Molecular Characterization of Methicillin-Resistant Staphylococci from the Dairy Value Chain in Two Indian States
Abstract
:1. Introduction
2. Results
2.1. Isolation of Bacteria
2.2. Antibiotic Susceptibility Testing of Isolates from Raw Milk
2.3. Molecular Characterization of Isolates from Raw Milk
2.4. SCCmec Typing
2.5. Epsilometer Test (E-Test)
2.6. Assessment of Pasteurized Milk Samples from Vendors
3. Discussion
4. Materials and Methods
4.1. Ethics Statement
4.2. Sample Collection
4.3. Isolation of Bacteria
4.4. Antibiotic Susceptibility Testing (AST)
4.5. Molecular Characterization
4.6. Staphylococcus Cassette Chromosome (SCCmec) Typing
4.7. Epsilometer Test (E-Test)
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rousham, E.K.; Unicomb, L.; Islam, M.A. Human, animal and environmental contributors to antibiotic resistance in low-resource settings: Integrating behavioural, epidemiological and One Health approaches. Proc. R. Soc. B Biol. Sci. 2018, 285, 20180332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Founou, L.L.; Founou, R.C.; Essack, S.Y. Antibiotic resistance in the food chain: A developing country-perspective. Front. Microbiol. 2016, 7, 1881. [Google Scholar] [CrossRef] [PubMed]
- Wall, B.A.; Mateus, A.L.P.; Marshall, L.; Pfeiffer, D.U.; Lubroth, J.; Ormel, H.J.; Otto, P.; Patriarchi, A. Drivers, Dynamics and Epidemiology of Antimicrobial Resistance in Animal Production; Food and Agriculture Organization of the United Nations: Roma, Italy, 2016; ISBN 9251094411. [Google Scholar]
- Oliver, S.P.; Murinda, S.E.; Jayarao, B.M. Impact of antibiotic use in adult dairy cows on antimicrobial resistance of veterinary and human pathogens: A comprehensive review. Foodborne Pathog. Dis. 2011, 8, 337–355. [Google Scholar] [CrossRef] [PubMed]
- Woolhouse, M.; Ward, M.; van Bunnik, B.; Farrar, J. Antimicrobial resistance in humans, livestock and the wider environment. Philos. Trans. R. Soc. B Biol. Sci. 2015, 370, 20140083. [Google Scholar] [CrossRef]
- Lees, P.; Pelligand, L.; Giraud, E.; Toutain, P. A history of antimicrobial drugs in animals: Evolution and revolution. J. Vet. Pharmacol. Ther. 2021, 44, 137–171. [Google Scholar] [CrossRef]
- Chauhan, A.S.; George, M.S.; Chatterjee, P.; Lindahl, J.; Grace, D.; Kakkar, M. The social biography of antibiotic use in smallholder dairy farms in India. Antimicrob. Resist. Infect. Control 2018, 7, 60. [Google Scholar] [CrossRef] [Green Version]
- Kirchhelle, C. Pharming animals: A global history of antibiotics in food production (1935–2017). Palgrave Commun. 2018, 4, 96. [Google Scholar] [CrossRef] [Green Version]
- Done, H.Y.; Venkatesan, A.K.; Halden, R.U. Does the Recent Growth of Aquaculture Create Antibiotic Resistance Threats Different from those Associated with Land Animal Production in Agriculture? AAPS J. 2015, 17, 513–524. [Google Scholar] [CrossRef] [Green Version]
- Gelband, H.; Molly Miller, P.; Pant, S.; Gandra, S.; Levinson, J.; Barter, D.; White, A.; Laxminarayan, R. The state of the world’s antibiotics 2015. Wound Health S. Afr. 2015, 8, 30–34. [Google Scholar]
- Van, T.T.H.; Nguyen, H.N.K.; Smooker, P.M.; Coloe, P.J. The antibiotic resistance characteristics of non-typhoidal Salmonella enterica isolated from food-producing animals, retail meat and humans in South East Asia. Int. J. Food Microbiol. 2012, 154, 98–106. [Google Scholar] [CrossRef]
- Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA 2015, 112, 5649–5654. [Google Scholar] [CrossRef] [Green Version]
- Alanis, A.J. Resistance to antibiotics: Are we in the post-antibiotic era? Arch. Med. Res. 2005, 36, 697–705. [Google Scholar] [CrossRef]
- WHO. WHO’s First Global Report on Antibiotic Resistance Reveals Serious, Worldwide Threat to Public Health; WHO South East Asia. 2014. Available online: http://www.who.int/mediacentre/news/releases/2014/amr-report/en/ (accessed on 5 September 2022).
