Meta-Analysis of the Effects of Insect Pathogens: Implications for Plant Reproduction
Abstract
:1. Introduction
2. Methods
2.1. Literature Search and Data Collection
- (1)
- Insect species must belong to an insect order with known species that are herbivores or pollinators.
- (2)
- The article contained quantitative data on the effects of pathogens, specifically sample size, mean, and some measure of variability (e.g., standard deviation or standard error) on insect behavior, demography, physiology, or morphology (see Table 1). This data needed to be collected for both uninfected and infected insects. Infected insects could be exposed to any dose of the pathogen. Observational studies were included if they measured traits of both naturally infected and uninfected insects.
- (3)
- Only pathogens for which insects are the primary host were considered. Plant or vertebrate diseases for which insects act as the disease vector were excluded.
- (4)
- If multiple pathogen species were studied, data must have been collected on each pathogen species separately. Coinfection data were excluded.
Variable Name | Description | Additional Details or Examples |
---|---|---|
(1) insect taxonomy | Taxonomy of the infected insect, including insect order and scientific species name. | e.g., Hymenoptera, Bombus sonorus |
(2) pathogen taxonomy | Taxonomy of the pathogen, including pathogen group and scientific species name. | Groups: bacteria, fungus, virus, multicellular parasite (e.g., nematodes, trematodes, and mites) |
(3) host function | The functional group of the insect: pollinator, herbivore, or multi-function. | Multi-function insects are insects that act as herbivores or pollinators depending on their life stage. For example, many Lepidoptera can be herbivores as larvae and pollinators as adults. |
(4) infected stage | The life stage at which the infection/transmission occurs in the insect: larva, pupa, or adult. | We group infection/transmission at the egg stage with larval stage. |
(5) trait category and description | Effect of the pathogen on the insect. The pathogen could have demographic, physiological, morphological, or behavioral effects. | Examples for each trait category: Demographic: fecundity and mortality Physiological: growth or metabolic rate Morphological: body size, proportions, or deformities Behavioral: foraging rate or flight endurance |
(6) insect stage data were collected | The life stage the trait was measured in. | Larva, pupa, or adult |
(7) study type and location | The type of study and the location where the study was conducted. | Type of study: manipulative or observationalStudy location: field or laboratory |
(8) pathogen treatment | Pathogen treatment was used as a categorical variable and based on the doses of the pathogen treatment present in the study. | Pathogen treatment: uninfected or infected. For experiments with multiple doses, the highest dose was used. |
2.2. Statistical Analyses
2.2.1. Overview and Meta-Analytic Model
2.2.2. Exploring Bias in Our Dataset
3. Results
3.1. Literature Survey
3.2. Effects of Pathogen Identity and Insect Order and Function
3.3. Effects by Trait Type and Life Stage of Observed Traits and Pathogen Exposure
