Impact of Equine and Camel Piroplasmosis in Egypt: How Much Do We Know about the Current Situation?
Abstract
:1. Introduction
2. Data Collection and Analysis
2.1. Searching Strategy
2.2. Data Extraction
3. An Overview of the Equine and Camel Industry in Egypt
3.1. Equines
3.2. Camels
4. Impact of Equine and Camel Piroplasmosis in Egypt
4.1. Equines
4.2. Camels
5. Competent Tick Vectors for Equine and Camel Piroplasma spp. Identified in Egypt
5.1. Equines
5.2. Camels
6. Diagnosis of Equine and Camel Piroplasmosis
6.1. Equines
6.2. Camels
7. Historical Overview of Equine and Camel Piroplasmosis in Egypt
7.1. Equine
Host | Method | Year | Governorates | Sample Size | Parasite | Prevalence | Reference |
---|---|---|---|---|---|---|---|
Horses | ME | 2003 | Different localities | 18 | B. equi | 38.9% | [53] |
IFA | 50% | ||||||
PCR | 77.8% | ||||||
Horses | ME | 2011 | Not detected | 100 | T. equi | 18% | [54] |
Horses | ME | 2013 | Giza | 149 | T. equi | 41.6% (Males 36.2% females 5.4%) | [58] |
Horses | ELISA | 2015 | Cairo and Giza | 50 | T. equi | 22% 30% | [56] |
Donkeys | 50 | ||||||
Horses | ME | 2016 | Cairo and Giza | 139 | Babesia spp. | 11.4% | [45] |
Donkeys | 17.8% | ||||||
Horses | IFA | 88 | T. equi | 23.9% | |||
Donkeys | 51 | 31.4% | |||||
Horses | cELISA | 88 | T. equi | 14.8% | |||
Donkeys | 51 | 23.5% | |||||
Horses | ME | 2016 | Cairo and Giza | 168 | T. equi | 27.4% | [45] |
Donkeys | 133 | 24.8% | |||||
Horses | nPCR | 168 | T. equi | 61.9% | |||
Donkeys | 133 | 50.4% | |||||
Horses | cELISA | 168 | T. equi | 15.5% | |||
Donkeys | 133 | 25.6% | |||||
Horse | iELISA | 168 | T. equi | 17.9% | |||
Donkeys | 133 | 53.4% | |||||
Horses | ME | 2018 | Cairo and Giza | 141 | T. equi | 5.56% | [57] |
Donkeys | |||||||
250 | |||||||
Mules | 5 | ||||||
Horses Donkeys Mules | PCR | 45 | T. equi | 30% | |||
50 | |||||||
5 | |||||||
Horses | cELISA | 2020 | Giza, Qalubia, Kafr, Elshiekh, and Menofia | 370 | T. equi, | 39%, | [32] |
B. caballi | 11% | ||||||
Donkeys | 150 | T. equi, | 30.6% | ||||
B. caballi, | 42% | ||||||
Horses | mPCR | 2021 | Alexandria, Monufia, Ismailia, Giza, Faiyum, Beni Suef, and Cairo. | 79 | T. equi | 20.3% | [7] |
B. caballi | 1.2% | ||||||
Mixed | 2.5% | ||||||
Donkeys | 76 | T. equi | 13.1% | ||||
B. caballi | 0 | ||||||
Mixed | 1.% | ||||||
Horse | cPCR | 79 | T. haneyi | 53.1% | |||
Donkeys | 76 | T. haneyi | 38.1% | ||||
Horses | cPCR | 2022 | AL-Faiyum, AL-Giza, Beni-Suef, Al-Menufia, Al-Beheira, and Matruh | 8 | Piroplasma spp. | 0 | [59] |
Donkeys | 22 |
7.2. Camel
8. Current Control Methods
8.1. Treatments of Piroplasmosis Using Imidocarb Dipropionate and Diminazene Aceturate
8.2. Supportive Treatment
8.3. Tick Control
8.4. Vaccinations
9. Piroplasmosis Preventive Measures
- When administering injections into a vein, muscle, or skin, always use a sterilized needle and syringe.
