Interactions between West Nile Virus and the Microbiota of Culex pipiens Vectors: A Literature Review
Abstract
:1. Introduction
2. Relevance of West Nile Virus
3. The Role of Culex pipiens Complex in WNV Transmission
4. Mosquito Microbiota and Pathogen Transmission
5. Interactions between WNV and the Microbiota of Mosquitoes of the Culex pipiens Complex
5.1. Studies on Culex pipiens Mosquitoes
5.2. Studies on Culex quinquefasciatus Mosquitoes
5.3. Additional Relevant Studies on Species Other Than the Culex pipiens Complex
5.4. Potential Factors Explaining the Interactions between Mosquito Microbiota and WNV
6. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization (WHO). Vector-Borne Diseases. Available online: https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases (accessed on 3 October 2023).
- Mongoh, M.N.; Hearne, R.; Dyer, N.W.; Khaitsa, M.L. The Economic Impact of West Nile Virus Infection in Horses in the North Dakota Equine Industry in 2002. Trop. Anim. Health Prod. 2008, 40, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Folly, A.J.; Dorey-Robinson, D.; Hernández-Triana, L.M.; Phipps, L.P.; Johnson, N. Emerging Threats to Animals in the United Kingdom by Arthropod-Borne Diseases. Front. Vet. Sci. 2020, 7, 20. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-López, R.; Bialosuknia, S.M.; Ciota, A.T.; Montalvo, T.; Martínez-de La Puente, J.; Gangoso, L.; Figuerola, J.; Kramer, L.D. Vector Competence of Aedes caspius and Ae. albopictus Mosquitoes for Zika Virus, Spain. Emerg. Infect. Dis. 2019, 25, 346–348. [Google Scholar] [CrossRef] [PubMed]
- Cansado-Utrilla, C.; Zhao, S.Y.; McCall, P.J.; Coon, K.L.; Hughes, G.L. The Microbiome and Mosquito Vectorial Capacity: Rich Potential for Discovery and Translation. Microbiome 2021, 9, 111. [Google Scholar] [CrossRef]
- Lefèvre, T.; Vantaux, A.; Dabiré, K.R.; Mouline, K.; Cohuet, A. Non-Genetic Determinants of Mosquito Competence for Malaria Parasites. PLoS Pathog. 2013, 9, e1003365. [Google Scholar] [CrossRef]
- Van Der Meulen, K.M.; Pensaert, M.B.; Nauwynck, H.J. West Nile Virus in the Vertebrate World. Arch. Virol. 2005, 150, 637–657. [Google Scholar] [CrossRef]
- Sampson, B.A.; Ambrosi, C.; Charlot, A.; Reiber, K.; Veress, J.F.; Armbrustmacher, V. The Pathology of Human West Nile Virus Infection. Hum. Pathol. 2000, 31, 527–531. [Google Scholar] [CrossRef]
- Hayes, E.B.; Komar, N.; Nasci, R.S.; Montgomery, S.P.; O’Leary, D.R.; Campbell, G.L. Epidemiology and Transmission Dynamics of West Nile Virus Disease. Emerg. Infect. Dis. 2005, 11, 1167–1173. [Google Scholar] [CrossRef]
- Bakonyi, T.; Ferenczi, E.; Erdélyi, K.; Kutasi, O.; Csörgő, T.; Seidel, B.; Weissenböck, H.; Brugger, K.; Bán, E.; Nowotny, N. Explosive Spread of a Neuroinvasive Lineage 2 West Nile Virus in Central Europe, 2008/2009. Vet. Microbiol. 2013, 165, 61–70. [Google Scholar] [CrossRef]
- Ozkul, A.; Ergunay, K.; Koysuren, A.; Alkan, F.; Arsava, E.M.; Tezcan, S.; Emekdas, G.; Hacioglu, S.; Turan, M.; Us, D. Concurrent Occurrence of Human and Equine West Nile Virus Infections in Central Anatolia, Turkey: The First Evidence for Circulation of Lineage 1 Viruses. Int. J. Infect. Dis. 2013, 17, e546–e551. [Google Scholar] [CrossRef]
- Ferraguti, M.; Martínez-de La Puente, J.; Figuerola, J. Ecological Effects on the Dynamics of West Nile Virus and Avian Plasmodium: The Importance of Mosquito Communities and Landscape. Viruses 2021, 13, 1208. [Google Scholar] [CrossRef] [PubMed]
- Smithburn, K.C.; Hughes, T.P.; Burke, A.W.; Paul, J.H. A Neurotropic Virus Isolated from the Blood of a Native of Uganda 1. Am. J. Trop. Med. Hyg. 1940, s1-20, 471–492. [Google Scholar] [CrossRef]
- Panthier, R.; Hannoun, C.; Beytout, D.; Mouchet, J. Epidémiologie du virus West Nile: Étude d’un foyer en Camargue. I. Introduction. Ann. Inst. Pasteur. 1968, 115, 435–445. [Google Scholar]
- Naficy, K.; Saidi, S. Serological Survey on Viral Antibodies in Iran. Trop. Geogr. Med. 1970, 22, 183–188. [Google Scholar]
- Doherty, R.; Carley, J.; Mackerras, M.J.; Marks, E.N. Studies Of Arthropod-Borne Virus Infections In Queensland: III. Isolation And Characterization Of Virus Strains From Wild-Caught Mosquitoes In North Queensland. Aust. J. Exp. Biol. Med. Sci. 1963, 41, 17–39. [Google Scholar] [CrossRef]
- Mackenzie, J.S.; Barrett, A.D.T.; Deubel, V. (Eds.) Japanese Encephalitis and West Nile Viruses; Current Topics in Microbiology and Immunology; Springer: Berlin/Heidelberg, Germany, 2002; Volume 267, ISBN 978-3-642-63966-1. [Google Scholar]
- Paz, S.; Semenza, J. Environmental Drivers of West Nile Fever Epidemiology in Europe and Western Asia—A Review. Int. J. Environ. Res. Public. Health 2013, 10, 3543–3562. [Google Scholar] [CrossRef]
- Epidemiological Update: West Nile Virus Transmission Season in Europe. 2018. Available online: https://www.ecdc.europa.eu/en/news-events/epidemiological-update-west-nile-virus-transmission-season-europe-2018 (accessed on 26 August 2023).