- Aarestrup, F.M.; Wegener, H.C.; Collignon, P. Resistance in bacteria of the food chain: Epidemiology and control strategies. Expert Rev. Anti. Infect. Ther. 2008, 6, 733–750. [Google Scholar] [CrossRef]
- Kunadu, A.P.-H.; Holmes, M.; Miller, E.L.; Grant, A.J. Microbiological quality and antimicrobial resistance characterization of Salmonella spp. in fresh milk value chains in Ghana. Int. J. Food Microbiol. 2018, 277, 41–49. [Google Scholar] [CrossRef]
- Lekshmi, M.; Ammini, P.; Kumar, S.; Varela, M.F. The food production environment and the development of antimicrobial resistance in human pathogens of animal origin. Microorganisms 2017, 5, 11. [Google Scholar] [CrossRef]
- Pal, M.; Kerorsa, G.B.; Marami, L.M.; Kandi, V. Epidemiology, pathogenicity, animal infections, antibiotic resistance, public health significance, and economic impact of staphylococcus aureus: A comprehensive review. Am. J. Public Health Res. 2020, 8, 14–21. [Google Scholar]
- Gunther, J.; Esch, K.; Poschadel, N.; Petzl, W.; Zerbe, H.; Mitterhuemer, S.; Blum, H.; Seyfert, H.-M. Comparative kinetics of Escherichia coli-and Staphylococcus aureus-specific activation of key immune pathways in mammary epithelial cells demonstrates that S. aureus elicits a delayed response dominated by interleukin-6 (IL-6) but not by IL-1A or tumor ne. Infect. Immun. 2011, 79, 695–707. [Google Scholar] [CrossRef] [Green Version]
- Köck, R.; Schaumburg, F.; Mellmann, A.; Köksal, M.; Jurke, A.; Becker, K.; Friedrich, A.W. Livestock-Associated Methicillin-Resistant Staphylococcus aureus (MRSA) as Causes of Human Infection and Colonization in Germany. PLoS ONE 2013, 8, e55040. [Google Scholar] [CrossRef] [Green Version]
- Schaumburg, F.; Pauly, M.; Anoh, E.; Mossoun, A.; Wiersma, L.; Schubert, G.; Flammen, A.; Alabi, A.S.; Muyembe-Tamfum, J.J.; Grobusch, M.P.; et al. Staphylococcus aureus complex from animals and humans in three remote African regions. Clin. Microbiol. Infect. 2015, 21, 345.e1–345.e8. [Google Scholar] [CrossRef] [Green Version]
- Şanlier, N.; Gökcen, B.B.; Sezgin, A.C. Health benefits of fermented foods. Crit. Rev. Food Sci. Nutr. 2019, 59, 506–527. [Google Scholar] [CrossRef]
- Beyene, T.; Hayishe, H.; Gizaw, F.; Beyi, A.F.; Abunna, F.; Mammo, B.; Ayana, D.; Waktole, H.; Abdi, R.D. Prevalence and antimicrobial resistance profile of Staphylococcus in dairy farms, abattoir and humans in Addis Ababa, Ethiopia. BMC Res. Notes 2017, 10, 171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanderhaeghen, W.; Hermans, K.; Haesebrouck, F.; Butaye, P. Methicillin-resistant Staphylococcus aureus (MRSA) in food production animals. Epidemiol. Infect. 2010, 138, 606–625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holmes, M.A.; Zadoks, R.N. Methicillin resistant S. aureus in human and bovine mastitis. J. Mammary Gland Biol. Neoplasia 2011, 16, 373–382. [Google Scholar] [CrossRef] [PubMed]
- Preethirani, P.L.; Isloor, S.; Sundareshan, S.; Nuthanalakshmi, V.; Deepthikiran, K.; Sinha, A.Y.; Rathnamma, D.; Prabhu, K.N.; Sharada, R.; Mukkur, T.K.; et al. Isolation, biochemical and molecular identification, and in-vitro antimicrobial resistance patterns of bacteria isolated from bubaline subclinical mastitis in South India. PLoS ONE 2015, 10, e0142717. [Google Scholar] [CrossRef]
- Livermore, D.M. Antibiotic resistance in staphylococci. Int. J. Antimicrob. Agents 2000, 16, 3–10. [Google Scholar] [CrossRef]
- Chambers, H.F. Methicillin resistance in staphylococci: Molecular and biochemical basis and clinical implications. Clin. Microbiol. Rev. 1997, 10, 781–791. [Google Scholar] [CrossRef]
- Kondo, Y.; Ito, T.; Ma, X.X.; Watanabe, S.; Kreiswirth, B.N.; Etienne, J.; Hiramatsu, K. Combination of Multiplex PCRs for Staphylococcal Cassette Chromosome mec Type Assignment: Rapid Identification System for mec, ccr, and Major Differences in Junkyard Regions. Antimicrob. Agents Chemother. 2007, 51, 264–274. [Google Scholar] [CrossRef] [Green Version]
- Ito, T.; Katayama, Y.; Hiramatsu, K. Cloning and nucleotide sequence determination of the entire mec DNA of pre-methicillin-resistant Staphylococcus aureus N315. Antimicrob. Agents Chemother. 1999, 43, 1449–1458. [Google Scholar] [CrossRef] [Green Version]