- Between each horse, clean all surgical, dental, and tattoo equipment. Before disinfection, be careful to remove all dirt and blood with soap and water.
- Use only commercially authorized blood and blood products.
- Each time a multi-dose pharmaceutical bottle is punctured, use a sterile needle.
- Monitor ticks on the animal’s body regularly. If ticks are discovered, speak with a veterinarian about the most effective tick-prevention strategies in the region.
- If a horse or camel exhibits symptoms of fever, jaundice, reduced appetite, or weight loss, call a veterinarian.
- Remove detected ticks.
10. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Garcia, K.; Weakley, M.; Do, T.; Mir, S. Current and Future Molecular Diagnostics of Tick-Borne Diseases in Cattle. Vet. Sci. 2022, 9, 241. [Google Scholar] [CrossRef]
- Johansson, M.; Mysterud, A.; Flykt, A. Livestock Owners’ Worry and Fear of Tick-Borne Diseases. Parasit. Vectors 2020, 13, 331. [Google Scholar] [CrossRef] [PubMed]
- Perveen, N.; Muzaffar, S.B.; Al-Deeb, M.A. Ticks and Tick-Borne Diseases of Livestock in the Middle East and North Africa: A Review. Insects 2021, 12, 83. [Google Scholar] [PubMed]
- El-Alfy, E.-S.; Abbas, I.; Baghdadi, H.B.; El-Sayed, S.A.E.-S.; Ji, S.; Rizk, M.A. Molecular Epidemiology and Species Diversity of Tick-Borne Pathogens of Animals in Egypt: A Systematic Review and Meta-Analysis. Pathogens 2022, 11, 912. [Google Scholar] [CrossRef] [PubMed]
- Valette, D. Invisible Workers. The Economic Contributions of Working Donkeys, Horses and Mules to Livelihoods; The Brooke: London, UK, 2015; pp. 1–23. [Google Scholar]
- Mahmoud, M.S.; Kandil, O.M.; Abu, N.T.; Ezz, E.; Hendawy, S.H.M.; Elsawy, B.S.M.; Knowles, D.P.; Bastos, R.G.; Kappmeyer, L.S.; Laughery, J.M.; et al. Identification and Antigenicity of the Babesia caballi Spherical Body Protein 4 (SBP4). Parasit. Vectors 2020, 13, 369. [Google Scholar] [CrossRef]
- Elsawy, B.S.M.; Nassar, A.M.; Alzan, H.F.; Bhoora, R.V.; Ozubek, S.; Mahmoud, M.S.; Kandil, O.M.; Mahdy, O.A. Rapid Detection of Equine Piroplasms Using Multiplex PCR and First Genetic Characterization of Theileria haneyi in Egypt. Pathogens 2021, 10, 1414. [Google Scholar] [CrossRef] [PubMed]
- Kamani, J.; Turaki, U.; Egwu, G.; Aliyu, M.; Mani, A.; Kida, S.; Gimba, A.; Adam, K. Haemoparasites of camels (Camelus dromedarius) in Maidu-guri, Nigeria. Anim. Res. Int. 2008, 2, 838–839. [Google Scholar] [CrossRef]
- Abdo -Rizk, M.; El-Adl, M.A.; Al-Araby, M.; Ali, M.O.; Abd El-Salam El-Sayed, S.; El-Beskawy, M.; Gomaa, N.A. Molecular Detection of Babesia Microti in One-Humped Camel (Camelus dromedarius) in Halayeb and Shalateen, Halayeb, Egypt. Egypt. Vet. Med. Soc. Para-Sitology J. (EVMSPJ) 2021, 17, 109–119. [Google Scholar] [CrossRef]
- Abou El Naga, R.T.; Barghash, M.S. Blood Parasites in Camels (Camelus dromedarius) in Northern West Coast of Egypt. J. Bacteriol. Parasitol. 2016, 7, 1. [Google Scholar] [CrossRef]
- Scoles, G.A.; Ueti, M.W. Vector Ecology of Equine Piroplasmosis. Annu. Rev. Entomol. 2015, 60, 561–580. [Google Scholar] [CrossRef]
