The Detection of SARS-CoV-2 Antibodies in an Exposed Human Population Is Biased by the Immunoassay Used: Implications in Serosurveillance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Serological Assays
Manufacturer | Format | Assay Name | Target Antigen | Reference |
---|---|---|---|---|
Eurofins | ELISA | INgezim COVID 19 DR | Nucleocapsid protein | - |
IDvet | ELISA | ID Screen SARS-CoV-2-N IgG Indirect | Nucleocapsid protein | - |
MyBiosource | ELISA | Human COVID-19 Nucleocapsid (N) IgG/IgM ELISA kit | Nucleocapsid protein | - |
Mikrogen | ELISA | RecomWell SARS-CoV-2 IgG | Nucleocapsid protein | - |
BIO-RAD | ELISA | Platelia SARS-CoV-2 Virus Total Ab assay | Nucleocapsid protein | - |
In-house | ELISA | NPC-2 ELISA | Nucleocapsid protein | [18] |
In-house | ELISA | RBD ELISA | Spike-1 protein | [17] |
Roche | eCLIA | Elecsys Anti-SARS-CoV-2 (N) | Nucleocapsid protein | - |
Abbott | CLIA | Architect SARS-CoV-2 IgG | Nucleocapsid protein | - |
T&D Diagnostics | LFA | 2019-nCoV IgG/IgM Rapid Test | Unknown | - |
Tianjin Biotechnology | LFA | COVID-19 IgG/IgM Joysbio | Unknown | - |
2.2. Serum Samples
2.3. Statistical Analysis
3. Results
3.1. Comparative Performance of Different Serological Assays for Detection of Recent Infections
3.2. Comparative Performance of Serological Assays at Different Times Post-Infection
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- John Hopkins University COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU). Available online: https://coronavirus.jhu.edu/map.html (accessed on 31 March 2023).
- Zhang, Y.; Huang, Z.; Zhu, J.; Li, C.; Fang, Z.; Chen, K.; Zhang, Y. An Updated Review of SARS-CoV-2 Detection Methods in the Context of a Novel Coronavirus Pandemic. Bioeng. Transl. Med. 2023, 8, e10356. [Google Scholar] [CrossRef] [PubMed]
- Alexopoulos, H.; Trougakos, I.P.; Dimopoulos, M.A.; Terpos, E. Clinical Usefulness of Testing for Severe Acute Respiratory Syndrome Coronavirus 2 Antibodies. Eur. J. Intern. Med. 2023, 107, 7–16. [Google Scholar] [CrossRef]
- Zedan, H.T.; Yassine, H.M.; Al-Sadeq, D.W.; Liu, N.; Qotba, H.; Nicolai, E.; Pieri, M.; Bernardini, S.; Abu-Raddad, L.J.; Nasrallah, G.K. Evaluation of commercially available fully automated and ELISA-based assays for detecting anti-SARS-CoV-2 neutralizing antibodies. Sci. Rep. 2022, 12, 19020. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food and Drug Administration. Independent Evaluations of COVID-19 Serological Tests. Available online: https://open.fda.gov/apis/device/covid19serology (accessed on 13 November 2023).
- World Health Organization. Final WHO SARS-CoV-2 Test Kit Evaluation Results. Available online: https://www.who.int/publications/m/item/final-who-sars-cov-2-serology-test-kit-evaluation-results (accessed on 13 November 2023).
