacts of diverse natural products on honey bee viral loads and health. Appl. Sci. 2021, 11, 10732. [Google Scholar] [CrossRef]
- Kamei, M.; Nishimura, H.; Takahashi, T.; Takahashi, N.; Inokuchi, K.; Mato, T.; Takahashi, K. Anti-influenza virus effects of cocoa. J. Sci. Food Agric. 2016, 96, 1150–1158. [Google Scholar] [CrossRef]
- de la Luz Cádiz-Gurrea, M.; Fernández de las Nieves, I.; Aguilera Saez, L.M.; Fernández-Arroyo, S.; Legeai-Mallet, L.; Bouaziz, M.; Segura-Carretero, A. Bioactive compounds from Theobroma cacao: Effect of isolation and safety evaluation. Plant Foods Hum. Nutr. 2019, 74, 40–46. [Google Scholar] [CrossRef]
- Dang, Y.K.T.; Nguyen, H.V.H. Effects of maturity at harvest and fermentation conditions on bioactive compounds of cocoa beans. Plant Foods Hum. Nutr. 2019, 74, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Kim, B.-Y.; Baik, M.-Y. Physicochemical properties and antioxidant capacity of raw, roasted and puffed cacao beans. Food Chem. 2016, 194, 1089–1094. [Google Scholar] [CrossRef] [PubMed]
- Salvador, I.; Massarioli, A.P.; Silva, A.P.S.; Malaguetta, H.; Melo, P.S.; Alencar, S.M. Can we conserve trans-resveratrol content and antioxidant activity during industrial production of chocolate? J. Sci. Food Agric. 2019, 99, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Haghmorad, D.; Mahmoudi, M.B.; Salehipour, Z.; Jalayer, Z.; Rastin, M.; Kokhaei, P.; Mahmoudi, M. Hesperidin ameliorates immunological outcome and reduces neuroinflammation in the mouse model of multiple sclerosis. J. Neuroimmunol. 2017, 302, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Traynor, K.S.; Mondet, F.; de Miranda, J.R.; Techer, M.; Kowallik, V.; Oddie, M.A.Y.; Chantawannakul, P.; McAfee, A. Varroa destructor: A complex parasite, crippling honey bees worldwide. Trends Parasitol. 2020, 36, 592–606. [Google Scholar] [CrossRef]
- Ramsey, S.D.; Ochoa, R.; Bauchan, G.; Gulbronson, C.; Mowery, J.D.; Cohen, A.; Lim, D.; Joklik, J.; Cicero, J.M.; Ellis, J.D. Varroa destructor feeds primarily on honey bee fat body tissue and not hemolymph. Proc. Natl. Acad. Sci. USA 2019, 116, 1792–1801. [Google Scholar] [CrossRef]
- Boecking, O.; Genersch, E. Varroosis—The ongoing crisis in bee keeping. J. Fur Verbraucherschutz Und Leb. 2008, 3, 221–228. [Google Scholar] [CrossRef]
- Rinkevich, F.D. Detection of amitraz resistance and reduced treatment efficacy in the Varroa Mite, Varroa destructor, within commercial beekeeping operations. PLoS ONE 2020, 15, e0227264. [Google Scholar] [CrossRef]
- Sara Hernández-Rodríguez, C.; Marín, Ó.; Calatayud, F.; Mahiques, M.J.; Mompó, A.; Segura, I.; Simó, E.; González-Cabrera, J. Large-Scale Monitoring of Resistance to Coumaphos, Amitraz, and Pyrethroids in Varroa destructor. Insects 2021, 12, 27. [Google Scholar] [CrossRef]
- Bogdanov, S.; Liebefeld, A. Contaminants of bee products. Apidologie 2006, 37, 1–18. [Google Scholar] [CrossRef]
- Lin, Z.; Su, X.; Wang, S.; Ji, T.; Hu, F.L.; Zheng, H.Q. Fumigant toxicity of eleven Chinese herbal essential oils against an ectoparasitic mite (Varroa destructor) of the honey bee (Apis mellifera). J. Apic. Res. 2020, 59, 204–210. [Google Scholar] [CrossRef]
- Umpiérrez, M.L.; Santos, E.; Mendoza, Y.; Altesor, P.; Rossini, C. Essential oil from Eupatorium buniifolium leaves as potential varroacide. Parasitol. Res. 2013, 112, 3389–3400. [Google Scholar] [CrossRef] [PubMed]
- Ruffinengo, S.R.; Eguaras, M.J.; Cora, D.; Rodriguez, E.; Bedascarrasbure, E.; Bailac, P.N.; Ponzi, M.I. Biological activity of Heterotheca latifolia essential oil against Varroa jacobsoni. J. Essent. Oil Res. 2002, 14, 462–464. [Google Scholar] [CrossRef]