- Knowles, D.P.; Kappmeyer, L.S.; Haney, D.; Herndon, D.R.; Fry, L.M.; Munro, J.B.; Sears, K.; Ueti, M.W.; Wise, L.N.; Silva, M.; et al. Discovery of a novel species, Theileria haneyi n. sp. infective to equids, highlights exceptional genomic diversity within the genus Theileria: Implications for apicomplexan parasite surveillance. Int. J. Parasitol. 2018, 48, 679–690. [Google Scholar] [CrossRef] [PubMed]
- Romero-Salas, D.; Solis-Cortés, M.; Zazueta-Islas, H.M.; Flores-Vásquez, F.; Cruz-Romero, A.; Aguilar-Domínguez, M.; Salguero-Romero, J.L.; de León, A.P.; Fernández-Figueroa, E.A.; Lammoglia-Villagómez, M.Á.; et al. Molecular Detection of Theileria equi in Horses from Veracruz, Mexi-co. Ticks Tick Borne Dis. 2021, 12, 101671. [Google Scholar] [CrossRef] [PubMed]
- Abdelrahim, I.A.; Ismail, A.A.; Majid, A.M.; Mohammed, A.S.; Ibrahim, A.M.; Allsop, M.; Oosthuizen, M. Detection of Babesia caballi in the One-Humped Camel (Camelius dromedarius) Using the Reverse Line Block (RLB) in Sudan. J. Vet. Res. 2009, 24, 69–72. [Google Scholar]
- Qablan, M.A.; Sloboda, M.; Jirků, M.; Oborník, M.; Dwairi, S.; Amr, Z.S.; Hořín, P.; Lukeš, J.; Modrý, D. Quest for the Piroplasms in Camels: Identification of Theileria equi and Babesia caballi in Jordanian Dromedaries by PCR. Vet. Parasitol. 2012, 186, 456–460. [Google Scholar] [CrossRef]
- Elsawy, B.S.M. Advanced Studies on Camel and Equine Piroplasma in Egypt. Ph.D. Thesis, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt, 2022. [Google Scholar]
- Mahdy, O.A.; Nassar, A.M.; Elsawy, B.S.M.; Alzan, H.F.; Kandil, O.M.; Mahmoud, M.S.; Suarez, C.E. Cross-Sectional Analysis of Piroplasma Species-Infecting Camel (Camelus dromedaries) in Egypt Using a Multipronged Molecular Diagnostic Approach. Front. Vet. Sci. 2023, 10, 1178511. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, S.A.E.S.; El-Adl, M.A.; Ali, M.O.; Al-Araby, M.; Omar, M.A.; El-Beskawy, M.; Sorour, S.S.; Rizk, M.A.; Elgioushy, M. Molecular Detection and Identification of Babesia bovis and Trypanosoma spp. In One-Humped Camel (Camelus dromedarius) Breeds in Egypt. Vet. World 2021, 14, 625–633. [Google Scholar] [CrossRef]
- Mohamed, W.M.A.; Ali, A.O.; Mahmoud, H.Y.A.H.; Omar, M.A.; Chatanga, E.; Salim, B.; Naguib, D.; Anders, J.L.; Nonaka, N.; Moustafa, M.A.M.; et al. Exploring Prokaryotic and Eukaryotic Microbiomes Helps in Detecting Tick-borne Infectious Agents in the Blood of Camels. Pathogens 2021, 10, 351. [Google Scholar] [CrossRef]
- Salman, D.; Sivakumar, T.; Otgonsuren, D.; Mahmoud, M.E.; Elmahallawy, E.K.; Khalphallah, A.; Kounour, A.M.E.Y.; Bayomi, S.A.; Igarashi, M.; Yokoyama, N. Molecular Survey of Babesia, Theileria, Trypanosoma, and Anaplasma Infections in Camels (Camelus dromedaries) in Egypt. Parasitol. Int. 2022, 90, 102618. [Google Scholar] [CrossRef]
- Ueti, M.W.; Tan, Y.; Broschat, S.L.; Ortiz, E.J.C.; Camacho-Nuez, M.; Mosqueda, J.J.; Scoles, G.A.; Grimes, M.; Brayton, K.A.; Palmerc, G.H. Expansion of Variant Diversity Associated with a High Prevalence of Pathogen Strain Superinfection under Conditions of Natural Transmission. Infect. Immun. 2012, 80, 2354–2360. [Google Scholar] [CrossRef]
- FAOSTAT. Available online: http://www.Fao.Org/Faostat/En/#data/QA (accessed on 2 July 2022).