- Magallanes, S.; Llorente, F.; Ruiz-López, M.J.; Martínez-de La Puente, J.; Soriguer, R.; Calderon, J.; Jímenez-Clavero, M.Á.; Aguilera-Sepúlveda, P.; Figuerola, J. Long-Term Serological Surveillance for West Nile and Usutu Virus in Horses in South-West Spain. One Health 2023, 17, 100578. [Google Scholar] [CrossRef]
- Ferraguti, M.; Martínez-de La Puente, J.; Soriguer, R.; Llorente, F.; Jiménez-Clavero, M.Á.; Figuerola, J. West Nile Virus-Neutralizing Antibodies in Wild Birds from Southern Spain. Epidemiol. Infect. 2016, 144, 1907–1911. [Google Scholar] [CrossRef]
- García San Miguel Rodríguez-Alarcón, L.; Fernández-Martínez, B.; Sierra Moros, M.J.; Vázquez, A.; Julián Pachés, P.; García Villacieros, E.; Gómez Martín, M.B.; Figuerola, J.; Lorusso, N.; Ramos Aceitero, J.M.; et al. Unprecedented Increase of West Nile Virus Neuroinvasive Disease, Spain, Summer 2020. Eurosurveillance 2021, 26, 2002010. [Google Scholar] [CrossRef]
- Asnis, D.; Conetta, R.; Waldman, G.; Texeira, A.; McNamara, T. Outbreak of West Nile-like Viral Encephalitis New York. Morb. Mortal. Wkly. Rep. 1999, 48, 845–849. [Google Scholar]
- Estrada-Franco, J.G.; Navarro-Lopez, R.; Beasley, D.W.C.; Coffey, L.; Carrara, A.-S.; Travassos Da Rosa, A.; Clements, T.; Wang, E.; Ludwig, G.V.; Cortes, A.C.; et al. West Nile Virus in Mexico: Evidence of Widespread Circulation since July 2002. Emerg. Infect. Dis. 2003, 9, 1604–1607. [Google Scholar] [CrossRef] [PubMed]
- Dupuis, A.P.; Marra, P.P.; Kramer, L.D. Serologic Evidence of West Nile Virus Transmission, Jamaica, West Indies. Emerg. Infect. Dis. 2003, 9, 860–863. [Google Scholar] [CrossRef] [PubMed]
- Gancz, A.Y.; Barker, I.K.; Lindsay, R.; Dibernardo, A.; McKeever, K.; Hunter, B. West Nile Virus Outbreak in North American Owls, Ontario, 2002. Emerg. Infect. Dis. 2004, 10, 2136–2142. [Google Scholar] [CrossRef]
- Martins, L.C.; Silva, E.V.P.D.; Casseb, L.M.N.; Silva, S.P.D.; Cruz, A.C.R.; Pantoja, J.A.D.S.; Medeiros, D.B.D.A.; Martins Filho, A.J.; Cruz, E.D.R.M.D.; Araújo, M.T.F.D.; et al. First Isolation of West Nile Virus in Brazil. Mem. Inst. Oswaldo Cruz 2019, 114, e180332. [Google Scholar] [CrossRef] [PubMed]
- Morales, M.; Barrandeguy, M.; Fabbri, C.; Garcia, J.; Vissani, A.; Trono, K.; Gutierrez, G.; Pigretti, S.; Menchaca, H.; Garrido, N.; et al. West Nile Virus Isolation from Equines in Argentina, 2006. Emerg. Infect. Dis. 2006, 12, 1559–1561. [Google Scholar] [CrossRef] [PubMed]
- Historic Data (1999–2022)|West Nile Virus|CDC. Available online: https://www.cdc.gov/westnile/statsmaps/historic-data.html (accessed on 26 August 2023).