- Smith, T.C.; Wardyn, S.E. Human infections with Staphylococcus aureus CC398. Curr. Environ. Health Rep. 2015, 2, 41–51. [Google Scholar] [CrossRef] [Green Version]
- Singh, M.; Sharma, A.; Mittal, D.; Charaya, G. Prevalence and characterization of coagulase-negative staphylococci associated with buffalo mastitis. Indian J. Comp. Microbiol. Immunol. Infect. Dis. 2014, 35, 67–72. [Google Scholar] [CrossRef]
- Vanderhaeghen, W.; Cerpentier, T.; Adriaensen, C.; Vicca, J.; Hermans, K.; Butaye, P. Methicillin-resistant Staphylococcus aureus (MRSA) ST398 associated with clinical and subclinical mastitis in Belgian cows. Vet. Microbiol. 2010, 144, 166–171. [Google Scholar] [CrossRef] [Green Version]
- El-Zamkan, M.A.; Mubarak, A.G.; Ali, A.O. Prevalence and phylogenetic relationship among methicillin-and vancomycin-resistant Staphylococci isolated from hospital’s dairy food, food handlers, and patients. J. Adv. Vet. Anim. Res. 2019, 6, 463. [Google Scholar] [CrossRef]
- Gopal, S.; Divya, K.C. Can methicillin-resistant Staphylococcus aureus prevalence from dairy cows in India act as potential risk for community-associated infections?: A review. Vet. World 2017, 10, 311–318. [Google Scholar] [CrossRef] [Green Version]
- Spohr, M.; Rau, J.; Friedrich, A.; Klittich, G.; Fetsch, A.; Guerra, B.; Hammerl, J.A.; Tenhagen, B. Methicillin-resistant Staphylococcus aureus (MRSA) in three dairy herds in southwest Germany. Zoonoses Public Health 2011, 58, 252–261. [Google Scholar] [CrossRef]
- Titouche, Y.; Akkou, M.; Houali, K.; Auvray, F.; Hennekinne, J.A. Role of milk and milk products in the spread of methicillin-resistant Staphylococcus aureus in the dairy production chain. J. Food Sci. 2022, 87, 3699–3723. [Google Scholar] [CrossRef]
- Alonso, V.P.; Queiroz, M.M.; Gualberto, M.L.; Nascimento, M.S. Klebsiella pneumonia carbapenemase (KPC), methicillin-resistant Staphylococcus aureus (MRSA), and vancomycin-resistant Enterococcus spp. (VRE)in the food production chain and biofilm formation on abiotic surfaces. Curr. Opin. Food Sci. 2019, 26, 79–86. [Google Scholar] [CrossRef]
- Mahanti, A.; Joardar, S.N.; Bandyopadhyay, S.; Banerjee, J.; Ghosh, S.; Batabyal, K.; Sar, T.K.; Dutta, T.K.; Samanta, I. Characterization of methicillin-resistant and enterotoxins producing Staphylococcus aureus in bovine milk in India. J. Agric. Food Res. 2020, 2, 100017. [Google Scholar] [CrossRef]
- Mirzaei, H.; Farhoudi, H.; Tavassoli, H.; Farajli, M.; Monadi, A. Presence and antimicrobial susceptibility of methicillin-resistant Staphylococcus aureus in raw and pasteurized milk and ice cream in Tabriz by culture and PCR techniques. Afr. J. Microbiol. Res. 2012, 6, 6224–6229. [Google Scholar] [CrossRef]
- Yehia, H.M.; Al-Masoud, A.H.; Alarjani, K.M.; Alamri, M.S. Prevalence of methicillin-resistant (mecA gene) and heat-resistant Staphylococcus aureus strains in pasteurized camel milk. J. Dairy Sci. 2020, 103, 5947–5963. [Google Scholar] [CrossRef]
- Aljahani, A.H.; Alarjani, K.M.; Hassan, Z.K.; Elkhadragy, M.F.; Ismail, E.A.; Al-Masoud, A.H.; Yehia, H.M. Molecular detection of methicillin heat-resistant Staphylococcus aureus strains in pasteurized camel milk in Saudi Arabia. Biosci. Rep. 2020, 40, BSR20193470. [Google Scholar] [CrossRef] [Green Version]
- Vandeplas, A.; Minten, B.; Swinnen, J. Multinationals vs. cooperatives: The income and efficiency effects of supply chain governance in India. J. Agric. Econ. 2013, 64, 217–244. [Google Scholar] [CrossRef]
- Birthal, P.S.; Chand, R.; Joshi, P.K.; Saxena, R.; Rajkhowa, P.; Khan, M.T.; Khan, M.A.; Chaudhary, K.R. Formal versus informal: Efficiency, inclusiveness and financing of dairy value chains in Indian Punjab. J. Rural Stud. 2017, 54, 288–303. [Google Scholar] [CrossRef]
- Mishra, P.K.; Dey, K. Governance of agricultural value chains: Coordination, control and safeguarding. J. Rural Stud. 2018, 64, 135–147. [Google Scholar] [CrossRef]
- Banerjee, A. Lessons learned studies: India. In Report of the Animal Production and Health Commission for Asia and the Pacific; Food and Agriculture Organization of the United Nations (FAO): New Delhi, India, 2007. [Google Scholar]
- IMARC Group. Understand the Competitive Structure and Identify Key Players in the Indian Dairy Market. 2016. Available online: https://www.imarcgroup.com/indian-dairy-market (accessed on 5 September 2022).