- State Information Service A Gateway to Egypt Horse Breeding in Egypt. Available online: https://beta.sis.gov.eg/en/egypt/culture/literature-and-heritage/horse-breeding-in-egypt/ (accessed on 2 July 2022).
- Burger, P.A.; Ciani, E.; Faye, B. Old World Camels in a Modern World—A Balancing Act between Conservation and Genetic Improvement. Anim. Genet. 2019, 50, 598–612. [Google Scholar] [CrossRef]
- Chuluunbat, B.; Charruau, P.; Silbermayr, K.; Khorloojav, T.; Burger, P.A. Genetic Diversity and Population Structure of Mongolian Domestic Bactrian Camels (Camelus bactrianus). Anim. Genet. 2014, 45, 550–558. [Google Scholar] [CrossRef] [PubMed]
- Ramadan, S.; Inoue-Murayama, M. Advances in Camel Genomics and Their Applications: A Review. J. Anim. Genet. 2017, 45, 49–58. [Google Scholar] [CrossRef]
- Mahmoud, M.; Wassif, I.; El-Sayed, A.; Noaman, E.A. Some epidemiological studies on camel mycoplasmosis in Egypt. J. Egypt. Vet. Med. Assoc. 2019, 79, 699–709. [Google Scholar]
- Sallam, A.M. Future opportunities for genetic improvement of the Egyptian camels. Egypt. J. Anim. Prod. 2020, 57, 39–45. [Google Scholar] [CrossRef]
- Kizzi Asala. Available online: https://www.Africanews.com/2020/09/16/Camel-Racing-Back-on-in-Egypt-Post-Covid-19-Lockdown-Hiatus// (accessed on 3 March 2023).
- Napp, S.; Chevalier, V.; Busquets, N.; Calistri, P.; Casal, J.; Attia, M.; Elbassal, R.; Hosni, H.; Farrag, H.; Hassan, N.; et al. Understanding the Legal Trade of Cattle and Camels and the Derived Risk of Rift Valley Fever Introduction into and Transmission within Egypt. PLoS Negl. Trop. Dis. 2018, 12, e0006143. [Google Scholar] [CrossRef]
- Church, S. BEASTS of Burden Targeting Disease in Africa’s Working Donkeys and Horses. Available online: https://thehorse.com/features/beasts-of-burden-africas-working-horses-and-donkeys/ (accessed on 4 January 2023).
- Selim, A.; Khater, H. Seroprevalence and Risk Factors Associated with Equine Piroplasmosis in North Egypt. Comp. Immunol. Microbiol. Infect. Dis. 2020, 73, 101549. [Google Scholar] [CrossRef]
- Rüegg, S.R.; Heinzmann, D.; Barbour, A.D.; Torgerson, P.R. Estimation of the Transmission Dynamics of Theileria equi and Babesia caballi in Horses. Parasitology 2008, 135, 555–565. [Google Scholar] [CrossRef] [PubMed]
- Sears, K.; Knowles, D.; Dinkel, K.; Mshelia, P.W.; Onzere, C.; Silva, M.; Fry, L. Imidocarb Dipropionate Lacks Efficacy against Theileria haneyi and Fails to Consistently Clear Theileria equi in Horses Co-Infected with T. haneyi. Pathogens 2020, 9, 1035. [Google Scholar] [CrossRef] [PubMed]
- Sears, K.P.; Knowles, D.P.; Fry, L.M. Clinical Progression of Theileria haneyi in Splenectomized Horses Reveals Decreased Virulence Compared to Theileria equi. Pathogens 2022, 11, 254. [Google Scholar] [CrossRef] [PubMed]
- Faraj, A.A.; Hade, B.F.; Amery, A.M.A. Conventional and Molecular Study of Babesia Spp. of Natural Infection in Dragging Horses at Some Areas of Bagdad City, IRAQ. Iraqi J. Agric. Sci. 2019, 50, 909–915. [Google Scholar]