- van den Beld, M.J.C.; Murk, J.-L.; Kluytmans, J.; Koopmans, M.P.G.; Reimerink, J.; van Loo, I.H.M.; Wegdam-Blans, M.C.A.; Zaaijer, H.; GeurtsvanKessel, C.; Reusken, C. Increasing the Efficiency of a National Laboratory Response to COVID-19; a Nation-Wide Multicenter Evaluation of 47 Commercial SARS-CoV-2 Immunoassays by 41 Laboratories. J. Clin. Microbiol. 2021, 59, e00767-21. [Google Scholar] [CrossRef] [PubMed]
- Harris, R.J.; Whitaker, H.J.; Andrews, N.J.; Aiano, F.; Amin-Chowdhury, Z.; Flood, J.; Borrow, R.; Linley, E.; Ahmad, S.; Stapley, L.; et al. Serological Surveillance of SARS-CoV-2: Six-Month Trends and Antibody Response in a Cohort of Public Health Workers. J. Infect. 2021, 82, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Gallais, F.; Gantner, P.; Bruel, T.; Velay, A.; Planas, D.; Wendling, M.J.; Bayer, S.; Solis, M.; Laugel, E.; Reix, N.; et al. Evolution of Antibody Responses up to 13 Months after SARS-CoV-2 Infection and Risk of Reinfection. EBioMedicine 2021, 71, 103561. [Google Scholar] [CrossRef]
- Jugwanth, S.; Gededzha, M.P.; Mampeule, N.; Zwane, N.; David, A.; Burgers, W.A.; Blackburn, J.M.; Grove, J.S.; George, J.A.; Sanne, I.; et al. Performance of the Abbott SARS-CoV-2 IgG Serological Assay in South African 2 Patients. PLoS ONE 2022, 17, e0262442. [Google Scholar] [CrossRef]
- Schallier, A.; De Baets, S.; De Bruyne, D.; Dauwe, K.; Herpol, M.; Couck, P. Assay Dependence of Long-Term Kinetics of SARS-CoV-2 Antibodies. Diagn. Microbiol. Infect. Dis. 2021, 100, 115403. [Google Scholar] [CrossRef]
- Méndez-Echevarría, A.; Sainz, T.; Falces-Romero, I.; de Felipe, B.; Escolano, L.; Alcolea, S.; Pertiñez, L.; Neth, O.; Calvo, C. Long-Term Persistence of Anti-SARS-Cov-2 Antibodies in a Pediatric Population. Pathogens 2021, 10, 700. [Google Scholar] [CrossRef]
- Perez-Saez, J.; Zaballa, M.E.; Yerly, S.; Andrey, D.O.; Meyer, B.; Eckerle, I.; Balavoine, J.F.; Chappuis, F.; Pittet, D.; Trono, D.; et al. Persistence of Anti-SARS-CoV-2 Antibodies: Immunoassay Heterogeneity and Implications for Serosurveillance. Clin. Microbiol. Infect. 2021, 27, 1695.e7–1695.e12. [Google Scholar] [CrossRef]
- Hønge, B.L.; Hindhede, L.; Kaspersen, K.A.; Harritshøj, L.H.; Mikkelsen, S.; Holm, D.K.; Nilsson, A.C.; Sækmose, S.G.; Sørensen, E.; Aagaard, B.; et al. Long-Term Detection of SARS-CoV-2 Antibodies after Infection and Risk of Re-Infection. Int. J. Infect. Dis. 2022, 116, 289–292. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Xu, K.; Li, C.; Zhou, L.; Kong, X.; Peng, J.; Zhu, F.; Bao, C.; Jin, H.; Gao, Q.; et al. Long-Term Kinetics of SARS-CoV-2 Antibodies and Impact of Inactivated Vaccine on SARS-CoV-2 Antibodies Based on a COVID-19 Patients Cohort. Front. Immunol. 2022, 13, 829665. [Google Scholar] [CrossRef] [PubMed]
- Favresse, J.; Eucher, C.; Elsen, M.; Gillot, C.; Van Eeckhoudt, S.; Dogné, J.M.; Douxfils, J. Persistence of Anti-SARS-Cov-2 Antibodies Depends on the Analytical Kit: A Report for up to 10 Months after Infection. Microorganisms 2021, 9, 556. [Google Scholar] [CrossRef] [PubMed]