- McLean, R.G. West Nile Virus in North American Birds. Ornithol. Monogr. 2006, 44–64. [Google Scholar] [CrossRef]
- George, T.L.; Harrigan, R.J.; LaManna, J.A.; DeSante, D.F.; Saracco, J.F.; Smith, T.B. Persistent Impacts of West Nile Virus on North American Bird Populations. Proc. Natl. Acad. Sci. USA 2015, 112, 14290–14294. [Google Scholar] [CrossRef] [PubMed]
- LaDeau, S.L.; Kilpatrick, A.M.; Marra, P.P. West Nile Virus Emergence and Large-Scale Declines of North American Bird Populations. Nature 2007, 447, 710–713. [Google Scholar] [CrossRef]
- Bernard, K.A.; Maffei, J.G.; Jones, S.A.; Kauffman, E.B.; Ebel, G.D.; Dupuis, A.P.; Ngo, K.A.; Nicholas, D.C.; Young, D.M.; Shi, P.-Y.; et al. West Nile Virus Infection in Birds and Mosquitoes, New York State, 2000. Emerg. Infect. Dis. 2001, 7, 679–685. [Google Scholar] [CrossRef]
- Engler, O.; Savini, G.; Papa, A.; Figuerola, J.; Groschup, M.; Kampen, H.; Medlock, J.; Vaux, A.; Wilson, A.; Werner, D.; et al. European Surveillance for West Nile Virus in Mosquito Populations. Int. J. Environ. Res. Public. Health 2013, 10, 4869–4895. [Google Scholar] [CrossRef]
- Farajollahi, A.; Fonseca, D.M.; Kramer, L.D.; Marm Kilpatrick, A. “Bird Biting” Mosquitoes and Human Disease: A Review of the Role of Culex pipiens Complex Mosquitoes in Epidemiology. Infect. Genet. Evol. 2011, 11, 1577–1585. [Google Scholar] [CrossRef] [PubMed]
- Spielman, A. Structure and Seasonality of Nearctic Culex pipiens Populations. Ann. N. Y. Acad. Sci. 2006, 951, 220–234. [Google Scholar] [CrossRef] [PubMed]
- Mattingly, P.F. The Systematics of the Culex pipiens Complex. Bull. World Health Organ. 1967, 37, 257–261. [Google Scholar] [PubMed]
- Reis, L.A.M.; Silva, E.V.P.D.; Dias, D.D.; Freitas, M.N.O.; Caldeira, R.D.; Araújo, P.A.D.S.; Silva, F.S.D.; Rosa Junior, J.W.; Brandão, R.C.F.; Nascimento, B.L.S.D.; et al. Vector Competence of Culex quinquefasciatus from Brazil for West Nile Virus. Trop. Med. Infect. Dis. 2023, 8, 217. [Google Scholar] [CrossRef] [PubMed]
- Figuerola, J.; Jiménez-Clavero, M.Á.; Ruiz-López, M.J.; Llorente, F.; Ruiz, S.; Hoefer, A.; Aguilera-Sepúlveda, P.; Jiménez-Peñuela, J.; García-Ruiz, O.; Herrero, L.; et al. A One Health View of the West Nile Virus Outbreak in Andalusia (Spain) in 2020. Emerg. Microbes Infect. 2022, 11, 2570–2578. [Google Scholar] [CrossRef] [PubMed]
- Vogels, C.B.; Göertz, G.P.; Pijlman, G.P.; Koenraadt, C.J. Vector Competence of European Mosquitoes for West Nile Virus. Emerg. Microbes Infect. 2017, 6, e96. [Google Scholar] [CrossRef] [PubMed]
- Assaid, N.; Mousson, L.; Moutailler, S.; Arich, S.; Akarid, K.; Monier, M.; Beck, C.; Lecollinet, S.; Failloux, A.-B.; Sarih, M. Evidence of Circulation of West Nile Virus in Culex pipiens Mosquitoes and Horses in Morocco. Acta Trop. 2020, 205, 105414. [Google Scholar] [CrossRef]
- Epidemiology and Ecology|Mosquitoes|CDC. Available online: https://www.cdc.gov/mosquitoes/guidelines/west-nile/epidemiology-ecology.html (accessed on 26 August 2023).