- Deka, R.P.; Bayan, B.; Baltenweck, I.; Grace, D. Mapping of Informal Dairy Value Chain Actors in Selected Districts of Assam; ILRI: Nairobi, Kenya, 2019. [Google Scholar]
- Sharma, S.; Sharma, D.K. Mapping of Milk Processing Units in Organized Sector: A Case Study for Haryana. Int. J. Environ. Agric. Res. 2020, 6, 1–6. [Google Scholar]
- Kumar, R.; Yadav, B.R.; Singh, R.S. Antibiotic resistance and pathogenicity factors in Staphylococcus aureus isolated from mastitic Sahiwal cattle. J. Biosci. 2011, 36, 175–188. [Google Scholar] [CrossRef]
- Hamid, S.; Bhat, M.A.; Mir, I.A.; Taku, A.; Badroo, G.A.; Nazki, S.; Malik, A. Phenotypic and genotypic characterization of methicillin-resistant Staphylococcus aureus from bovine mastitis. Vet. World 2017, 10, 363. [Google Scholar] [CrossRef] [Green Version]
- Daka, D.; Yihdego, D. Antibiotic-resistance Staphylococcus aureus isolated from cow’s milk in the Hawassa area, South Ethiopia. Ann. Clin. Microbiol. Antimicrob. 2012, 11, 26. [Google Scholar] [CrossRef] [Green Version]
- Sudhanthiramani, S.; Swetha, C.S.; Bharathy, S. Prevalence of antibiotic resistant Staphylococcus aureus from raw milk samples collected from the local vendors in the region of Tirupathi, India. Vet. World 2015, 8, 478–481. [Google Scholar] [CrossRef] [Green Version]
- Ektik, N.; Gökmen, M.; Çibik, R. The prevalence and antibiotic resistance of methicillin-resistant Staphylococcus aureus (MRSA) in milk and dairy products in Balikesir, Turkey. J. Hell. Vet. Med. Soc. 2017, 68, 613–620. [Google Scholar] [CrossRef]
- Lingathurai, S.; Vellathurai, P. Bacteriological quality and safety of raw cow milk in Madurai, South India. Bangladesh J. Sci. Ind. Res. 2013, 48, 109–114. [Google Scholar] [CrossRef]
- Sharma, G.; Leahy, E.; Deka, R.P.; Shome, B.R.; Bandyopadhyay, S.; Dey, T.K.; Goyal, N.K.; Lundkvist, Å.; Grace, D.; Lindahl, J.F. Antibiotic use, knowledge, and practices of milk vendors in India’ s informal dairy value chain. Front. Sustain. Food Syst. 2022, 6, 1058384. [Google Scholar] [CrossRef]
- Gereffi, G.; Lee, J. A global value chain approach to food safety and quality standards. In Global Health Diplomacy for Chronic Disease Prevention Working Paper Series; Duke University: Durham, NC, USA, 2009. [Google Scholar]
- Kiambi, S.; Onono, J.O.; Kang’ethe, E.; Aboge, G.O.; Murungi, M.K.; Muinde, P.; Akoko, J.; Momanyi, K.; Rushton, J.; Fèvre, E.M. Investigation of the governance structure of the Nairobi dairy value chain and its influence on food safety. Prev. Vet. Med. 2020, 179, 105009. [Google Scholar] [CrossRef]
- Cortimiglia, C.; Luini, M.; Bianchini, V.; Marzagalli, L.; Vezzoli, F.; Avisani, D.; Bertoletti, M.; Ianzano, A.; Franco, A.; Battisti, A. Prevalence of Staphylococcus aureus and of methicillin-resistant S. aureus clonal complexes in bulk tank milk from dairy cattle herds in Lombardy Region (Northern Italy). Epidemiol. Infect. 2016, 144, 3046–3051. [Google Scholar] [CrossRef] [Green Version]
- Dhanashekar, R. Milk-borne infections, an analysis of their potential effect on the milk industry. Germs 2012, 2, 101–109. [Google Scholar] [CrossRef]
- Mahato, S.; Mistry, H.U.; Chakraborty, S.; Sharma, P.; Saravanan, R.; Bhandari, V. Identification of variable traits among the methicillin resistant and sensitive coagulase negative staphylococci in milk samples from mastitic cows in India. Front. Microbiol. 2017, 8, 1446. [Google Scholar] [CrossRef] [Green Version]
- Schnitt, A.; Tenhagen, B.-A. Risk factors for the occurrence of methicillin-resistant Staphylococcus aureus in dairy herds: An update. Foodborne Pathog. Dis. 2020, 17, 585–596. [Google Scholar] [CrossRef] [Green Version]
- Pyörälä, S.; Taponen, S. Coagulase-negative staphylococci—Emerging mastitis pathogens. Vet. Microbiol. 2009, 134, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Huber, H.; Koller, S.; Giezendanner, N.; Stephan, R.; Zweifel, C. Prevalence and characteristics of meticillin-resistant Staphylococcus aureus in humans in contact with farm animals, in livestock, and in food of animal origin, Switzerland, 2009. Eurosurveillance 2010, 15, 19542. [Google Scholar] [CrossRef]