- Vannier, E.; Gewurz, B.E.; Krause, P.J. Human Babesiosis. Infect. Dis. Clin. N. Am. 2008, 22, 469–488. [Google Scholar] [CrossRef] [PubMed]
- Okely, M.; Anan, R.; Gadallah, S.; Samy, A. Hard Ticks (Acari: Ixodidae) Infesting Domestic Animals in Egypt: Diagnostic Characters and a Taxonomic Key to the Collected Species. Med. Vet. Entomol. 2021, 35, 333–351. [Google Scholar] [CrossRef]
- Alanazi, A.D.; Nguyen, V.L.; Alyousif, M.S.; Manoj, R.R.S.; Alouffi, A.S.; Donato, R.; Sazmand, A.; Roldan, J.A.M.; Torres, F.D.; Otranto, D. Ticks and Associated Pathogens in Camels (Camelus dromedarius) from Riyadh Province, Saudi Arabia. Parasit. Vectors 2020, 13, 110. [Google Scholar] [CrossRef]
- Ashour, R.; Hamza, D.; Kadry, M.; Sabry, M.A. Molecular Detection of Babesia microti in Dromedary Camels in Egypt. Trop. Anim. Health Prod. 2023, 55, 91. [Google Scholar] [CrossRef]
- Barghash, S.; Hafez, A.; Darwish, A.; El-Naga, T. Molecular Detection of Pathogens in Ticks Infesting Camels in Matrouh Governorate, Egypt. J. Bacteriol. Parasitol. 2016, 7, 2. [Google Scholar] [CrossRef]
- Onyiche, T.E.; Suganuma, K.; Igarashi, I.; Yokoyama, N.; Xuan, X.; Thekisoe, O. A Review on Equine Piroplasmosis: Epidemiology, Vector Ecology, Risk Factors, Host Immunity, Diagnosis and Control. Int. J. Environ. Res. Public Health 2019, 16, 1736. [Google Scholar] [CrossRef]
- Díaz-Sánchez, A.A.; Pires, M.S.; Estrada, C.Y.; Cañizares, E.V.; Del Castillo Domínguez, S.L.; Cabezas-Cruz, A.; Rivero, E.L.; da Fonseca, A.H.; Massard, C.L.; Corona-González, B. First Molecular Evidence of Babesia caballi and Theileria equi Infections in Horses in Cuba. Parasitol. Res. 2018, 117, 3109–3118. [Google Scholar] [CrossRef]
- Mahmoud, M.S.; El-ezz, N.T.A.; Abdel-shafy, S.; Nassar, S.A.; El Namaky, A.H.; Khalil, W.K.B.; Knowles, D.; Kappmeyer, L.; Silva, M.G.; Suarez, C.E.; et al. Assessment of Theileria equi and Babesia caballi Infections in Equine Populations in Egypt by Molecular, Serological and Hematological Approaches. Parasit. Vectors 2016, 9, 260. [Google Scholar] [CrossRef] [PubMed]
- Mahdy, O.A.; Nassar, A.S.; Mohamed, B.S.; Mahmoud, M.S. Comparative Diagnosis Utilizing Molecular and Serological Techniques of Theileria equi in Distinct Equine Population in Egypt. Int. J. Chemtech Res. 2016, 9, 185–197. [Google Scholar]
- El-Ashker, M.; Hotzel, H.; Gwida, M.; El-Beskawy, M.; Silaghi, C.; Tomaso, H. Molecular Biological Identification of Babesia, Theileria, and Anaplasma Species in Cattle in Egypt Using PCR Assays, Gene Sequence Analysis and a Novel DNA Microarray. Vet. Parasitol. 2015, 207, 329–334. [Google Scholar] [CrossRef]
- Rothschild, C.M. Equine Piroplasmosis. J. Equine Vet. Sci. 2013, 33, 497–508. [Google Scholar] [CrossRef]
- Donnellan, C.M.B.; Page, P.C.; Nurton, J.P.; van den Berg, J.S.; Guthrie, A.J. Comparison of Glycopyrrolate and Atropine in Ameliorating the Adverse Effects of Imidocarb Dipropionate in Horses. Equine Vet. J. 2013, 45, 625–629. [Google Scholar] [CrossRef] [PubMed]