3.4. Effects by Study Type and Setting
4. Discussion
4.1. Taxonomic Gaps in Current Insect–Pathogen Literature
4.2. Predicting Effects of Herbivore and Pollinator Pathogens on Pollination
5. Future Directions and Recommendations
5.1. Targeted Studies of Pathogen–Insect–Plant Interactions
5.2. Greater Communication between Disease and Pollination Ecologists
5.3. Expanded Combinations of Insect–Pathogen Pairs
5.4. Increased Use of Manipulative Field Experiments
5.5. Consider Environmental and Evolutionary Context
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fuxa, J.R.; Tanada, Y. Epizootiology of Insect Diseases; John Wiley and Sons Inc.: Hoboken, NJ, USA, 1987. [Google Scholar]
- Anderson, R.M.; May, R.M. The Population Dynamics of Microparasites and Their Invertebrate Hosts. Philos. Trans. R. Soc. B Biol. Sci. 1981, 291, 451–524. [Google Scholar] [CrossRef]
- Dwyer, G.; Elkinton, J.S.; Buonaccorsi, J.P. Host Heterogeneity in Susceptibility and Disease Dynamics: Tests of a Mathematical Model. Am. Nat. 1997, 150, 685–707. [Google Scholar] [CrossRef] [Green Version]
- Hajek, A.E.; Delalibera, I. Fungal Pathogens as Classical Biological Control Agents against Arthropods. BioControl 2010, 55, 147–158. [Google Scholar] [CrossRef]
- Páez, D.J.; Fleming-Davies, A.E. Understanding the Evolutionary Ecology of Host-Pathogen Interactions Provides Insights into the Outcomes of Insect Pest Biocontrol. Viruses 2020, 12, 141. [Google Scholar] [CrossRef] [Green Version]
- Boots, M.; Mealor, M. Local Interactions Select for Lower Pathogen Infectivity. Science 2007, 315, 1284–1286. [Google Scholar] [CrossRef]
- Elderd, B.D.; Dushoff, J.; Dwyer, G. Host-Pathogen Interactions, Insect Outbreaks, and Natural Selection for Disease Resistance. Am. Nat. 2008, 172, 829–842. [Google Scholar] [CrossRef] [Green Version]
- Páez, D.J.; Dukic, V.; Dushoff, J.; Fleming-Davies, A.; Dwyer, G. Eco-Evolutionary Theory and Insect Outbreaks. Am. Nat. 2017, 189, 616–629. [Google Scholar] [CrossRef]
- Cory, J.S.; Hoover, K. Plant-Mediated Effects in Insect–Pathogen Interactions. Trends Ecol. Evol. 2006, 21, 278–286. [Google Scholar] [CrossRef]
- Elderd, B.D. Bottom-up Trait-Mediated Indirect Effects Decrease Pathogen Transmission in a Tritrophic System. Ecology 2019, 100, e02551. [Google Scholar] [CrossRef] [Green Version]
- Wisz, M.S.; Pottier, J.; Kissling, W.D.; Pellissier, L.; Lenoir, J.; Damgaard, C.F.; Dormann, C.F.; Forchhammer, M.C.; Grytnes, J.A.; Guisan, A.; et al. The Role of Biotic Interactions in Shaping Distributions and Realised Assemblages of Species: Implications for Species Distribution Modelling. Biol. Rev. 2013, 88, 15–30. [Google Scholar] [CrossRef] [Green Version]
- Godsoe, W.; Holland, N.J.; Cosner, C.; Kendall, B.E.; Brett, A.; Jankowski, J.; Holt, R.D. Interspecific Interactions and Range Limits: Contrasts among Interaction Types. Theor. Ecol. 2017, 10, 167–179. [Google Scholar] [CrossRef] [Green Version]
- Stephan, P.; Bramon Mora, B.; Alexander, J.M. Positive Species Interactions Shape Species’ Range Limits. Oikos 2021, 130, 1611–1625. [Google Scholar] [CrossRef]
- Mathis, K.A.; Bronstein, J.L. Our Current Understanding of Commensalism. Annu. Rev. Ecol. Evol. Syst. 2020, 51, 167–189. [Google Scholar] [CrossRef]