- Conti, B.; Bocchino, R.; Cosci, F.; Ascrizzi, R.; Flamini, G.; Bedini, S. Essential oils against Varroa destructor: A soft way to fight the parasitic mite of Apis mellifera. J. Apic. Res. 2020, 59, 774–782. [Google Scholar] [CrossRef]
- Bava, R.; Castagna, F.; Palma, E.; Marrelli, M.; Conforti, F.; Musolino, V.; Carresi, C.; Lupia, C.; Ceniti, C.; Tilocca, B. Essential Oils for a Sustainable Control of Honeybee Varroosis. Vet. Sci. 2023, 10, 308. [Google Scholar] [CrossRef] [PubMed]
- Romo-Chacón, A.; Martínez-Contreras, L.J.; Molina-Corral, F.J.; Acosta-Muñiz, C.H.; Ríos-Velasco, C.; De León-Door, A.P.; Rivera, R. Evaluation of Oregano (Lippia berlandieri) Essential Oil and Entomopathogenic Fungi for Varroa destructor Control in Colonies of Honey Bee, Apis mellifera. Southwest. Entomol. 2016, 41, 971–982. [Google Scholar] [CrossRef]
- Sinia, A.; Guzman-Novoa, E. Evaluation of the entomopathogenic fungi Beauveria bassiana GHA and Metarhizium anisopliae UAMH 9198 alone or in combination with thymol for the control of Varroa destructor in honey bee (Apis mellifera ) colonies. J. Apic. Res. 2018, 57, 308–316. [Google Scholar] [CrossRef]
- Sammataro, D.; Degrandi-Hoffman, G.; Needham, G.; Wardell, G. Some Volatile Plant Oils as Potential Control Agents for Varroa Mites (Acari: Varroidae) in Honey Bee Colonies (Hymenoptera: Apidae). Am. Bee J. 1998, 138, 681–685. [Google Scholar]
- da Costa Vieira, G.H.; da Paz Andrade, W.; do Nascimento, D.M. Use of essential oils for controlling the Varroa destructor acarus in Apis mellifera. Pesqui. Agropecuária Trop. 2012, 42, 317–322. [Google Scholar] [CrossRef]
- Su, X.; Zheng, H.; Fei, Z.; Hu, F. Effectiveness of herbal essential oils as fumigants to control Varroa destructor in laboratory assays. Chin. J. Appl. Entomol. 2012, 49, 1189–1195. [Google Scholar]
- Ghasemi, V.; Moharramipour, S.; Tahmasbi, G.H. Laboratory cage studies on the efficacy of some medicinal plant essential oils for controlling varroosis in Apis mellifera (Hym.: Apidae). Syst. Appl. Acarol. 2016, 21, 1681–1692. [Google Scholar] [CrossRef]
- Aglagane, A.; Laghzaoui, E.-M.; Soulaimani, B.; Er-Rguibi, O.; Abbad, A.; El Mouden, E.H.; Aourir, M. Acaricidal activity of Mentha suaveolens subsp. timija, Chenopodium ambrosioides, and Laurus nobilis essential oils, and their synergistic combinations against the ectoparasitic bee mite, Varroa destructor (Acari: Varroidae). J. Apic. Res. 2022, 61, 9–18. [Google Scholar] [CrossRef]
- Fuselli, S.R.; Maggi, M.; García De La Rosa, S.B.; Principal, J.; Eguaras, M.J.; Fritz, R. In vitro antibacterial and antiparasitic effect of citrus fruit essential oils on the honey bee pathogen Paenibacillus larvae and the parasitic mite Varroa destructor. J. Apic. Res. 2009, 48, 77–78. [Google Scholar] [CrossRef]
- Sergio, R.R.; Maggi, M.D.; Fuselli, S.; Fiorella, G.; Negri, P.; Brasesco, C.; Satta, A.; Floris, I.; Eguaras, M.J. Bioactivity of microencapsulated essentials oils and perspectives of their use in the control of Varroa destructor. Bull. Insectology 2014, 67, 81–86. [Google Scholar]
- Hýbl, M.; Bohatá, A.; Rádsetoulalová, I.; Kopecký, M.; Hoštičková, I.; Vaníčková, A.; Mráz, P. Evaluating the Efficacy of 30 Different Essential Oils against Varroa destructor and Honey Bee Workers (Apis mellifera). Insects 2021, 12, 1045. [Google Scholar] [CrossRef]
- Gashout, H.A.; Guzmán-Novoa, E. Acute toxicity of Essential oils and other natural compounds to the parasitic mite, Varroa destructor, and to larval and adult worker honey bees (Apis mellifera L.). J. Apic. Res. 2009, 48, 263–269. [Google Scholar] [CrossRef]