- Micieli, M.V.; Matacchiero, A.C.; Muttis, E.; Fonseca, D.M.; Aliota, M.T.; Kramer, L.D. Vector Competence of Argentine Mosquitoes (Diptera: Culicidae) for West Nile Virus (Flaviviridae: Flavivirus). J. Med. Entomol. 2013, 50, 853–862. [Google Scholar] [CrossRef]
- Kilpatrick, A.M.; Morales-Betoulle, M.E.; Panella, N.A.; Lanciotti, R.S.; Powers, A.M.; López, M.R.; Komar, N.; Sosa, S.M.; Alvarez, D.; The Arbovirus Ecology Work Group; et al. West Nile Virus Ecology in a Tropical Ecosystem in Guatemala. Am. J. Trop. Med. Hyg. 2013, 88, 116–126. [Google Scholar] [CrossRef]
- Jansen, C.C.; Webb, C.E.; Northill, J.A.; Ritchie, S.A.; Russell, R.C.; Hurk, A.F.V.D. Vector Competence of Australian Mosquito Species for a North American Strain of West Nile Virus. Vector-Borne Zoonotic Dis. 2008, 8, 805–812. [Google Scholar] [CrossRef]
- Akhter, R.; Hayes, C.G.; Baqar, S.; Reisen, W.K. West Nile Virus in Pakistan. III. Comparative Vector Capability of Culex tritaeniorhynchus and Eight Other Species of Mosquitoes. Trans. R. Soc. Trop. Med. Hyg. 1982, 76, 449–453. [Google Scholar] [CrossRef] [PubMed]
- Turell, M.J.; O’Guinn, M.L.; Dohm, D.J.; Jones, J.W. Vector Competence of North American Mosquitoes (Diptera: Culicidae) for West Nile Virus. J. Med. Entomol. 2001, 38, 130–134. [Google Scholar] [CrossRef] [PubMed]
- Kulasekera, V.L.; Kramer, L.; Nasci, R.S.; Mostashari, F.; Cherry, B.; Trock, S.C.; Glaser, C.; Miller, J.R. West Nile Virus Infection in Mosquitoes, Birds, Horses, and Humans, Staten Island, New York, 2000. Emerg. Infect. Dis. 2001, 7, 722–725. [Google Scholar] [CrossRef]
- Martínez-de La Puente, J.; Soriguer, R.; Senar, J.C.; Figuerola, J.; Bueno-Mari, R.; Montalvo, T. Mosquitoes in an Urban Zoo: Identification of Blood Meals, Flight Distances of Engorged Females, and Avian Malaria Infections. Front. Vet. Sci. 2020, 7, 460. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Díaz, E.; Figuerola, J. New Perspectives in Tracing Vector-Borne Interaction Networks. Trends Parasitol. 2010, 26, 470–476. [Google Scholar] [CrossRef]
- Hegde, S.; Rasgon, J.L.; Hughes, G.L. The Microbiome Modulates Arbovirus Transmission in Mosquitoes. Curr. Opin. Virol. 2015, 15, 97–102. [Google Scholar] [CrossRef]
- Strand, M.R. Composition and Functional Roles of the Gut Microbiota in Mosquitoes. Curr. Opin. Insect Sci. 2018, 28, 59–65. [Google Scholar] [CrossRef]
- Coon, K.L.; Vogel, K.J.; Brown, M.R.; Strand, M.R. Mosquitoes Rely on Their Gut Microbiota for Development. Mol. Ecol. 2014, 23, 2727–2739. [Google Scholar] [CrossRef]
- Moll, R.M.; Romoser, W.S.; Modrakowski, M.C.; Moncayo, A.C.; Lerdthusnee, K. Meconial Peritrophic Membranes and the Fate of Midgut Bacteria During Mosquito (Diptera: Culicidae) Metamorphosis. J. Med. Entomol. 2001, 38, 29–32. [Google Scholar] [CrossRef]
- Briones, A.M.; Shililu, J.; Githure, J.; Novak, R.; Raskin, L. Thorsellia Anophelis Is the Dominant Bacterium in a Kenyan Population of Adult Anopheles gambiae Mosquitoes. ISME J. 2008, 2, 74–82. [Google Scholar] [CrossRef]
- Muturi, E.J.; Dunlap, C.; Ramirez, J.L.; Rooney, A.P.; Kim, C.-H. Host Blood Meal Source Has a Strong Impact on Gut Microbiota of Aedes aegypti. FEMS Microbiol. Ecol. 2018, 95, fiy213. [Google Scholar] [CrossRef] [PubMed]
- Novakova, E.; Woodhams, D.C.; Rodríguez-Ruano, S.M.; Brucker, R.M.; Leff, J.W.; Maharaj, A.; Amir, A.; Knight, R.; Scott, J. Mosquito Microbiome Dynamics, a Background for Prevalence and Seasonality of West Nile Virus. Front. Microbiol. 2017, 8, 526. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gilbreath, T.M.; Kukutla, P.; Yan, G.; Xu, J. Dynamic Gut Microbiome across Life History of the Malaria Mosquito Anopheles gambiae in Kenya. PLoS ONE 2011, 6, e24767. [Google Scholar] [CrossRef]
- Shi, H.; Yu, X.; Cheng, G. Impact of the Microbiome on Mosquito-Borne Diseases. Protein Cell 2023, 14, 743–761. [Google Scholar] [CrossRef]