- Srednik, M.E.; Grieben, M.A.; Bentancor, A.; Gentilini, E.R. Molecular identification of coagulase-negative staphylococci isolated from bovine mastitis and detection of β-lactam resistance. J. Infect. Dev. Ctries. 2015, 9, 1022–1027. [Google Scholar] [CrossRef] [Green Version]
- Chajęcka-Wierzchowska, W.; Zadernowska, A.; Gajewska, J.S. epidermidis strains from artisanal cheese made from unpasteurized milk in Poland-Genetic characterization of antimicrobial resistance and virulence determinants. Int. J. Food Microbiol. 2019, 294, 55–59. [Google Scholar] [CrossRef]
- Rahman, B.; Ownagh, A.; Mardani, K.; Ardebili, F.F. Prevalence and molecular characterization of staphylococci isolated from sheep with subclinical mastitis in West-Azerbaijan province, Iran. Vet. Res. Forum 2016, 7, 155. [Google Scholar] [PubMed]
- Verma, H.; Rawat, S.; Sharma, N.; Jaiswal, V.; Singh, R.; Harshit, V. Prevalence, bacterial etiology and antibiotic susceptibility pattern of bovine mastitis in Meerut. J. Entomol. Zool. Stud. 2018, 6, 706–709. [Google Scholar]
- Wu, M.T.; Burnham, C.A.D.; Westblade, L.F.; Bard, J.D.; Lawhon, S.D.; Wallace, M.A.; Stanley, T.; Burd, E.; Hindler, J.; Humphries, R.M. Evaluation of Oxacillin and Cefoxitin Disk and MIC Breakpoints for Prediction of Methicillin Resistance in Human and Veterinary Isolates of Staphylococcus intermedius Group. J. Clin. Microbiol. 2016, 54, 535–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, G.; Kumar, P. Comparison of Different Phenotypic Methods Including E-Test, Cefoxitin and Oxacillin Disk Diffusion for Detection of Methicillin Resistant Staphylococcus aureus. J. Clin. Diagn. Res. 2022, 16, 30–32. [Google Scholar] [CrossRef]
- Breurec, S.; Fall, C.; Pouillot, R.; Boisier, P.; Brisse, S.; Diene-Sarr, F.; Djibo, S.; Etienne, J.; Fonkoua, M.C.; Perrier-Gros-Claude, J.D. Epidemiology of methicillin-susceptible Staphylococcus aureus lineages in five major African towns: High prevalence of Panton-Valentine leukocidin genes. Clin. Microbiol. Infect. 2011, 17, 633–639. [Google Scholar] [CrossRef]
- Shah, M.S.; Qureshi, S.; Kashoo, Z.; Farooq, S.; Wani, S.A.; Hussain, M.I.; Banday, M.S.; Khan, A.A.; Gull, B.; Habib, A. Methicillin resistance genes and in vitro biofilm formation among Staphylococcus aureus isolates from bovine mastitis in India. Comp. Immunol. Microbiol. Infect. Dis. 2019, 64, 117–124. [Google Scholar] [CrossRef]
- Liu, J.; Chen, D.; Peters, B.M.; Li, L.; Li, B.; Xu, Z.; Shirliff, M.E. Staphylococcal chromosomal cassettes mec (SCCmec): A mobile genetic element in methicillin-resistant Staphylococcus aureus. Microb. Pathog. 2016, 101, 56–67. [Google Scholar] [CrossRef]
- Deurenberg, R.H.; Stobberingh, E.E. The evolution of Staphylococcus aureus. Infect. Genet. Evol. 2008, 8, 747–763. [Google Scholar] [CrossRef]
- Grace, D. Review of Evidence on Antimicrobial Resistance and Animal Agriculture in Developing Countries; Evidence on Demand: Brighton, UK, 2015. [Google Scholar]
- Queenan, K.; Häsler, B.; Rushton, J. A One Health approach to antimicrobial resistance surveillance: Is there a business case for it? Int. J. Antimicrob. Agents 2016, 48, 422–427. [Google Scholar] [CrossRef] [Green Version]
- Rathore, G.; Lal, K.K.; Bhatia, R.; Jena, J.K. INFAAR—A research platform for accelerating laboratory-based surveillance of antimicrobial resistance in fisheries and aquaculture in India. Curr. Sci. 2020, 119, 1884–1885. [Google Scholar]
- Kumar, N.; Sharma, G.; Leahy, E.; Shome, B.R.; Bandyopadhyay, S.; Deka, R.P.; Shome, R.; Dey, T.K.; Lindahl, J.F. Understanding Antibiotic Usage on Small-Scale Dairy Farms in the Indian States of Assam and Haryana Using a Mixed-Methods Approach—Outcomes and Challenges. Antibiotics 2021, 10, 1124. [Google Scholar] [CrossRef]
- Lindahl, J.F.; Goyal Kumar, N.; Deka, R.P.; Shome, R.; Grace, D. Serological evidence of Brucella infections in dairy cattle in Haryana, India. Infect. Ecol. Epidemiol. 2018, 8, 1555445. [Google Scholar] [CrossRef]
- Naing, L.; Winn, T.; Rusli, B.N. Practical Issues in Calculating the Sample Size for Prevalence Studies. Arch. Orofac. Sci. 2006, 1, 9–14. [Google Scholar]
- CLSI Document M100-S25; Performance Standards for Antimicrobial Susceptibility Testing, Twenty-Fifth Informational Supplement; CLSI Supplement M100. Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2015; Volume 32, ISBN 1-56238-989-0.