Botanical Name | Common Name | Activity | References |
---|---|---|---|
Acantholippia seriphioides | Acantholippia | V. destructor Paenibacillus larvae | [36,126,202] |
Achyrocline satureioides | Macela | Paenibacillus larvae | [130,131,132] |
Allium sativum | Garlic | Ascosphaera apis | [168] |
Aloysia gratissima | Beebrush, Whitebrush | Paenibacillus larvae | [162] |
Aloysia polystachya | Beebrush | Paenibacillus larvae | [126] |
Aristotelia chilensis | Chilean wineberry | Nosema spp. | [153] |
Armoracia rusticana | Horseradish | Paenibacillus larvae Ascosphaera apis | [122,168] |
Artemisia dubia | Mugwort | Nosema spp. | [146] |
Aster scaber | Chwinamul | Nosema spp. | [146] |
Azadirachta indica | Neem | Paenibacillus larvae | [129] |
Baccharis coridifolia | Mio-mio, Vassourinha | Ascosphaera apis | [162] |
Baccharis latifolia | Chilca | Paenibacillus larvae | [126] |
Brassica nigra | Black mustard | Nosema spp. | [152] |
Buddleja globosa | Orange-ball-tree, orange ball | Paenibacillus larvae | [126] |
Calendula officinalis | Pot marigold | Paenibacillus larvae | [135] |
Camellia sinensis | Tea plant, tea bush | Nosema spp. | [148] |
Chenopodium ambrosioides | Mexican tea | Paenibacillus larvae | [130] |
Cinnamomum sp. | Cinnamon | Ascosphaera apis | [166] |
Cinnamomum zeylanicum | Dalchini | Melissococcus plutonius Paenibacillus larvae Ascosphaera apis | [7,137,169] |
Citrus reticulata | Mandarin orange | Ascosphaera apis | [165] |
Citrus spp. (hesperidin) | Citrus | V. destructor Deformed wing virus (DWV) | [8,176] |
Coriander sativum | Cilantro, Chinese parsley | Nosema spp. | [145] |
Cryptocaria alba | Peumo | Nosema spp. | [144] |
Cymbopogon citratus | Lemongrass | Paenibacillus larva; Ascosphaera apis | [35] |
Cymbopogon flexosus | Lemongrass | Ascosphaera apis | [168] |
Eleutherococcus senticosus | Siberian ginseng, eleuthero | Nosema spp. | [148] |
Eruca sativa | Rocket leaves | Nosema spp. | [152] |
Eucalyptus cinerea | Argyle apple | Paenibacillus larvae | [130] |
Eucalyptus citriodora | Lemon-scented gum | Ascosphaera apis | [163] |
Eucalyptus globulus | Tasmanian bluegum | Paenibacillus larvae | [35] |
Eupatorium patens | Boneset | Ascosphaera apis | [162] |
Flourensia fiebrigii | Chilca, maravilla | Paenibacillus larvae | [127] |
Flourensia riparia | Riparian Flourensia | Paenibacillus larvae | [127] |
Flourensia tortuosa | Flourensia | Paenibacillus larvae | [127] |
Foeniculum spp. | Fennel | V. destructor | [37] |
Foeniculum vulgare | Fennel | Ascosphaera apis | [165] |
Garcinia cambogia | Gambooge, Malabar Tamarind | Nosema spp. | [148] |
Gevuina avellana | Chilean wildnut | Nosema spp. | [153] |
Gnaphalium gaudichaudianum | Pseudognaphalium | Paenibacillus larvae | [130] |
Heterothalamus alienus | Romerillo | Ascosphaera apis | [164] |
Heterotheca latifolia | Camphorweed | Ascosphaera apis | [162] |
Hypericum spp. | Common St. John’s wort | Paenibacillus larvae | [128] |
Laurus nobilis | Bay laurel | V. destructor Paenibacillus larvae Black queen cell virus (BQCV) | [117,175,196] |
Lavandula hybrida | Lavandin | Paenibacillus larvae | [35] |
Leptospermum petersonii | Lemon-scented tea-tree | Ascosphaera apis | [163] |
Leptospermum scoparium | Tea-tree | Ascosphaera apis | [163] |
Lippia integrifolia | Hieron | Ascosphaera apis | [162] |
Lippia juneliana | Lippia junelia | Ascosphaera apis | [162] |
Lippia turbinata | Lippia turbinata | Paenibacillus larvae; Ascosphaera apis | [126,130,162] |
Litsea cubeba | Mountain pepper | Ascosphaera apis | [7] |
