Challenges and Opportunities in One Health: Google Trends Search Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Retrieval
2.2. Statistical Analysis
3. Results
Predictive Models
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lazer, D.; Kennedy, R.; King, G.; Vespignani, A. The parable of Google Flu: Traps in big data analysis. Science 2014, 343, 1203–1205. [Google Scholar] [CrossRef] [PubMed]
- Katsikopoulas, K.V.; Şimşek, Ö.; Buckmann, M.; Gigerenzer, G. Transparent modeling of influenza incidence: Big data or a single data point from psychological theory? Int. J. Forecast. 2022, 38, 613–619. [Google Scholar] [CrossRef]
- Carneiro, H.A.; Mylonakis, E. Google Trends: A web-based tool for real-time surveillance of disease outbreaks. Clin. Infect. Dis. 2009, 49, 1557–1564. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Bambrick, H.; Mengersen, K.; Tong, S.; Hu, W. Using Google Trends and ambient temperature to predict seasonal influenza outbreaks. Environ. Int. 2018, 117, 284–291. [Google Scholar] [CrossRef] [PubMed]
- Morsy, S.; Dang, T.N.; Kamel, M.G.; Zayan, A.H.; Makram, O.M.; Elhady, M.; Hirayama, K.; Huy, N.T. Prediction of Zika-confirmed cases in Brazil and Colombia using Google Trends. Epidemiol. Infect. 2018, 146, 1625–1627. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.-Y.; Tang, N.-J. The correlation between Google Trends and salmonellosis. BMI Public Health 2021, 21, 1575. [Google Scholar] [CrossRef] [PubMed]
- Sulyok, M.; Richter, H.; Sulyok, Z.; Kapitány-Fövény, M.; Walker, M.D. Predicting tick-borne encephalitis using Google Trends. Ticks Tick-Borne Dis. 2020, 11, e101306. [Google Scholar] [CrossRef] [PubMed]
- Kapitány-Fövény, M.; Ferenci, T.; Sulyok, Z.; Kegele, J.; Richter, H.; Vályi-Nagy, I.; Sulyok, M. Can Google Trends data improve forecasting of Lyme disease incidence? Zoonoses Public Health 2018, 66, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Stanek, G.; Wormser, G.P.; Gray, J.; Strle, F. Lyme borreliosis. Lancet 2012, 379, 461–473. [Google Scholar] [CrossRef] [PubMed]
- Eisen, R.J.; Kugeler, K.J.; Eisen, L.; Beard, C.B.; Paddock, C.D. Tick-borne zoonoses in the United States: Persistent and emerging threats to human health. ILAR J. 2017, 58, 319–335. [Google Scholar] [CrossRef] [PubMed]
- Levi, T.; Kilpatrick, M.; Mangel, M.; Wilmers, C.C. Deer, predators, and the emergence of Lyme disease. Proc. Natl. Acad. Sci. USA 2012, 109, 10942–10947. [Google Scholar] [CrossRef]
- Kilpatrick, A.M.; Dobson, A.D.M.; Levi, T.; Salkeld, D.J.; Swei, A.; Ginsberg, H.S.; Kjemtrup, A.; Padgett, K.A.; Jensen, P.M.; Fish, D.; et al. Lyme disease ecology in a changing world: Consensus, uncertainty and critical gaps for improving control. Philos. Trans. R. Soc. B Biol. Sci. 2017, 372, e20160117. [Google Scholar] [CrossRef]