- Ollerton, J.; Winfree, R.; Tarrant, S. How Many Flowering Plants Are Pollinated by Animals? Oikos 2011, 120, 321–326. [Google Scholar] [CrossRef]
- Moreira, X.; Castagneyrol, B.; Abdala-Roberts, L.; Traveset, A. A Meta-Analysis of Herbivore Effects on Plant Attractiveness to Pollinators. Ecology 2019, 100, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Altizer, S.M.; Oberhauser, K.S. Effects of the Protozoan Parasite Ophryocystis Elektroscirrha on the Fitness of Monarch Butterflies (Danaus Plexippus). J. Invertebr. Pathol. 1999, 74, 76–88. [Google Scholar] [CrossRef] [Green Version]
- Bradley, C.A.; Altizer, S. Parasites Hinder Monarch Butterfly Flight: Implications for Disease Spread in Migratory Hosts. Ecol. Lett. 2005, 8, 290–300. [Google Scholar] [CrossRef]
- Myers, J.H.; Cory, J.S. Ecology and Evolution of Pathogens in Natural Populations of Lepidoptera. Evol. Appl. 2016, 9, 231–247. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Moracho, T.; Durand, T.; Lihoreau, M. The Gut Parasite Nosema Ceranae Impairs Olfactory Learning in Bumblebees. J. Exp. Biol. 2022, 225, jeb244340. [Google Scholar] [CrossRef]
- Gillespie, S.D.; Adler, L.S. Indirect Effects on Mutualisms: Parasitism of Bumble Bees and Pollination Service to Plants. Ecology 2013, 94, 454–464. [Google Scholar] [CrossRef]
- Koch, H.; Brown, M.J.; Stevenson, P.C. The Role of Disease in Bee Foraging Ecology. Curr. Opin. Insect Sci. 2017, 21, 60–67. [Google Scholar] [CrossRef] [Green Version]
- Tan, C.W.; Peiffer, M.L.; Ali, J.G.; Luthe, D.S.; Felton, G.W. Top-down Effects from Parasitoids May Mediate Plant Defence and Plant Fitness. Funct. Ecol. 2020, 34, 1767–1778. [Google Scholar] [CrossRef]
- Shikano, I.; Ericsson, J.D.; Cory, J.S.; Myers, J.H. Indirect Plant-Mediated Effects on Insect Immunity and Disease Resistance in a Tritrophic System. Basic Appl. Ecol. 2010, 11, 15–22. [Google Scholar] [CrossRef]
- Pan, Q.; Shikano, I.; Hoover, K.; Liu, T.X.; Felton, G.W. Pathogen-Mediated Tritrophic Interactions: Baculovirus-Challenged Caterpillars Induce Higher Plant Defenses than Healthy Caterpillars. J. Chem. Ecol. 2019, 45, 515–524. [Google Scholar] [CrossRef]
- Shepherd, R.F.; Bennett, D.D.; Dale, J.W.; Tunnock, S.; Dolph, R.E.; Thier, R.W. Evidence of Synchronized Cycles in Outbreak Patterns of Douglas-Fir Tussock Moth, Orgyia Pseudotsugata (McDunnough)(Lepidoptera: Lymantriidae). Mem. Entomol. Soc. Can. 1988, 120, 107–121. [Google Scholar] [CrossRef]
- Ferguson, J.A.; Northfield, T.D.; Lach, L. Honey Bee (Apis mellifera) Pollen Foraging Reflects Benefits Dependent on Individual Infection Status. Microb. Ecol. 2018, 76, 482–491. [Google Scholar] [CrossRef]
- Rothman, L.D. Immediate and Delayed Effects of a Viral Pathogen and Density on Tent Caterpillar Performance. Ecology 1997, 78, 1481–1493. [Google Scholar] [CrossRef]
- Gupta, R.K.; Amin, M.; Bali, K.; Monobrullah, M.; Jasrotia, P. Vertical Transmission of Sublethal Granulovirus Infection in the Tobacco Caterpillar Spodoptera Litura. Phytoparasitica 2010, 38, 209–216. [Google Scholar] [CrossRef]