- Bilgiç, H.B.; Karagenç, T.; Simuunza, M.; Shiels, B.; Tait, A.; Eren, H.; Weir, W. Development of a Multiplex PCR Assay for Simultaneous Detection of Theileria annulata, Babesia bovis and Anaplasma marginale in Cattle. Exp. Parasitol. 2013, 133, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Georges, K.; Loria, G.R.; Riili, S.; Greco, A.; Caracappa, S.; Jongejan, F.; Sparagano, O. Detection of Haemoparasites in Cattle by Reverse Line Blot Hybridisation with a Note on the Distribution of Ticks in Sicily. Vet. Parasitol. 2001, 99, 273–286. [Google Scholar] [CrossRef]
- Rodríguez, I.; Burri, C.; Noda, A.A.; Douet, V.; Gern, L. Multiplex PCR for Molecular Screening of Borrelia burgdorferi Sensu Lato, Anaplasma spp. and Babesia spp. Ann. Agric. Environ. Med. 2015, 22, 642–646. [Google Scholar] [CrossRef] [PubMed]
- Arafa, M.I. Studies on the Ecto and Endoparasites of Equines in Assiut Governorate. Ph.D. Thesis, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt, 1998. [Google Scholar]
- Farah, A.W.; Hegazy, N.A.M.; Romany, M.M.; Soliman, Y.A.; Daoud, A.M. Molecular Detection of Babesia Equi in Infected and Carrier Horses by Polymerase Chain Reaction. Egypt. J. Immunol. 2003, 10, 73–79. [Google Scholar] [PubMed]
- Ibrahim, A.K.; Gamil, I.S.; Abd-El Baky, A.A.; Hussein, M.M.; Tohamy, A.A. Comparative Molecular and Conventional Detection Methods of Babesia equi (B. equi) in Egyptian Equine. Glob. Vet. 2011, 7, 201–210. [Google Scholar]
- Bhoora, R.; Quan, M.; Matjila, P.T.; Zweygarth, E.; Guthrie, A.J.; Collins, N.E. Sequence Heterogeneity in the Equi Merozoite Antigen Gene (Ema-1) of Theileria equi and Development of an Ema -1-Specific TaqMan MGB TM Assay for the Detection of T. equi. Vet. Parasitol. 2010, 172, 33–45. [Google Scholar] [CrossRef]
- Mahmoud, S.; Mahmoud, M.S.; El-Hakim, A.E.; Hendawy, S.H.; Shalaby, H.A.; Kandil, O.M.; Abu El-Ezz, N.M. Diagnosis of Theilria equi Infections in Equines Using Immunoaffinity Purified Antigen. Glob. Vet. 2015, 15, 192–201. [Google Scholar]
- El-seify, M.A.; City, K.E.; Helmy, N.; Mahmoud, A.; Soliman, M. Use Molecular Techniques as an Alternative Tool for Diagnosis and Characterization of Theileria equi. Iraqi J. Vet. Sci. 2018, 32, 5–11. [Google Scholar]
- Salib, F.A.; Youssef, R.R.; Rizk, L.G.; Said, S.F. Epidemiology, Diagnosis and Therapy of Theileria equi Infection in Giza, Egypt. Vet. World 2013, 6, 76–82. [Google Scholar] [CrossRef]
- Abdel-Shafy, S.; Abdullah, H.H.A.M.; Elbayoumy, M.K.; Elsawy, B.S.M.; Hassan, M.R.; Mahmoud, M.S.; Hegazi, A.G.; Abdel-Rahman, E.H. Molecular Epidemiological Investigation of Piroplasms and Anaplasmataceae Bacteria in Egyptian Domestic Animals and Associated Ticks. Pathogens 2022, 11, 1194. [Google Scholar] [CrossRef] [PubMed]
- Abd El Maleck, B.; Abed, G.; Mandour, A. Some Protozoan Parasites Infecting Blood of Camels (Camelus dromedarius) at Assiut Locality, Upper Egypt. J. Bacteriol. Parasitol. 2014, 5, 2. [Google Scholar] [CrossRef]
- Hamed, M.; Zaitoun, A.; El-Allawy, T.; Mourad, M. Investigation of Theileria camelensis in Camels Infested by Hyalomma dromedarii Ticks in Upper Egypt. J. Adv. Vet. Res. 2011, 1, 4–7. [Google Scholar]