- Coburn, J.; Garcia, B.; Hu, L.T.; Jewett, M.W.; Kraiczy, P.; Norris, S.J.; Skare, J. Lyme disease pathogenesis. Curr. Issues Mol. Biol. 2021, 42, 473–517. [Google Scholar] [CrossRef] [PubMed]
- Kullberg, B.J.; Vrijmoeth, H.D.; van de Schoor, F. Lyme borreliosis: Diagnosis and management. BMJ 2020, 369, m0141. [Google Scholar] [CrossRef] [PubMed]
- Hook, S.A.; Jeon, S.; Niesobecki, S.A.; Hansen, A.P.; Meek, J.I.; Bjork, J.K.H.; Dorr, F.M.; Rutz, H.J.; Feldman, K.A.; White, J.L.; et al. Economic burden of reported Lyme disease in high-incidence areas, United States, 2014–2016. Emerg. Infect. Dis. 2022, 28, 1170–1179. [Google Scholar] [CrossRef] [PubMed]
- Kugeler, K.J.; Schwartz, A.M.; Delorey, M.J.; Mead, P.S.; Hinckley, A.F. Estimating the frequency of Lyme disease diagnosis, United States, 2010–2018. Emerg. Infect. Dis. 2021, 27, 616–619. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, A.M.; Hinckley, A.F.; Mead, P.S.; Hook, S.A.; Kugeler, K.J. Surveillance for Lyme disease- United States, 2008–2015. MMWR 2017, 66, e22. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Maxwell, S.; Le, Q. Spatial and temporal comparison of perceived risks and confirmed cases of Lyme Disease: An exploratory study of google trends. Front. Public Health 2020, 8, 395. [Google Scholar] [CrossRef] [PubMed]
- Surveillance Data. Available online: https://www.cdc.gov/lyme/datasurveillance/surveillance-data.html?CDC_AA_refVal=https%3A%2F%2Fwww.cdc.gov%2Flyme%2Fstats%2Fgraphs.html (accessed on 3 August 2023).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Massicotte, P.; Eddelbuettel, D. GtrendsR: Perform and Display Google Trends Queries, R Package Version 1.5.1; 2022. Available online: https://CRAN.R-project.org/package=gtrendsR (accessed on 3 August 2023).
- StataCorp. Stata Statistical Software: Release 17; StataCorp LLC: College Station, TX, USA, 2021. [Google Scholar]
- Kuhn, M.; Johnson, K. Applied Predictive Modeling; Springer Nature: New York, NY, USA, 2013; pp. 95–100. [Google Scholar]
- Stricker, R.B.; Johnson, L. Lyme disease: Call for a “Manhattan Project” to combat the epidemic. PLOS Pathog. 2014, 10, e1003796. [Google Scholar] [CrossRef] [PubMed]
State | N | Mean | SD | Minimum | Median | Maximum |
---|---|---|---|---|---|---|
California | 132 | 10.0 | 7.0 | 1 | 8 | 34 |
Connecticut | 108 | 206.0 | 170.3 | 11 | 152.5 | 860 |
Indiana | 84 | 10.2 | 13.1 | 0 | 4 | 51 |
Kansas | 132 | 2.2 | 2.3 | 0 | 2 | 10 |
Maine | 132 | 113.3 | 112.1 | 12 | 71 | 557 |
Michigan | 120 | 19.2 | 25.2 | 0 | 9 | 127 |
New Hampshire | 132 | 106.1 | 103.6 | 2 | 64 | 527 |
North Dakota | 140 | 2.8 | 3.9 | 0 | 1 | 21 |
Oregon | 96 | 29.1 | 22.2 | 1 | 25.5 | 89 |
Rhode Island | 108 | 78.6 | 61.9 | 14 | 56.5 | 269 |
South Carolina | 132 | 3.8 | 2.8 | 0 | 3 | 15 |
Texas | 84 | 3.9 | 3.9 | 0 | 3 | 16 |
Vermont | 131 | 55.7 | 64.8 | 1 | 28 | 312 |
Virginia | 72 | 87.6 | 63.8 | 3 | 78 | 261 |