- Amanat, F.; Stadlbauer, D.; Strohmeier, S.; Nguyen, T.H.O.; Chromikova, V.; McMahon, M.; Jiang, K.; Arunkumar, G.A.; Jurczyszak, D.; Polanco, J.; et al. A Serological Assay to Detect SARS-CoV-2 Seroconversion in Humans. Nat. Med. 2020, 26, 1033–1036. [Google Scholar] [CrossRef] [PubMed]
- Williams, L.; Jurado, S.; Llorente, F.; Romualdo, A.; González, S.; Saconne, A.; Bronchalo, I.; Martínez-Cortes, M.; Pérez-Gómez, B.; Ponz, F.; et al. The C-Terminal Half of SARS-CoV-2 Nucleocapsid Protein, Industrially Produced in Plants, Is Valid as Antigen in COVID-19 Serological Tests. Front. Plant Sci. 2021, 12, 699665. [Google Scholar] [CrossRef]
- Martínez-Cortés, M.; León-Dominguez, C.M.; Fernandez-Pinero, J.; Rodriguez, M.; Almonacid, M.; Ferrari, M.J.; Romero, R.; Antona, A.; Rivas, M.D.; de La Fuente, M.; et al. SARS-CoV-2 Surveillance Strategy in Essential Workers of the Madrid City Council during the First Epidemic Wave in Spain, March–July 2020. Occup. Environ. Med. 2021, 79, 295–303. [Google Scholar] [CrossRef]
- Hoste, A.C.R.; Venteo, A.; Fresco-Taboada, A.; Tapia, I.; Monedero, A.; López, L.; Jebbink, M.F.; Pérez-Ramírez, E.; Jimenez-Clavero, M.A.; Almonacid, M.; et al. Two Serological Approaches for Detection of Antibodies to SARS-CoV-2 in Different Scenarios: A Screening Tool and a Point-of-Care Test. Diagn. Microbiol. Infect. Dis. 2020, 98, 115167. [Google Scholar] [CrossRef]
- Landis, J.R.; Koch, G.G. The Measurement of Observer Agreement for Categorical Data. Biometrics 1977, 33, 159. [Google Scholar] [CrossRef]
- Dortet, L.; Ronat, J.B.; Vauloup-Fellous, C.; Langendorf, C.; Mendels, D.A.; Emeraud, C.; Oueslati, S.; Girlich, D.; Chauvin, A.; Afdjei, A.; et al. Evaluating 10 Commercially Available SARS-CoV-2 Rapid Serological Tests by Use of the STARD (Standards for Reporting of Diagnostic Accuracy Studies) Method. J. Clin. Microbiol. 2021, 59, e02342-20. [Google Scholar] [CrossRef]
- Parai, D.; Dash, G.C.; Choudhary, H.R.; Peter, A.; Rout, U.K.; Nanda, R.R.; Kshatri, J.S.; Kanungo, S.; Pati, S.; Bhattacharya, D. Diagnostic Accuracy Comparison of Three Fully Automated Chemiluminescent Immunoassay Platforms for the Detection of SARS-CoV-2 Antibodies. J. Virol. Methods 2021, 292, 114121. [Google Scholar] [CrossRef]
- Gong, F.; Wei, H.X.; Li, Q.; Liu, L.; Li, B. Evaluation and Comparison of Serological Methods for COVID-19 Diagnosis. Front. Mol. Biosci. 2021, 8, 682405. [Google Scholar] [CrossRef] [PubMed]
- Mylemans, M.; Van Honacker, E.; Nevejan, L.; Van Den Bremt, S.; Hofman, L.; Poels, J.; Cattoir, L.; Boel, A.; Hoovels, L. Van Diagnostic and Analytical Performance Evaluation of Ten Commercial Assays for Detecting SARS-CoV-2 Humoral Immune Response. J. Immunol. Methods 2021, 493, 113043. [Google Scholar] [CrossRef] [PubMed]