- CLSI Document M100-S22; Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Second Informational Supplement. Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2012; Volume 32, ISBN 1562387855.
- Hudzicki, J. Kirby-Bauer Disk Diffusion Susceptibility Test Protocol Author Information. Am. Soc. Microbiol. 2012, 15, 55–63. [Google Scholar]
- Al-Talib, H.; Yean, C.Y.; Al-Khateeb, A.; Hassan, H.; Singh, K.K.B.; Al-Jashamy, K.; Ravichandran, M. A pentaplex PCR assay for the rapid detection of methicillin-resistant Staphylococcus aureus and Panton-Valentine Leucocidin. BMC Microbiol. 2009, 9, 113. [Google Scholar] [CrossRef] [Green Version]
- Shome, B.R.; Natesan, K.; Das Mitra, S.; Venugopal, N.; Mani, B.; Ganaie, F.; Shome, R.; Rahman, H. Development of Simplex-PCR assays for Accurate Identification of Nine Staphylococcal Species at Genus and Species Levels. J. Microbiol. Infect. Dis. 2018, 8, 120–127. [Google Scholar] [CrossRef]
- Cuny, C.; Wieler, L.H.; Witte, W. Livestock-Associated MRSA: The Impact on Humans. Antibiotics 2015, 4, 521–543. [Google Scholar] [CrossRef] [Green Version]
- Shome, B.R.; Das Mitra, S.; Bhuvana, M.; Krithiga, N.; Shome, R.; Velu, D.; Prabhudas, K. Multiplex PCR for the detection of five important Staphylococcus sp. in bovine subclinical mastitis milk. Indian J. Anim. Sci. 2012, 82, 9–14. [Google Scholar]
- CLSI M100-ED29: 2021; Performance Standards for Antimicrobial Susceptibility Testing, 30th Edition. CLSI: Wayne, PA, USA, 2020; Volume 40, ISBN 9781684400324.
Milk Source | Sample Type | Assam | Haryana | Total |
---|---|---|---|---|
Milk from dairy farmer | Raw milk | 43 | 126 | 169 |
Samples positive | 43 | 117 | 160 | |
Isolates | 47 | 117 | 164 | |
Milk from dairy vendor | Raw milk | 63 | 76 | 139 |
Samples positive | 63 | 76 | 139 | |
Isolates | 67 | 78 | 145 | |
Pasteurized milk | 0 | 20 | 20 | |
Samples positive | 0 | 20 | 20 | |
Isolates | 0 | 20 | 20 | |
Total samples | 106 | 222 | 328 | |
Total positive | 106 | 213 | 319 | |
Total isolates | 114 | 215 | 329 |
Antibiotics | Isolates in Milk from Haryana (n = 152) | Isolates in Milk from Assam (n = 110) | p-Value | ||||
Resistant % (CI #) | Intermediate % (CI #) | Sensitive % (CI #) | Resistant % (CI #) | Intermediate % (CI #) | Sensitive % (CI #) | ||
Oxacillin | 99 65.13 (57–73) | 0 | 53 34.87 (27–43) | 76 69.09 (60–78) | 0 | 34 30.91 (22–40) | 0.510 |
Cefoxitin | 62 40.79 (33–49) | 5 3.29 (1–8) | 85 55.92 (48–64) | 28 25.45 (18–35) | 0 | 82 74.55 (65–82) | 0.002 |
Antibiotics | Isolates in Milk from Farmer (n = 117) | Isolates in Milk from Vendor (n = 145) | p-Value | ||||
Resistant % (CI #) | Intermediate % (CI #) | Sensitive % (CI #) | Resistant % (CI #) | Intermediate % (CI #) | Sensitive % (CI #) | ||
Oxacillin | 92 78.63 (70–86) | 0 | 25 21.37 (14–30) | 83 57.24 (49–65) | 0 | 62 42.76 (35–51) | <0.001 |
Cefoxitin | 44 37.61 (29–47) | 4 3.42 (0.9–9) | 69 58.97 (50–68) | 46 31.72 (24–40) | 1 0.69 (0.01–4) | 98 67.59 (59–75) | 0.163 |
Phenotypic Methicillin-Resistance | Isolates in Milk from Haryana State (n = 152) | Isolates in Milk from Assam State (n = 110) |
---|---|---|
Resistant % (CI #) | Resistant % (CI #) | |
Resistant to at least one antibiotic | 106 69.74 (62–80) | 79 71.82 (62–80) |