- Garrigós, M.; Garrido, M.; Morales-Yuste, M.; Martínez-de La Puente, J.; Veiga, J. Survival Effects of Antibiotic Exposure during the Larval and Adult Stages in the West Nile Virus Vector Culex pipiens. Insect Sci. 2023. Online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Martínez-de La Puente, J.; Gutiérrez-López, R.; Díez-Fernández, A.; Soriguer, R.C.; Moreno-Indias, I.; Figuerola, J. Effects of Mosquito Microbiota on the Survival Cost and Development Success of Avian Plasmodium. Front. Microbiol. 2021, 11, 562220. [Google Scholar] [CrossRef]
- Bahia, A.C.; Dong, Y.; Blumberg, B.J.; Mlambo, G.; Tripathi, A.; BenMarzouk-Hidalgo, O.J.; Chandra, R.; Dimopoulos, G. Exploring Anopheles Gut Bacteria for Plasmodium Blocking Activity: Anti- Plasmodium Microbes. Environ. Microbiol. 2014, 16, 2980–2994. [Google Scholar] [CrossRef]
- Dennison, N.J.; Saraiva, R.G.; Cirimotich, C.M.; Mlambo, G.; Mongodin, E.F.; Dimopoulos, G. Functional Genomic Analyses of Enterobacter, Anopheles and Plasmodium Reciprocal Interactions That Impact Vector Competence. Malar. J. 2016, 15, 425. [Google Scholar] [CrossRef]
- Ye, Y.H.; Carrasco, A.M.; Frentiu, F.D.; Chenoweth, S.F.; Beebe, N.W.; Van Den Hurk, A.F.; Simmons, C.P.; O’Neill, S.L.; McGraw, E.A. Wolbachia Reduces the Transmission Potential of Dengue-Infected Aedes aegypti. PLoS Negl. Trop. Dis. 2015, 9, e0003894. [Google Scholar] [CrossRef]
- Carrington, L.B.; Tran, B.C.N.; Le, N.T.H.; Luong, T.T.H.; Nguyen, T.T.; Nguyen, P.T.; Nguyen, C.V.V.; Nguyen, H.T.C.; Vu, T.T.; Vo, L.T.; et al. Field- and Clinically Derived Estimates of Wolbachia -Mediated Blocking of Dengue Virus Transmission Potential in Aedes aegypti Mosquitoes. Proc. Natl. Acad. Sci. USA 2018, 115, 361–366. [Google Scholar] [CrossRef]
- Moreira, L.A.; Iturbe-Ormaetxe, I.; Jeffery, J.A.; Lu, G.; Pyke, A.T.; Hedges, L.M.; Rocha, B.C.; Hall-Mendelin, S.; Day, A.; Riegler, M.; et al. A Wolbachia Symbiont in Aedes aegypti Limits Infection with Dengue, Chikungunya, and Plasmodium. Cell 2009, 139, 1268–1278. [Google Scholar] [CrossRef]
- Kumar, S.; Molina-Cruz, A.; Gupta, L.; Rodrigues, J.; Barillas-Mury, C. A Peroxidase/Dual Oxidase System Modulates Midgut Epithelial Immunity in Anopheles gambiae. Science 2010, 327, 1644–1648. [Google Scholar] [CrossRef] [PubMed]
- Azambuja, P.; Garcia, E.S.; Ratcliffe, N.A. Gut Microbiota and Parasite Transmission by Insect Vectors. Trends Parasitol. 2005, 21, 568–572. [Google Scholar] [CrossRef] [PubMed]
- Rodgers, F.H.; Gendrin, M.; Wyer, C.A.S.; Christophides, G.K. Microbiota-Induced Peritrophic Matrix Regulates Midgut Homeostasis and Prevents Systemic Infection of Malaria Vector Mosquitoes. PLoS Pathog. 2017, 13, e1006391. [Google Scholar] [CrossRef]
- Xi, Z.; Ramirez, J.L.; Dimopoulos, G. The Aedes aegypti Toll Pathway Controls Dengue Virus Infection. PLoS Pathog. 2008, 4, e1000098. [Google Scholar] [CrossRef]
- Gabrieli, P.; Caccia, S.; Varotto-Boccazzi, I.; Arnoldi, I.; Barbieri, G.; Comandatore, F.; Epis, S. Mosquito Trilogy: Microbiota, Immunity and Pathogens, and Their Implications for the Control of Disease Transmission. Front. Microbiol. 2021, 12, 630438. [Google Scholar] [CrossRef]
- Gao, H.; Cui, C.; Wang, L.; Jacobs-Lorena, M.; Wang, S. Mosquito Microbiota and Implications for Disease Control. Trends Parasitol. 2020, 36, 98–111. [Google Scholar] [CrossRef]
- Sicard, M.; Bonneau, M.; Weill, M. Wolbachia Prevalence, Diversity, and Ability to Induce Cytoplasmic Incompatibility in Mosquitoes. Curr. Opin. Insect Sci. 2019, 34, 12–20. [Google Scholar] [CrossRef]
- Hughes, G.L.; Vega-Rodriguez, J.; Xue, P.; Rasgon, J.L. Wolbachia Strain wAlbB Enhances Infection by the Rodent Malaria Parasite Plasmodium berghei in Anopheles gambiae Mosquitoes. Appl. Environ. Microbiol. 2012, 78, 1491–1495. [Google Scholar] [CrossRef]
- Bian, G.; Xu, Y.; Lu, P.; Xie, Y.; Xi, Z. The Endosymbiotic Bacterium Wolbachia Induces Resistance to Dengue Virus in Aedes aegypti. PLoS Pathog. 2010, 6, e1000833. [Google Scholar] [CrossRef]