- Stefanelli, P.; Bella, A.; Fedele, G.; Pancheri, S.; Leone, P.; Vacca, P.; Neri, A.; Carannante, A.; Fazio, C.; Benedetti, E.; et al. Prevalence of SARS-CoV-2 IgG Antibodies in an Area of Northeastern Italy with a High Incidence of COVID-19 Cases: A Population-Based Study. Clin. Microbiol. Infect. 2021, 27, 633.e1–633.e7. [Google Scholar] [CrossRef]
- Pollán, M.; Pérez-Gómez, B.; Pastor-Barriuso, R.; Oteo, J.; Hernán, M.A.; Pérez-Olmeda, M.; Sanmartín, J.L.; Fernández-García, A.; Cruz, I.; Fernández de Larrea, N.; et al. Prevalence of SARS-CoV-2 in Spain (ENE-COVID): A Nationwide, Population-Based Seroepidemiological Study. Lancet 2020, 396, 535–544. [Google Scholar] [CrossRef] [PubMed]
- Couture, A.; Casey Lyons, B.; Mehrotra, M.L.; Sosa, L.; Ezike, N.; Ahmed, F.S.; Brown, C.M.; Yendell, S.; Azzam, I.A.; Katić, B.J.; et al. Severe Acute Respiratory Syndrome Coronavirus 2 Seroprevalence and Reported Coronavirus Disease 2019 Cases in US Children, August 2020–May 2021. Open Forum Infect. Dis. 2022, 9, ofac044. [Google Scholar] [CrossRef]
- Owusu-Boaitey, N.; Russell, T.W.; Meyerowitz-Katz, G.; Levin, A.T.; Herrera-Esposito, D. Dynamics of SARS-CoV-2 Seroassay Sensitivity: A Systematic Review and Modelling Study. Eurosurveillance 2023, 28, 2200809. [Google Scholar] [CrossRef]
- López, M.G.; Chiner-Oms, Á.; García de Viedma, D.; Ruiz-Rodríguez, P.; Bracho, M.A.; Cancino-Muñoz, I.; D’Auria, G.; de Marco, G.; García-González, N.; Goig, G.A.; et al. The first wave of the COVID-19 epidemic in Spain was associated with early introductions and fast spread of a dominating genetic variant. Nat. Genet. 2021, 53, 1405–1414. [Google Scholar] [CrossRef]
N | IgM | IgG | Total Igs 1 | Sensitivity % (95% CI) | Specificity % (95% CI) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Positive | Negative | Positive | Borderline/Doubtful | Negative | Positive | Borderline/Doubtful | Negative | ||||
ELISA | |||||||||||
Eurofins | 668 | - | - | - | - | - | 194 | 8 | 466 | - | - |
IDvet | 414 | - | - | 199 | 8 | 207 | - | - | - | 97.9 (94.8–99.4) | 95.9 (92.4–98.1) |
MyBiosource | 171 | - | - | - | - | - | 90 | - | 81 | 97.8 (92.1–99.7) | 96.7 (90.6–99.3) |
Mikrogen | 256 | - | - | 146 | 3 | 107 | - | - | - | 99.3 (96.0–100) | 91.6 (85.1–95.9) |
BIO-RAD | 414 | - | - | - | - | - | 193 | 5 | 216 | 96.4 (92.7–98.5) | 97.3 (94.2–99.0) |
In-house NPC-2 (cut-off 4) 2 | 416 | - | - | 194 | - | 222 | - | - | - | 96.4 (92.7–98.5) | 96.4 (93.1–98.4) |
In-house NPC-2 (cut-off 2.5) * | 416 | - | - | 210 | - | 206 | - | - | - | 99.0 (96.3–99.9) | 91.9 (87.5–95.2) |
In-house RBD (cut-off 3.5) | 415 | - | - | 199 | - | 216 | - | - | - | 95.4 (91.4–97.9) | 93.7 (89.6–96.5) |
In-house RBD (cut-off 2.5) * | 415 | - | - | 212 | - | 203 | - | - | - | 98.5 (95.6–99.7) | 90.5 (85.9–94.0) |
CLIA | |||||||||||
Roche | 404 | - | - | - | - | - | 193 | 5 | 216 | 99.0 (96.3–100) | 96.3 (92.7–98.4) |
Abbott | 404 | - | - | 178 | - | 226 | - | - | 89.5 (84.3–93.5) | 96.7 (93.4–99.0) | |
LFA | |||||||||||
T&D | 668 | 65 | 603 | 199 | - | 469 | 222 | - | 446 | 94.8 (90.7–97.5) | 92.0 (89.2–94.3) |
Tianjin (batch A) | 257 | 16 | 241 | 133 | - | 124 | 134 | - | 123 | 89.8 (83.4–94.3) | 90.8 (84.2–95.3) |