- El-Refaii, M.A.; Wahba, A.; Gehan, J.S. Studies on Theileria Infection among Slaughtered Camels in Egypt. Egypt. J. Med. Sci. 1998, 19, 1–17. [Google Scholar]
- Nassar, A.M. Theileria Infection in Camels (Camelus dromedarius) in Egypt. Vet. Parasitol. 1992, 43, 147–149. [Google Scholar] [CrossRef]
- Youssef, S.Y.; Yasien, S. Vector Identification and Clinical, Hematological, Biochemical, and Parasitological Characteristics of Camel (Camelus dromedarius) Theileriosis in Egypt. Trop. Anim. Health Prod. 2015, 47, 649–656. [Google Scholar] [CrossRef] [PubMed]
- Abdel Gawad, S.M. Recent Diagnosis of Protozoa Affecting Camels. Ph.D. Thesis, Faculty of Veterinary Medicine, Benha University, Benha, Egypt, 2018. [Google Scholar]
- A Literature Review of Equine Piroplasmosis. 2010. Available online: https://www.aphis.usda.gov/animal_health/animal_diseases/piroplasmosis/downloads/ep_literature_review_september_2010.pdf (accessed on 5 May 2023).
- Wise, L.N.; Kappmeyer, L.S.; Mealey, R.H.; Knowles, D.P. Review of Equine Piroplasmosis. J. Vet. Intern. Med. 2013, 27, 1334–1346. [Google Scholar] [CrossRef] [PubMed]
- Carter, P.D.; Rolls, P. Babesiosis in Animals. Available online: https://www.msdvetmanual.com/circulatory-system/blood-parasites/babesiosis-in-animals (accessed on 1 July 2023).
- Kumar, B.; Manjunathachar, H.V.; Ghosh, S. A Review on Hyalomma Species Infestations on Human and Animals and Progress on Management Strategies. Heliyon 2020, 6, e05675. [Google Scholar] [CrossRef]
- Geevet Remedies. Available online: https://www.Veterinaryfeed.in/Deltamethrin-1-25-Solution-6320189.Html (accessed on 25 October 2023).
- Van Straten, M.; Jongejan, E. Ticks (Acari” Ixodidae) Infesting the Arabian Camel (Camelus dromedarius) in the Sinai, Egypt with a Note on the Acaricidal Efficacy of Ivermectin. Exp. Appl. Acarol. 1993, 17, 605–616. [Google Scholar] [CrossRef] [PubMed]
- Mulenga, A.; Sugimoto, C.; Onuma, M. Issues in Tick Vaccine Development: Identification and Characterization of Potential Candidate Vaccine Antigens. Microbes Infect 2000, 2, 1353–1361. [Google Scholar] [CrossRef]
- Willadsen, P. Anti-Tick Vaccines. Parasitology 2004, 129, 367–387. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, M.; Penichet, M.L.; Mouris, A.E.; Labarta, V.; Lorenzo Luaces, L.; Rubiera, R.; Cordovés, C.; Sánchez, P.A.; Ramos, E.; Soto, A.; et al. Control of Boophilus microplus Populations in Grazing Cattle Vaccinated with a Recombinant Bm86 Antigen Preparation. Vet. Parasitol. 1995, 57, 339–349. [Google Scholar] [CrossRef] [PubMed]
- Willadsen, P.; Bird, P.; Cobon, G.S.; Hungerford, J. Commercialization of a Recombinant Vaccine against Boophilus microplus. Parasitology 1995, 110, S43–S50. [Google Scholar] [CrossRef] [PubMed]
- Tabor, A.E. A Review of Australian Tick Vaccine Research. Vaccines 2021, 9, 1030. [Google Scholar] [CrossRef] [PubMed]
- California Department of Food and Agriculture Equine Piroplasmosis Frequently Asked Questions. Available online: https://www.cdfa.ca.gov/ahfss/animal_health/pdfs/equine/EquinePiroplasmosisFAQs-English.pdf (accessed on 25 February 2022).