- Garrido, M.; Veiga, J.; Garrigós, M.; Martínez-de La Puente, J. The Interplay between Vector Microbial Community and Pathogen Transmission on the Invasive Asian Tiger Mosquito, Aedes albopictus: Current Knowledge and Future Directions. Front. Microbiol. 2023, 14, 1208633. [Google Scholar] [CrossRef]
- Ramirez, J.L.; Souza-Neto, J.; Torres Cosme, R.; Rovira, J.; Ortiz, A.; Pascale, J.M.; Dimopoulos, G. Reciprocal Tripartite Interactions between the Aedes aegypti Midgut Microbiota, Innate Immune System and Dengue Virus Influences Vector Competence. PLoS Negl. Trop. Dis. 2012, 6, e1561. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, J.L.; Short, S.M.; Bahia, A.C.; Saraiva, R.G.; Dong, Y.; Kang, S.; Tripathi, A.; Mlambo, G.; Dimopoulos, G. Chromobacterium Csp_P Reduces Malaria and Dengue Infection in Vector Mosquitoes and Has Entomopathogenic and In Vitro Anti-Pathogen Activities. PLoS Pathog. 2014, 10, e1004398. [Google Scholar] [CrossRef] [PubMed]
- Apte-Deshpande, A.; Paingankar, M.; Gokhale, M.D.; Deobagkar, D.N. Serratia odorifera a Midgut Inhabitant of Aedes aegypti Mosquito Enhances Its Susceptibility to Dengue-2 Virus. PLoS ONE 2012, 7, e40401. [Google Scholar] [CrossRef] [PubMed]
- Apte-Deshpande, A.D.; Paingankar, M.S.; Gokhale, M.D.; Deobagkar, D.N. Serratia odorifera Mediated Enhancement in Susceptibility of Aedes aegypti for Chikungunya Virus. Indian J. Med. Res. 2014, 139, 762–768. [Google Scholar] [PubMed]
- Sharma, P.; Rani, J.; Chauhan, C.; Kumari, S.; Tevatiya, S.; Das De, T.; Savargaonkar, D.; Pandey, K.C.; Dixit, R. Altered Gut Microbiota and Immunity Defines Plasmodium vivax Survival in Anopheles stephensi. Front. Immunol. 2020, 11, 609. [Google Scholar] [CrossRef]
- Villegas, L.E.M.; Campolina, T.B.; Barnabe, N.R.; Orfano, A.S.; Chaves, B.A.; Norris, D.E.; Pimenta, P.F.P.; Secundino, N.F.C. Zika Virus Infection Modulates the Bacterial Diversity Associated with Aedes aegypti as Revealed by Metagenomic Analysis. PLoS ONE 2018, 13, e0190352. [Google Scholar] [CrossRef]
- Zouache, K.; Michelland, R.J.; Failloux, A.-B.; Grundmann, G.L.; Mavingui, P. Chikungunya Virus Impacts the Diversity of Symbiotic Bacteria in Mosquito Vector. Mol. Ecol. 2012, 21, 2297–2309. [Google Scholar] [CrossRef]
- Leggewie, M.; Krumkamp, R.; Badusche, M.; Heitmann, A.; Jansen, S.; Schmidt-Chanasit, J.; Tannich, E.; Becker, S.C. Culex torrentium Mosquitoes from Germany Are Negative for Wolbachia: Wolbachia Prevalence in German Culex. Med. Vet. Entomol. 2018, 32, 115–120. [Google Scholar] [CrossRef]
- Zink, S.; Van Slyke, G.; Palumbo, M.; Kramer, L.; Ciota, A. Exposure to West Nile Virus Increases Bacterial Diversity and Immune Gene Expression in Culex pipiens. Viruses 2015, 7, 5619–5631. [Google Scholar] [CrossRef]
- Micieli, M.V.; Glaser, R.L. Somatic Wolbachia (Rickettsiales: Rickettsiaceae) Levels in Culex quinquefasciatus and Culex pipiens (Diptera: Culicidae) and Resistance to West Nile Virus Infection. J. Med. Entomol. 2014, 51, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Alomar, A.A.; Pérez-Ramos, D.W.; Kim, D.; Kendziorski, N.L.; Eastmond, B.H.; Alto, B.W.; Caragata, E.P. Native Wolbachia Infection and Larval Competition Stress Shape Fitness and West Nile Virus Infection in Culex quinquefasciatus Mosquitoes. Front. Microbiol. 2023, 14, 1138476. [Google Scholar] [CrossRef] [PubMed]
- Glaser, R.L.; Meola, M.A. The Native Wolbachia Endosymbionts of Drosophila melanogaster and Culex quinquefasciatus Increase Host Resistance to West Nile Virus Infection. PLoS ONE 2010, 5, e11977. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Beller, L.; Wang, L.; Rosales Rosas, A.; De Coninck, L.; Héry, L.; Mousson, L.; Pagès, N.; Raes, J.; Delang, L.; et al. Bidirectional Interactions between Arboviruses and the Bacterial and Viral Microbiota in Aedes aegypti and Culex quinquefasciatus. mBio 2022, 13, e01021-22. [Google Scholar] [CrossRef] [PubMed]