Tianjin (batch B) | 167 | 96 | 71 | 121 | - | 46 | 125 | - | 42 | 99.1 (95.2–100) | 75.9 (62.4–86.5) |
BIO-RAD | 0.91 | ||||||||||
MyBiosource | 0.92 | 0.97 | |||||||||
Mikrogen | 0.86 | 0.87 | 0.92 | ||||||||
IDvet | 0.90 | 0.88 | 0.86 | 0.87 | |||||||
RBD | 0.87 | 0.87 | 0.89 | 0.88 | 0.91 | ||||||
NPC-2 | 0.93 | 0.90 | 0.87 | 0.88 | 0.95 | 0.87 | |||||
Roche | 0.92 | 0.92 | 0.94 | 0.90 | 0.94 | 0.92 | 0.91 | ||||
Abbott | 0.83 | 0.85 | 0.76 | 0.78 | 0.84 | 0.83 | 0.90 | 0.85 | |||
T&D | 0.79 | 0.80 | 0.78 | 0.78 | 0.83 | 0.78 | 0.82 | 0.82 | 0.76 | ||
Tianjin A | 0.75 | 0.78 | 0.82 | 0.76 | 0.75 | 0.79 | 0.81 | 0.79 | 0.76 | 0.78 | |
Tianjin B | 0.80 | 0.78 | 0.84 | 0.83 | 0.84 | 0.86 | 0.81 | 0.86 | 0.74 | 0.76 | 0.71 |
Eurofins | BIO-RAD | MyBiosource | Mikrogen | IDvet | RBD | NPC-2 | Roche | Abbott | T&D | Tianjin A |
Number of Seropositive Individuals/Number of Individuals Tested (%) (95% CI) | |||||
---|---|---|---|---|---|
Days Post-PCR Detection | |||||
<7 d | 7–14 d | 15–21 d | >21 d | All Sera | |
ELISAs | |||||
Eurofins | 53/56 (94.6) (85.1–98.9) | 21/22 (95.5) (77.2–99.9) | 19/20 (95.0) (75.1–99.9) | 12/14 (85.7) (57.2–98.2) | 86/93 (92.5) (85.1–96.9) |
IDvet | 53/56 (94.6) (85.1–98.9) | 21/22 (95.5) (77.2–99.9) | 18/20 (90.0) (81.5–100) | 12/14 (85.7) (57.2–98.2) | 85/93 (91.4) (83.8–96.2) |
MyBiosource | 24/28 (85.7) (67.3– 96.0) | 14/14 (100) (76.8–100) | 3/3 (100) (29.2–100) | 7/7 (100) (59.0–100) | 38/42 (90.5) (77.4–97.3) |
Mikrogen | 53/56 (94.6) (85.1–98.9) | 21/22 (95.5) (77.2–99.9) | 19/20 (95.0) (75.1–99.9) | 13/14 (92.9) (66.1–99.8) | 87/93 (93.5) (86.5–97.6) |
BIO-RAD | 52/56 (92.9) (82.7–98.0) | 22/22 (100) (84.6–100) | 19/20 (95.0) (75.1–99.9) | 13/14 (92.9) (66.1–99.8) | 87/93 (93.5) (86.5–97.6) |
In-house NPC-2 (cut-off 4) 1 | 53/56 (94.6) (85.1–98.9) | 20/22 (90.9) (70.8–98.9) | 18/20 (90.0) (81.5–100) | 12/14 (85.7) (57.2–98.2) | 84/93 (90.3) (82.4–95.5) |
In-house NPC-2 (cut-off 2.5) * | 53/56 (94.6) (85.4–98.9) | 21/22 (95.5) (77.2–99.9) | 20/20 (100) (83.2–100) | 12/14 (85.7) (57.2–98.2) | 87/93 (93.5) (86.5–97.6) |
In-house RBD (cut-off 3.5) | 51/56 (91.1) (80.4–97.0) | 20/22 (90.9) (70.8–98.9) | 20/20 (100) (83.2–100) | 14/14 (100) (76.8–100) | 87/93 (93.5) (86.5–97.6) |
In-house RBD (cut-off 2.5) * | 55/57 (96.5) (87.9–97.6) | 21/22 (95.5) (77.2–99.9) | 20/20 (100) (83.2–100) | 14/14 (100) (76.8–100) | 90/93 (96.8) (90.9–99.3) |
CLIA | |||||
Roche | 52/54 (96.3) (87.3–99.5) | 21/21 (100) (83.9–100) | 19/20 (95.0) (75.1–99.9) | 11/12 (91.7) (61.5–99.8) | 85/89 (95.5) (88.9–98.8) |
Abbott | 50/54 (92.6) (82.1–97.9) | 18/21 (85.7) (63.7–97.0) | 18/20 (90.0) (81.5–100) | 11/12 (91.7) (61.5–99.8) | 79/89 (88.8) (80.3–94.5) |
LFAs | |||||
T&D | 51/56 (91.1) (80.4–97.0) | 19/22 (86.4) (65.1–97.1) | 18/20 (90.0) (81.5–100) | 12/14 (85.7) (57.2–98.2) | 81/93 (87.1) (78.5–93.2) |
Tianjin (batch A) | 46/56 (82.1) (69.6–91.1) | 19/22 (86.4) (65.1–97.1) | 16/20 (80.0) (56.3–94.3) | 12/14 (85.7) (57.2–98.2) | 76/93 (81.7) (72.4–89.0) |