Marrubium vulgare | White horehound | Paenibacillus larvae | [130] |
Melia azedarach | Chinaberry tree | Paenibacillus larvae | [133] |
Melissa officinalis | Lemon balm | Nosema spp. | [145] |
Mentha piperita | Peppermint | Paenibacillus larvae Nosema spp. | [35,145] |
Mentha spicata var. crispa | Peppermint | Paenibacillus larvae | [122] |
Minthostachys mollis | Muña, Peperina | Paenibacillus larvae | [126] |
Minthostachys verticillata | Peperina | Paenibacillus larvae | [130] |
Nasturtium officinale | Watercress | Paenibacillus larvae | [135] |
Origanum spp. | Oregano | V. destructor | [12,204] |
Origanum vulgare | Oregano | Paenibacillus larvae Ascosphaera apis | [35,125,130,168] |
Pelargonium graveolens | Rose geranium | Ascosphaera apis | [7] |
Pimenta racemosa | Bay rum tree | Ascosphaera apis | [161] |
Polygonum bistorta | Meadow bistort | Melissococcus plutonius Paenibacillus larvae | [124] |
Salvia Rosmarinus | Rosemary | Paenibacillus larvae | [35] |
Satureja hortensis | Cibru, savory | Paenibacillus larvae Nosema spp. | [35,122,145] |
Schinus molle | Peruvian peppertree | Paenibacillus larvae Nosema spp. | [126] |
Schisandra chinensis | Chinese magnolia vine | Nosema spp. | [148] |
Scutia buxifolia | Boxleaf scutia | Paenibacillus larvae | [134] |
Solidago chilensis | Goldenrod | Paenibacillus larvae | [126] |
Syzygium aromaticum | Clove | V. destructor Paenibacillus larvae Ascosphaera apis Melissococcus plutonius | [125,137,161,196,197] |
Tagetes minuta | Stinking Roger | Paenibacillus larvae | [130] |
Tessaria absinthioides | Tessaria | Ascosphaera apis | [162] |
Theobroma cacao | Cocoa, cacao | Deformed wing virus (DWV) | [176] |
Thymus capitatus | Conehead thyme | Ascosphaera apis | [161,169] |
Thymus herba-barona | Caraway thyme | Ascosphaera apis | [169] |
Thymus vulgaris | German thyme | Melissococcus plutonius Paenibacillus larvae Ascosphaera apis | [35,122,125,130,137,168] |
Ugni molinae | Chilean guava, strawberry myrtle | Nosema spp. | [153] |
Chrysopogon zizanioides | Vetiver | Nosema spp. | [142] |
Vitex trifolia | Simpleleaf chastetree | Paenibacillus larvae | [129] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bava, R.; Castagna, F.; Ruga, S.; Nucera, S.; Caminiti, R.; Serra, M.; Bulotta, R.M.; Lupia, C.; Marrelli, M.; Conforti, F.; et al. Plants and Their Derivatives as Promising Therapeutics for Sustainable Control of Honeybee (Apis mellifera) Pathogens. Pathogens 2023, 12, 1260. https://doi.org/10.3390/pathogens12101260
Bava R, Castagna F, Ruga S, Nucera S, Caminiti R, Serra M, Bulotta RM, Lupia C, Marrelli M, Conforti F, et al. Plants and Their Derivatives as Promising Therapeutics for Sustainable Control of Honeybee (Apis mellifera) Pathogens. Pathogens. 2023; 12(10):1260. https://doi.org/10.3390/pathogens12101260
Chicago/Turabian StyleBava, Roberto, Fabio Castagna, Stefano Ruga, Saverio Nucera, Rosamaria Caminiti, Maria Serra, Rosa Maria Bulotta, Carmine Lupia, Mariangela Marrelli, Filomena Conforti, and et al. 2023. "Plants and Their Derivatives as Promising Therapeutics for Sustainable Control of Honeybee (Apis mellifera) Pathogens" Pathogens 12, no. 10: 1260. https://doi.org/10.3390/pathogens12101260
APA StyleBava, R., Castagna, F., Ruga, S., Nucera, S., Caminiti, R., Serra, M., Bulotta, R. M., Lupia, C., Marrelli, M., Conforti, F., Statti, G., Domenico, B., & Palma, E. (2023). Plants and Their Derivatives as Promising Therapeutics for Sustainable Control of Honeybee (Apis mellifera) Pathogens. Pathogens, 12(10), 1260. https://doi.org/10.3390/pathogens12101260