Washington | 144 | 2.5 | 3.2 | 0 | 1 | 18 |
West Virginia | 132 | 38.6 | 60.5 | 0 | 17 | 396 |
CA | CT | IN | KS | ME | MI | NH | ND | OR | RI | SC | TX | VA | VT | WA | WV | All | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Symptoms | |||||||||||||||||
Bulls eye | 6.8 | 136.6 | 13.3 | 2.3 | 108.2 | 25.1 | 106.2 | - | 21.9 | - | 2.7 | 3.3 | 63.3 | - | 3.3 | - | 63.4 |
Droopy eye | 6.8 | 168.0 | 12.8 | 2.4 | 114.3 | 25.2 | 105.7 | - | 21.2 | - | 2.7 | 3.5 | 63.4 | - | 3.3 | 69.9 | |
Stiff neck | 6.9 | 152.2 | 13.2 | 2.3 | 115.3 | 24.8 | 101.2 | 3.6 | 21.6 | 59.1 | 2.7 | 3.7 | 57.2 | 67.5 | 3.3 | 52.9 | 62.5 |
Tick bite | 6.2 | 249.2 | 38.9 | 2.0 | 123.9 | 36.6 | 130.9 | 9.1 | 22.1 | 45.3 | 2.5 | 3.6 | 61.6 | 77.2 | 4.9 | 58.0 | 83.4 |
Tick fever | 6.5 | 159.2 | 17.8 | 2.1 | 101.5 | 22.3 | 101.5 | - | 22.1 | 61.5 | 2.7 | 2.6 | 58.8 | 65.7 | 3.3 | 61.8 | 64.9 |
Tick rash | 6.3 | 197.3 | 13.0 | 2.0 | 105.5 | 75.2 | 105.1 | - | 22.1 | 62.8 | 2.7 | 3.3 | 62.1 | 68.7 | 2.9 | 46.6 | 73.7 |
Similar diseases | |||||||||||||||||
Arthritis | 7.0 | 161.9 | 12.3 | 2.3 | 110.8 | 24.1 | 103.1 | 3.7 | 20.8 | 57.5 | 2.7 | 3.8 | 62.5 | 70.1 | 3.3 | 55.6 | 64.2 |
RMSF | 6.1 | 172.6 | 140.4 | 1.9 | 107.0 | 24.8 | 101.4 | 3.6 | 22.1 | 53.8 | 2.7 | 3.0 | 58.7 | 60.5 | 3.2 | 57.7 | 70.1 |
Summer flu | 5.9 | 167.8 | 9.6 | 2.3 | 114.3 | 19.9 | 105.7 | 3.9 | 22.4 | 61.5 | 2.7 | 3.0 | 59.8 | 65.7 | 2.6 | 61.8 | 65.6 |
Lyme disease | |||||||||||||||||
Lyme | 6.2 | 156.4 | 9.6 | 2.0 | 114.4 | 24.4 | 69.9 | 4.9 | 22.2 | 32.1 | 2.6 | 3.7 | 60.6 | 53.5 | 3.3 | 42.1 | 57.3 |
Lyme disease | 6.5 | 96.8 | 9.7 | 2.0 | 113.5 | 24.4 | 73.1 | 3.8 | 22.3 | 38.8 | 2.6 | 3.2 | 61.1 | 54.4 | 3.5 | 44.0 | 49.8 |
Lymes | 6.4 | 120.9 | 8.0 | 2.1 | 103.5 | 23.0 | 95.3 | 3.8 | 23.0 | 41.5 | 2.7 | 3.2 | 60.9 | 58.4 | 3.3 | 43.5 | 54.1 |
Other | |||||||||||||||||
Seed tick | 7.0 | 168.0 | 12.6 | 2.4 | 114.3 | 23.3 | 103.3 | - | 22.6 | 61.5 | 2.8 | 3.4 | 55.2 | 65.7 | 3.3 | 61.8 | 67.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wisnieski, L.; Gruszynski, K.; Faulkner, V.; Shock, B. Challenges and Opportunities in One Health: Google Trends Search Data. Pathogens 2023, 12, 1332. https://doi.org/10.3390/pathogens12111332
Wisnieski L, Gruszynski K, Faulkner V, Shock B. Challenges and Opportunities in One Health: Google Trends Search Data. Pathogens. 2023; 12(11):1332. https://doi.org/10.3390/pathogens12111332
Chicago/Turabian StyleWisnieski, Lauren, Karen Gruszynski, Vina Faulkner, and Barbara Shock. 2023. "Challenges and Opportunities in One Health: Google Trends Search Data" Pathogens 12, no. 11: 1332. https://doi.org/10.3390/pathogens12111332
APA StyleWisnieski, L., Gruszynski, K., Faulkner, V., & Shock, B. (2023). Challenges and Opportunities in One Health: Google Trends Search Data. Pathogens, 12(11), 1332. https://doi.org/10.3390/pathogens12111332