- Sood, P.; Mehta, P.K.; Bhandari, K.; Prabhakar, C.S. Transmission and Effect of Sublethal Infection of Granulosis Virus (PbGV) on Pieris Brassicae Linn. (Pieridae: Lepidoptera). J. Appl. Entomol. 2010, 134, 774–780. [Google Scholar] [CrossRef]
- Karron, J.D.; Mitchell, R.J.; Bell, J.M. Multiple Pollinator Visits to Mimulus Ringens (Phrymaceae) Flowers Increase Mate Number and Seed Set within Fruits. Am. J. Bot. 2006, 93, 1306–1312. [Google Scholar] [CrossRef] [Green Version]
- Bouchard, M.; Kneeshaw, D.; Bergeron, Y. Forest Dynamics after Successive Spruce Budworm Outbreaks in Mixedwood Forests. Ecology 2006, 87, 2319–2329. [Google Scholar] [CrossRef]
- Bownes, A.; Hill, M.P.; Byrne, M.J. Assessing Density–Damage Relationships between Water Hyacinth and Its Grasshopper Herbivore. Entomol. Exp. Appl. 2010, 137, 246–254. [Google Scholar] [CrossRef]
- McNaughton, S.J. Compensatory Plant Growth as a Response to Herbivory. Oikos 1983, 40, 329–336. [Google Scholar] [CrossRef]
- Karban, R.; Strauss, S.Y. Effects of Herbivores on Growth and Reproduction of Their Perennial Host, Erigeron Glaucus. Ecology 1993, 74, 39–46. [Google Scholar] [CrossRef]
- Bronstein, J.L.; Huxman, T.E.; Davidowitz, G. Plant-Mediated Effects Linking Herbivory and Pollination. In Ecological Communities: Plant Mediation in Indirect Interaction Webs; Cambridge University Press: Cambridge, MA, USA, 2007; pp. 75–103. [Google Scholar] [CrossRef]
- Genung, M.A.; Fox, J.; Williams, N.M.; Kremen, C.; Ascher, J.; Gibbs, J.; Winfree, R. The Relative Importance of Pollinator Abundance and Species Richness for the Temporal Variance of Pollination Services. Ecology 2017, 98, 1807–1816. [Google Scholar] [CrossRef] [Green Version]
- Taggar, A.K.; McGrath, E.; Despland, E. Competition between a Native and Introduced Pollinator in Unmanaged Urban Meadows. Biol. Invasions 2021, 23, 1697–1705. [Google Scholar] [CrossRef]
- Russo, L.; Memmott, J.; Montoya, D.; Shea, K.; Buckley, Y.M. Patterns of Introduced Species Interactions Affect Multiple Aspects of Network Structure in Plant-Pollinator Communities. Ecology 2014, 95, 2953–2963. [Google Scholar] [CrossRef] [Green Version]
- Brosi, B.J.; Briggs, H.M. Single Pollinator Species Losses Reduce Floral Fidelity and Plant Reproductive Function. Proc. Natl. Acad. Sci. USA 2013, 110, 13044–13048. [Google Scholar] [CrossRef] [Green Version]
- Goulson, D.; Nicholls, E.; Botías, C.; Rotheray, E.L. Bee Declines Driven by Combined Stress from Parasites, Pesticides, and Lack of Flowers. Science 2015, 347, 1255957. [Google Scholar] [CrossRef]
- Sait, S.M.; Begon, M.; Thompson, D.J. The Effects of a Sublethal Baculovirus Infection in the Indian Meal Moth, Plodia Interpunctella. J. Anim. Ecol. 1994, 63, 541. [Google Scholar] [CrossRef]
- Gomez-Moracho, T.; Heeb, P.; Lihoreau, M. Effects of Parasites and Pathogens on Bee Cognition. Ecol. Entomol. 2017, 42, 51–64. [Google Scholar] [CrossRef] [Green Version]
- Altizer, S.M. Migratory Behaviour and Host-Parasite Co-Evolution in Natural Populations of Monarch Butterflies Infected with a Protozoan Parasite. Evol. Ecol. Res. 2001, 3, 611–632. [Google Scholar]
- Shimizu, A.; Dohzono, I.; Nakaji, M.; Roff, D.A.; Miller, D.G.; Osato, S.; Yajima, T.; Niitsu, S.; Utsugi, N.; Sugawara, T.; et al. Fine-Tuned Bee-Flower Coevolutionary State Hidden within Multiple Pollination Interactions. Sci. Rep. 2014, 4, 3988. [Google Scholar] [CrossRef] [Green Version]