Resistant to both oxacillin and cefoxitin | 53 34.87 (27–43) | 25 22.73 (15–32) |
Phenotypic methicillin-resistance | Isolates in milk from farmer (n = 117) | Isolates in milk from vendor (n = 145) |
Resistant % (CI #) | Resistant % (CI #) | |
Resistant to at least one antibiotic | 94 80.34 (72–87) | 91 62.76 (54–71) |
Resistant to both oxacillin and cefoxitin | 42 35.90 (27–45) | 36 24.83 (18–33) |
Milk Source | Staphylococci % (CI #) | p-Value | mecA Gene % (CI #) | p-Value | mecC Gene % (CI #) | p-Value | SCCmec Type V & % (CI #) | p-Value |
---|---|---|---|---|---|---|---|---|
Milk from Haryana (n = 152) | 105 69.08 (61–76) | 0.406 | 9 5.92 (3–10) | 0.210 | 2 1.32 (0.1–7) | 0.837 | 3/9 33.33 (7–70) | 0.545 |
Milk from Assam (n = 110) | 82 74.55 (65–82) | 2 1.82 (0.2–6) | 0 | 2/2, 100 (15–100) | ||||
Milk from farmer (n = 117) | 74 63.25 (54–72) | 0.013 | 4 3.42 (0.9–8) | <0.001 | 2 1.71 (0.2–6) | <0.001 | 1/4, 25.00 (0.6–81) | 0.697 |
Milk from vendor (n = 145) | 113 77.93 (70–84) | 7 4.83 (2–10) | 0 | 4/7, 57.14 (18–90) |
Methicillin-Resistance by Disc Diffusion Test | Staphylococci in Milk from Haryana State (n = 105) | Staphylococci in Milk from Assam State (n = 82) | p-Value |
---|---|---|---|
Resistant % (CI #) | Resistant % (CI #) | ||
Oxacillin | 72 68.57 (59–77) | 60 73.17 (62–82) | 0.521 |
Cefoxitin | 41 39.05 (30–49) | 12 14.63 (7–24) | <0.001 |
Methicillin Resistance by Disc Diffusion Test | Staphylococci with mecA Gene (n = 11) | Staphylococci with mecC Gene (n = 2) |
---|---|---|
% (CI #) | % (CI #) | |
Oxacillin | 10 90.91 (59–100) | 2 100 (15–100) |
Cefoxitin | 8 72.73 (39–94) | 0 |
Resistance to both oxacillin and cefoxitin | 4 36.36 (21–73) | 0 |
Genotypically Confirmed Methicillin-Resistant Bacteria at Species Level | Staphylococci in Milk from Haryana (n = 11) | Staphylococci in Milk from Assam (n = 2) | Staphylococci in Milk from Farmer (n = 6) | Staphylococci in Milk from Vendor (n = 7) |
---|---|---|---|---|
% (CI #) | % (CI #) | % (CI #) | % (CI #) | |
Staphylococcus aureus (mecA) | 3 27.27 (6–61) | 0 | 0 | 3 42.86 (9–81) |
Staphylococcus epidermidis (mecA) | 4 36.36 (10–69) | 2 100 (15–100) | 3 50 (11–88) | 3 42.86 (9–81) |
Staphylococcus sciuri (mecA) | 1 9.09 (0.2–41) | 0 | 1 16.67 (0.4–64) | 0 |
Staphylococcus arlettae (mecA) | 1 9.09 (0.2–41) | 0 | 0 | 1 14.29 (0.3–57) |
Staphylococcus pseudoxylosis (mecC) | 2 18.18 (2–51) | 0 | 2 33.33 (4–77) | 0 |
Milk Type, Source | Methicillin Resistance | Disc Diffusion Test | E-Test (MIC Value) # | ||
---|---|---|---|---|---|
mecA/mecC Genes (n = 13) | Oxacillin | Cefoxitin | Oxacillin | Cefoxitin | |
Raw milk (Farmer) | mecA | R | R | R (3) | - |
Raw milk (Farmer) | mecA | R | R | R (6) | - |
Raw milk (Farmer) | mecA | NR | R | R (1) | - |
Raw milk (Farmer) | mecA | R | NR | R (6) | - |
Raw milk (Farmer) | mecC | R | NR | R (1) | - |
Raw milk (Farmer) | mecC | R | NR | R (0.75) | - |
Raw milk (Vendor) | mecA | R | R | - | R (6) |
Raw milk (Vendor) | mecA | R | R | - | R (16) |
Raw milk (Vendor) | mecA | R | R | - | R (6) |
Raw milk (Vendor) | mecA | R | NR | - | R (8) |
Raw milk (Vendor) | mecA | R | R | - | R (24) |
Raw milk (Vendor) | mecA | R | R | - | R (12) |
Raw milk (Vendor) | mecA | R | R | - | R (50) |