- Dodson, B.L.; Hughes, G.L.; Paul, O.; Matacchiero, A.C.; Kramer, L.D.; Rasgon, J.L. Wolbachia Enhances West Nile Virus (WNV) Infection in the Mosquito Culex tarsalis. PLoS Negl. Trop. Dis. 2014, 8, e2965. [Google Scholar] [CrossRef]
- Hussain, M.; Lu, G.; Torres, S.; Edmonds, J.H.; Kay, B.H.; Khromykh, A.A.; Asgari, S. Effect of Wolbachia on Replication of West Nile Virus in a Mosquito Cell Line and Adult Mosquitoes. J. Virol. 2013, 87, 851–858. [Google Scholar] [CrossRef]
- Muturi, E.J.; Kim, C.-H.; Bara, J.; Bach, E.M.; Siddappaji, M.H. Culex pipiens and Culex restuans Mosquitoes Harbor Distinct Microbiota Dominated by Few Bacterial Taxa. Parasit. Vectors 2016, 9, 18. [Google Scholar] [CrossRef]
- Jansen, S.; Heitmann, A.; Lühken, R.; Leggewie, M.; Helms, M.; Badusche, M.; Rossini, G.; Schmidt-Chanasit, J.; Tannich, E. Culex torrentium: A Potent Vector for the Transmission of West Nile Virus in Central Europe. Viruses 2019, 11, 492. [Google Scholar] [CrossRef]
- Rochlin, I.; Faraji, A.; Healy, K.; Andreadis, T.G. West Nile Virus Mosquito Vectors in North America. J. Med. Entomol. 2019, 56, 1475–1490. [Google Scholar] [CrossRef]
- Tikhe, C.V.; Dimopoulos, G. Mosquito Antiviral Immune Pathways. Dev. Comp. Immunol. 2021, 116, 103964. [Google Scholar] [CrossRef]
- Hussain, M.; Frentiu, F.D.; Moreira, L.A.; O’Neill, S.L.; Asgari, S. Wolbachia Uses Host microRNAs to Manipulate Host Gene Expression and Facilitate Colonization of the Dengue Vector Aedes aegypti. Proc. Natl. Acad. Sci. USA 2011, 108, 9250–9255. [Google Scholar] [CrossRef] [PubMed]
- Slonchak, A.; Hussain, M.; Torres, S.; Asgari, S.; Khromykh, A.A. Expression of Mosquito MicroRNA Aae-miR-2940-5p Is Downregulated in Response to West Nile Virus Infection To Restrict Viral Replication. J. Virol. 2014, 88, 8457–8467. [Google Scholar] [CrossRef] [PubMed]
- Atyame, C.M.; Delsuc, F.; Pasteur, N.; Weill, M.; Duron, O. Diversification of Wolbachia Endosymbiont in the Culex pipiens Mosquito. Mol. Biol. Evol. 2011, 28, 2761–2772. [Google Scholar] [CrossRef] [PubMed]
- Martinez, J.; Longdon, B.; Bauer, S.; Chan, Y.-S.; Miller, W.J.; Bourtzis, K.; Teixeira, L.; Jiggins, F.M. Symbionts Commonly Provide Broad Spectrum Resistance to Viruses in Insects: A Comparative Analysis of Wolbachia Strains. PLoS Pathog. 2014, 10, e1004369. [Google Scholar] [CrossRef]
- Hoffmann, A.A.; Ross, P.A.; Rašić, G. Wolbachia Strains for Disease Control: Ecological and Evolutionary Considerations. Evol. Appl. 2015, 8, 751–768. [Google Scholar] [CrossRef] [PubMed]
- Bourtzis, K.; Pettigrew, M.M.; O’Neill, S.L. Wolbachia Neither Induces nor Suppresses Transcripts Encoding Antimicrobial Peptides. Insect. Mol. Biol. 2000, 9, 635–639. [Google Scholar] [CrossRef]
- Muturi, E.J.; Ramirez, J.L.; Rooney, A.P.; Kim, C.-H. Comparative Analysis of Gut Microbiota of Mosquito Communities in Central Illinois. PLoS Negl. Trop. Dis. 2017, 11, e0005377. [Google Scholar] [CrossRef]
- Yang, Y.; He, Y.; Zhu, G.; Zhang, J.; Gong, Z.; Huang, S.; Lu, G.; Peng, Y.; Meng, Y.; Hao, X.; et al. Prevalence and Molecular Characterization of Wolbachia in Field-Collected Aedes albopictus, Anopheles sinensis, Armigeres subalbatus, Culex pipiens and Cx. tritaeniorhynchus in China. PLoS Negl. Trop. Dis. 2021, 15, e0009911. [Google Scholar] [CrossRef]
- Wu, P.; Sun, P.; Nie, K.; Zhu, Y.; Shi, M.; Xiao, C.; Liu, H.; Liu, Q.; Zhao, T.; Chen, X.; et al. A Gut Commensal Bacterium Promotes Mosquito Permissiveness to Arboviruses. Cell Host Microbe 2019, 25, 101–112.e5. [Google Scholar] [CrossRef]
- Londono-Renteria, B.; Troupin, A.; Conway, M.J.; Vesely, D.; Ledizet, M.; Roundy, C.M.; Cloherty, E.; Jameson, S.; Vanlandingham, D.; Higgs, S.; et al. Dengue Virus Infection of Aedes aegypti Requires a Putative Cysteine Rich Venom Protein. PLoS Pathog. 2015, 11, e1005202. [Google Scholar] [CrossRef]
- Guégan, M.; Zouache, K.; Démichel, C.; Minard, G.; Tran Van, V.; Potier, P.; Mavingui, P.; Valiente Moro, C. The Mosquito Holobiont: Fresh Insight into Mosquito-Microbiota Interactions. Microbiome 2018, 6, 49. [Google Scholar] [CrossRef] [PubMed]