- Cariveau, D.P.; Nayak, G.K.; Bartomeus, I.; Zientek, J.; Ascher, J.S.; Gibbs, J.; Winfree, R. The Allometry of Bee Proboscis Length and Its Uses in Ecology. PLoS ONE 2016, 11, e0151482. [Google Scholar] [CrossRef] [Green Version]
- Inouye, D.W. The Effect of Proboscis and Corolla Tube Lengths on Patterns and Rates of Flower Visitation by Bumblebees. Oecologia 1980, 45, 197–201. [Google Scholar] [CrossRef]
- Ranta, E.; Lundberg, H. Resource Partitioning in Bumblebees: The Significance of Differences in Proboscis Length. Oikos 1980, 35, 298–302. [Google Scholar] [CrossRef]
- Kuriya, S.; Hattori, M.; Nagano, Y.; Itino, T. Altitudinal Flower Size Variation Correlates with Local Pollinator Size in a Bumblebee-Pollinated Herb, Prunella vulgaris L. (Lamiaceae). J. Evol. Biol. 2015, 28, 1761–1769. [Google Scholar] [CrossRef] [Green Version]
- Wolf, T.J.; Schmid-Hempel, P.; Ellington, C.P.; Stevenson, R.D. Physiological Correlates of Foraging Efforts in Honey-Bees: Oxygen Consumption and Nectar Load. Funct. Ecol. 1989, 3, 417. [Google Scholar] [CrossRef]
- Goverde, M.; Schweizer, K.; Baur, B.; Erhardt, A. Small-Scale Habitat Fragmentation Effects on Pollinator Behaviour: Experimental Evidence from the Bumblebee Bombus veteranus on Calcareous Grasslands. Biol. Conserv. 2002, 104, 293–299. [Google Scholar] [CrossRef]
- Fernandez de Landa, G.; Meroi Arcerito, F.R.; Corti, C.; Revainera, P.D.; Nicolli, A.R.; Zumpano, F.; Brasesco, C.; Quintana, S.; Fernandez de Landa, M.; Ramos, F.; et al. Can the Exotic Pathogen Nosema ceranae Affect the Amount of Cucurbita maxima Pollen Grains Transported by the Native Bee Eucera fervens? Arthropod. Plant. Interact. 2022, 16, 607–615. [Google Scholar] [CrossRef]
- Rolff, J.; Johnston, P.R.; Reynolds, S. Complete Metamorphosis of Insects. Philos. Trans. R. Soc. B Biol. Sci. 2019, 374, 20190074. [Google Scholar] [CrossRef] [Green Version]
- Altermatt, F.; Pearse, I.S. Similarity and Specialization of the Larval versus Adult Diet of European Butterflies and Moths. Am. Nat. 2011, 178, 372–382. [Google Scholar] [CrossRef] [Green Version]
- Bronstein, J.L.; Huxman, T.; Horvath, B.; Farabee, M.; Davidowitz, G. Reproductive Biology of Datura wrightii: The Benefits of a Herbivorous Pollinator. Ann. Bot. 2009, 103, 1435–1443. [Google Scholar] [CrossRef] [Green Version]
- Copp, N.H.; Davenport, D. Agraulis and Passiflora I. Control of Specificity. Biol. Bull. 1978, 155, 98–112. [Google Scholar] [CrossRef]
- Fishbein, M.; Venable, D.L. Diversity and Temporal Change in the Effective Pollinators of Asclepias Tuberosa. Ecology 1996, 77, 1061–1073. [Google Scholar] [CrossRef]
- Fuhro, D.; Irgang, B.E.; de Araújo, A.M. Are There Evidences of a Complex Mimicry System among Asclepias Curassavica (Apocynaceae), Epidendrum Fulgens (Orchidaceae), and Lantana Camara (Verbenaceae) in Southern Brazil? Rev. Bras. Bot. 2010, 33, 589–598. [Google Scholar] [CrossRef]
- Viechtbauer, W. Conducting Meta-Analyses in R with the Metafor. J. Stat. Softw. 2010, 36, 1–48. [Google Scholar] [CrossRef] [Green Version]