Identification | Gene | Sequence (5’-3’) | Annealing Temp (°C) | Amplicon Size (bp) | Remarks | Refs. |
---|---|---|---|---|---|---|
Staphylococcus spp. Methicillin resistance | 16S rRNA mecA | GTGATCGGCCACACTGGA CAACTTAATGATGGCAACTAAGC ACGAGTAGATGCTCAATATAA CTTAGTTCTTTAGCGATTGC | 60 | 842 | Duplex PCR | [84,85] |
Methicillin resistance | mecC | GCTCCTAATGCTAATGCA TAAGCAATAATGACTACC | 56 | 304 | Uniplex PCR | [86] |
S. aureus | 23S rRNA | AGCGAGTCTGAATAGGGCGTTT CCCATCACAGCTCAGCCTTAAC | 56 | 894 | Multiplex PCR | [87] |
S. chromogenes | Soda | GCGTACCAGAAGATAAACAAACTC CATTATTTACAACGAGCCATGC | 58 | 222 | ||
S. haemolyticus | Soda | CAAATTAAATTCTGCAGTTGAGG GGCCTCTTATAGAGACCACATGTTA | 58 | 531 | ||
S. epidermidis | Rdr | AAGAGCGTGGAGAAAAGTATCAAG TCGATACCATCAAAAAGTTGG | 56 | 130 | ||
S. sciuri | Gap | GATTCCGCGTAAACGGTAGAG CATCATTTAATACTTTAGCCATTG | 56 | 306 |
PCR | Gene | Primer Designation | Sequence (5’-3’) | Annealing Temp (°C) | Amplicon Size (bp) | Remarks, Primer Pair | Ref. |
---|---|---|---|---|---|---|---|
mec complex typing | mecA | mA7 | ATATACCAAACCCGACAACTACA | 60 | [29] | ||
mecI | mI6 | CATAACTTCCCATTCTGCAGATG | 1963 | mA7-mI6 (class Amec) | |||
IS1272 | IS7 | ATGCTTAATGATAGCATCCGAATG | 2827 | mA7-IS7 (class Bmec) | |||
IS431 | IS2(iS-2) | TGAGGTTATTCAGATATTTCGATGT | 804 | mA7-IS2(iS-2) (class Cmec) | |||
ccr complex typing | mecA | mA1 mA2 | TGCTATCCACCCTCAAACAGG AACGTTGTAACCACCCCAAGA | 57 | 286 | mA1-mA2 | |
ccrA1 | α1 | AACCTATATCATCAATCAGTACGT | 695 | α1-βc | |||
ccrA2 | α2 | TAAAGGCATCAATGCACAAACACT | 937 | α2-βc | |||
ccrA3 | α3 | AGCTCAAAAGCAAGCAATAGAAT | 1791 | α3-βc | |||
ccrB1, ccrB2, ccrB3 | Βc | ATTGCCTTGATAATAGCCTTCT | |||||
ccrA4 | α4.2 | GTATCAATGCACCAGAACTT | 1287 | α4.2-β4.2 | |||
ccr B4 | β4.2 | TTGCGACTCTCTTGGCGTTT | |||||
ccrC | γF | CGTCTATTACAAGATGTTAAGGATAAT | 518 | γF-γR | |||
γR | CCTTTATAGACTGGATTATTCAAAATAT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dey, T.K.; Shome, B.R.; Bandyopadhyay, S.; Goyal, N.K.; Lundkvist, Å.; Deka, R.P.; Shome, R.; Venugopal, N.; Grace, D.; Sharma, G.; et al. Molecular Characterization of Methicillin-Resistant Staphylococci from the Dairy Value Chain in Two Indian States. Pathogens 2023, 12, 344. https://doi.org/10.3390/pathogens12020344
Dey TK, Shome BR, Bandyopadhyay S, Goyal NK, Lundkvist Å, Deka RP, Shome R, Venugopal N, Grace D, Sharma G, et al. Molecular Characterization of Methicillin-Resistant Staphylococci from the Dairy Value Chain in Two Indian States. Pathogens. 2023; 12(2):344. https://doi.org/10.3390/pathogens12020344
Chicago/Turabian StyleDey, Tushar K., Bibek R. Shome, Samiran Bandyopadhyay, Naresh Kumar Goyal, Åke Lundkvist, Ram P. Deka, Rajeswari Shome, Nimita Venugopal, Delia Grace, Garima Sharma, and et al. 2023. "Molecular Characterization of Methicillin-Resistant Staphylococci from the Dairy Value Chain in Two Indian States" Pathogens 12, no. 2: 344. https://doi.org/10.3390/pathogens12020344
APA StyleDey, T. K., Shome, B. R., Bandyopadhyay, S., Goyal, N. K., Lundkvist, Å., Deka, R. P., Shome, R., Venugopal, N., Grace, D., Sharma, G., Rahman, H., & Lindahl, J. F. (2023). Molecular Characterization of Methicillin-Resistant Staphylococci from the Dairy Value Chain in Two Indian States. Pathogens, 12(2), 344. https://doi.org/10.3390/pathogens12020344