- Audsley, M.D.; Seleznev, A.; Joubert, D.A.; Woolfit, M.; O’Neill, S.L.; McGraw, E.A. Wolbachia Infection Alters the Relative Abundance of Resident Bacteria in Adult Aedes aegypti Mosquitoes, but Not Larvae. Mol. Ecol. 2018, 27, 297–309. [Google Scholar] [CrossRef] [PubMed]
- Gendrin, M.; Rodgers, F.H.; Yerbanga, R.S.; Ouédraogo, J.B.; Basáñez, M.-G.; Cohuet, A.; Christophides, G.K. Antibiotics in Ingested Human Blood Affect the Mosquito Microbiota and Capacity to Transmit Malaria. Nat. Commun. 2015, 6, 5921. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-López, M.J. Mosquito Behavior and Vertebrate Microbiota Interaction: Implications for Pathogen Transmission. Front. Microbiol. 2020, 11, 573371. [Google Scholar] [CrossRef]
- Liang, X.; Zhang, Z.; Wang, H.; Lu, X.; Li, W.; Lu, H.; Roy, A.; Shen, X.; Irwin, D.M.; Shen, Y. Early-Life Prophylactic Antibiotic Treatment Disturbs the Stability of the Gut Microbiota and Increases Susceptibility to H9N2 AIV in Chicks. Microbiome 2023, 11, 163. [Google Scholar] [CrossRef] [PubMed]
- Aželytė, J.; Wu-Chuang, A.; Maitre, A.; Žiegytė, R.; Mateos-Hernández, L.; Obregón, D.; Palinauskas, V.; Cabezas-Cruz, A. Avian Malaria Parasites Modulate Gut Microbiome Assembly in Canaries. Microorganisms 2023, 11, 563. [Google Scholar] [CrossRef]
- Navine, A.K.; Paxton, K.L.; Paxton, E.H.; Hart, P.J.; Foster, J.T.; McInerney, N.; Fleischer, R.C.; Videvall, E. Microbiomes Associated with Avian Malaria Survival Differ between Susceptible Hawaiian Honeycreepers and Sympatric Malaria-resistant Introduced Birds. Mol. Ecol. 2022, 1–12, in press. [Google Scholar] [CrossRef]
- Vaz, F.F.; Serafini, P.P.; Locatelli-Dittrich, R.; Meurer, R.; Durigon, E.L.; De Araújo, J.; Thomazelli, L.M.; Ometto, T.; Sipinski, E.A.B.; Sezerban, R.M.; et al. Survey of Pathogens in Threatened Wild Red-Tailed Amazon Parrot (Amazona brasiliensis) Nestlings in Rasa Island, Brazil. Braz. J. Microbiol. 2017, 48, 747–753. [Google Scholar] [CrossRef]
Mosquito Species | Type | Symbiont(s) | Microbiota Variable | WNV Variable | Effect | Ref |
---|---|---|---|---|---|---|
Cx. pipiens | C | Wolbachia | Relative abundance | Prevalence patterns, infection | Negative | [57] * |
C | Wolbachia | Load | Load | Positive | [84] | |
E | Wolbachia | Relative abundance | Infection | Negative | [85] | |
Enterobacter Serratia | Positive | |||||
Microbiome | Bacterial diversity | Positive | ||||
E | Wolbachia | Load | Infection, dissemination, transmission | None | [86] | |
Cx. quinquefasciatus | E | Wolbachia | Infection status | Load | Negative | [87] ** |
E | Wolbachia | Infection status | Dissemination, transmission, load | Negative | [88] | |
E | Microbiome | Bacterial diversity | Infection | None | [89] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garrigós, M.; Garrido, M.; Panisse, G.; Veiga, J.; Martínez-de la Puente, J. Interactions between West Nile Virus and the Microbiota of Culex pipiens Vectors: A Literature Review. Pathogens 2023, 12, 1287. https://doi.org/10.3390/pathogens12111287
Garrigós M, Garrido M, Panisse G, Veiga J, Martínez-de la Puente J. Interactions between West Nile Virus and the Microbiota of Culex pipiens Vectors: A Literature Review. Pathogens. 2023; 12(11):1287. https://doi.org/10.3390/pathogens12111287
Chicago/Turabian StyleGarrigós, Marta, Mario Garrido, Guillermo Panisse, Jesús Veiga, and Josué Martínez-de la Puente. 2023. "Interactions between West Nile Virus and the Microbiota of Culex pipiens Vectors: A Literature Review" Pathogens 12, no. 11: 1287. https://doi.org/10.3390/pathogens12111287
APA StyleGarrigós, M., Garrido, M., Panisse, G., Veiga, J., & Martínez-de la Puente, J. (2023). Interactions between West Nile Virus and the Microbiota of Culex pipiens Vectors: A Literature Review. Pathogens, 12(11), 1287. https://doi.org/10.3390/pathogens12111287