Pathogens and Diseases | Animals | Methods | Country | Databases |
---|---|---|---|---|
Tick-borne diseases Babesia Babesiosis Theileria Theileriosis | Camel Equines Horses Donkeys | Microscopical Serological Molecular PCR | Egypt | PubMed Scopus ScienceDirect Egyptian Knowledge Bank Google Scholar |
Method | Year | Governorates | Sample Size | Parasite | Prevalence | Reference |
---|---|---|---|---|---|---|
ME | 1992 | Cairo and Giza | 200 | Theileria spp. | 30% | [63] |
ME | 1998 | Cairo | 74 | Theileria spp. | 33.3% | [62] |
ME | 2011 | Upper Egypt | 224 | T. camelensis | 6.8% | [61] |
ME | 2014 | Assiut Upper Egypt | 89 | Babesia spp. | 46.9% | [60] |
Theileria spp. | 9.1% | |||||
ME | 2015 | Giza | 243 | Theileria spp. | 30.9% | [64] |
PCR | 10% | |||||
ME | 2016 | Northern West Coastal zone | 331 | Babesia spp. | 11.9% | [10] |
PCR | B.bovis | 59.1% | ||||
B. bigemina | 40.9% | |||||
ME | 2018 | Qalubia | 700 | Babesia spp. Theileria spp. | 4.7% 0.4% | [65] |
PCR | 100 (negative ME) | Babesia spp | 2% | |||
nPCR | 2021 | Halayeb and Shalaten | 142 | B. bovis | 2.81% | [18] |
ME | 2023 | Cairo, Giza, Qalubya, Sharika Suhag, and Red Sea | 531 | Piroplasma spp. | 11% | [16,17] |
cPCR | Babesia/Theileria spp. | 38% | ||||
mPCR | T. equi (SI) | 41% | ||||
T. equi (Mixed) | 0.5% | |||||
B. caballi (Mixed) | 5.4% | |||||
B. bovis (SI) | 4% | |||||
B. bovis (Mixed) | 5% | |||||
B. bigemmina (Mixed) | 0.5% | |||||
nPCR | B. vulpes | 22% | ||||
Babesia sp. | 9% | |||||
Theileria sp. | 3% | |||||
nPCR | 2021 | Halayb and Shalaten | 142 | B. microti | 11.97% | [9] |
PCR | 2022 | Giza, Asyut, Sohag, Qena, Luxor, and the Red Sea | 148 | B. bovis | 19.6% | [20] |
B. bigemina | 14.9% | |||||
Babesia sp. | 0.7% | |||||
Theileria sp. | 1.4% | |||||
T. equi | 0.7% | |||||
nPCR | 2023 | Cairo and Giza | 133 | B. microti | 6.8% | [40] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elsawy, B.S.M.; Mahmoud, M.S.; Suarez, C.E.; Alzan, H.F. Impact of Equine and Camel Piroplasmosis in Egypt: How Much Do We Know about the Current Situation? Pathogens 2023, 12, 1318. https://doi.org/10.3390/pathogens12111318
Elsawy BSM, Mahmoud MS, Suarez CE, Alzan HF. Impact of Equine and Camel Piroplasmosis in Egypt: How Much Do We Know about the Current Situation? Pathogens. 2023; 12(11):1318. https://doi.org/10.3390/pathogens12111318
Chicago/Turabian StyleElsawy, Bassma S. M., Mona S. Mahmoud, Carlos E. Suarez, and Heba F. Alzan. 2023. "Impact of Equine and Camel Piroplasmosis in Egypt: How Much Do We Know about the Current Situation?" Pathogens 12, no. 11: 1318. https://doi.org/10.3390/pathogens12111318
APA StyleElsawy, B. S. M., Mahmoud, M. S., Suarez, C. E., & Alzan, H. F. (2023). Impact of Equine and Camel Piroplasmosis in Egypt: How Much Do We Know about the Current Situation? Pathogens, 12(11), 1318. https://doi.org/10.3390/pathogens12111318