Tianjin (batch B) | 54/56 (96.4) (87.7–99.6) | 21/22 (95.5) (77.2–99.9) | 20/20 (100) (83.2–100) | 14/14 (100) (76.8–100) | 90/93 (96.8) (90.9–99.3) |
Number of Seropositive Samples (%) | |||
---|---|---|---|
April | June | November | |
Eurofins | 112 (97%) | 113 (98%) | 113 (98%) |
IDvet | 114 (99%) | 112 (97%) | 83 (72%) |
BIO-RAD | 109 (95%) | 113 (98%) | 107 (93%) |
In-house NPC-2 (cut-off 4) | 112 (97%) | 94 (82%) | 58 (50%) |
In-house NPC-2 (cut-off 2.5) * | 114 (99%) | 106 (92%) | 81 (70%) |
In-house RBD (cut-off 3.5) | 109 (95%) | 103 (90%) | 75 (65%) |
In-house RBD (cut-off 2.5) * | 113 (98%) | 108 (94%) | 92 (80%) |
Abbott | 106 (92%) | 100 (87%) | 50 (43%) |
Number of Seropositive Samples (%) | |||
---|---|---|---|
April | June | November | |
Eurofins | 52 (100%) | 51 (98%) | 51 (98%) |
IDvet | 52 (100%) | 51 (98%) | 40 (77%) |
BIO-RAD | 51 (98%) | 51 (98%) | 48 (98%) |
In-house NPC-2 (cut-off 4) | 52 (100%) | 46 (89%) | 28 (54%) |
In-house NPC-2 (cut-off 2.5) * | 52 (100%) | 50 (96%) | 41 (79%) |
In-house RBD (cut-off 3.5) | 49 (96%) | 49 (96%) | 41 (79%) |
In-house RBD (cut-off 2.5) * | 52 (100%) | 51 (98%) | 46 (89%) |
Abbott | 50 (96%) | 46 (88%) | 24 (46%) |
Number of Seropositive Samples (%) | |||
---|---|---|---|
April | June | ||
Batch A | IgM | 6 (12%) | 0 (0%) |
IgG | 46 (92%) | 33 (66%) | |
Total Igs | 46 (92%) | 33 (66%) | |
Batch B | IgM | 40 (80%) | 24 (48%) |
IgG | 50 (100%) | 50 (100%) | |
Total Igs | 50 (100%) | 50 (100%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Llorente, F.; Pérez-Ramírez, E.; Pérez-Olmeda, M.; Dafouz-Bustos, D.; Fernández-Pinero, J.; Martínez-Cortés, M.; Jiménez-Clavero, M.Á. The Detection of SARS-CoV-2 Antibodies in an Exposed Human Population Is Biased by the Immunoassay Used: Implications in Serosurveillance. Pathogens 2023, 12, 1360. https://doi.org/10.3390/pathogens12111360
Llorente F, Pérez-Ramírez E, Pérez-Olmeda M, Dafouz-Bustos D, Fernández-Pinero J, Martínez-Cortés M, Jiménez-Clavero MÁ. The Detection of SARS-CoV-2 Antibodies in an Exposed Human Population Is Biased by the Immunoassay Used: Implications in Serosurveillance. Pathogens. 2023; 12(11):1360. https://doi.org/10.3390/pathogens12111360
Chicago/Turabian StyleLlorente, Francisco, Elisa Pérez-Ramírez, Mayte Pérez-Olmeda, Desirée Dafouz-Bustos, Jovita Fernández-Pinero, Mercedes Martínez-Cortés, and Miguel Ángel Jiménez-Clavero. 2023. "The Detection of SARS-CoV-2 Antibodies in an Exposed Human Population Is Biased by the Immunoassay Used: Implications in Serosurveillance" Pathogens 12, no. 11: 1360. https://doi.org/10.3390/pathogens12111360
APA StyleLlorente, F., Pérez-Ramírez, E., Pérez-Olmeda, M., Dafouz-Bustos, D., Fernández-Pinero, J., Martínez-Cortés, M., & Jiménez-Clavero, M. Á. (2023). The Detection of SARS-CoV-2 Antibodies in an Exposed Human Population Is Biased by the Immunoassay Used: Implications in Serosurveillance. Pathogens, 12(11), 1360. https://doi.org/10.3390/pathogens12111360