- Cole, E.L.; Ilies, I.; Rosengaus, R.B. Competing Physiological Demands During Incipient Colony Foundation in a Social Insect: Consequences of Pathogenic Stress. Front. Ecol. Evol. 2018, 6, 103. [Google Scholar] [CrossRef] [Green Version]
- Zurowski, K.; Janmaat, A.F.; Kabaluk, T.; Cory, J.S. Modification of Reproductive Schedule in Response to Pathogen Exposure in a Wild Insect: Support for the Terminal Investment Hypothesis. J. Evol. Biol. 2020, 33, 1558–1566. [Google Scholar] [CrossRef]
- Jenkins, D.; Hunter, W.; Goenaga, R. Effects of Invertebrate Iridescent Virus 6 in Phyllophaga Vandinei and Its Potential as a Biocontrol Delivery System. J. Insect Sci. 2011, 11, 44. [Google Scholar] [CrossRef] [Green Version]
- Kramarz, P.E.; Mordarska, A.; Mroczka, M. Response of Tribolium castaneum to Elevated Copper Concentrations Is Influenced by History of Metal Exposure, Sex-Specific Defences, and Infection by the Parasite Steinernema feltiae. Ecotoxicology 2014, 23, 757–766. [Google Scholar] [CrossRef]
- Dupont, C.; Michiels, A.; Brault, V.; Outreman, Y. Virus Mediated Trophic Interactions between Aphids and Their Natural Enemies. Oikos 2019, 129, 274–282. [Google Scholar] [CrossRef]
- Peng, F.; Fuxa, J.R.; Johnson, S.J.; Richter, A.R. Susceptibility of Anticarsia Gemmatalis (Lepidoptera: Noctuidae), Reared on Four Host Plants, to a Nuclear Polyhedrosis Virus. Environ. Entomol. 1997, 26, 973–977. [Google Scholar] [CrossRef]
- Eroglu, G.B.; Demir, I.; Demirbag, Z. A Novel Alphabaculovirus Isolated from the Cotton Bollworm, Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae): Characterization and Pathogenicity. Biologia 2018, 73, 545–551. [Google Scholar] [CrossRef]
- Paez, D.J.; Fleming-Davies, A.E.; Dwyer, G. Effects of Pathogen Exposure on Life-History Variation in the Gypsymoth (Lymantria dispar). J. Evol. Biol. 2015, 28, 1828–1839. [Google Scholar] [CrossRef] [Green Version]
- Goertz, D.; Linde, A.; Solter, L.F. Influence of Dimilin on a Microsporidian Infection in the Gypsy Moth Lymantria dispar (L.) (Lepidoptera: Lymantriidae). Biol. Control 2004, 30, 624–633. [Google Scholar] [CrossRef]
- Sandre, S.L.; Tammaru, T.; Hokkanen, H.M.T. Pathogen Resistance in the Moth Orgyia Antiqua: Direct Influence of Host Plant Dominates over the Effects of Individual Condition. Bull. Entomol. Res. 2011, 101, 107–114. [Google Scholar] [CrossRef]
- Ince, I.A.; Demir, I.; Demirbag, Z.; Nalcacioglu, R. A Cytoplasmic Polyhedrosis Virus Isolated from the Pine Processionary Caterpillar, Thaumetopoea Pityocampa. J. Microbiol. Biotechnol. 2007, 17, 632–637. [Google Scholar]
- Kistner, E.J.; Belovsky, G.E. Host Dynamics Determine Responses to Disease: Additive vs. Compensatory Mortality in a Grasshopper-Pathogen System. Ecology 2014, 95, 2579–2588. [Google Scholar] [CrossRef]
- Biron, D.G.; Ponton, F.; Joly, C.; Menigoz, A.; Hanelt, B.; Thomas, F. Water-Seeking Behavior in Insects Harboring Hairworms: Should the Host Collaborate? Behav. Ecol. 2005, 16, 656–660. [Google Scholar] [CrossRef]
- Tao, L.; Gowler, C.D.; Ahmad, A.; Hunter, M.D.; de Roode, J.C. Disease Ecology across Soil Boundaries: Effects of below-Ground Fungi on above-Ground Host-Parasite Interactions. Proc. R. Soc. B Biol. Sci. 2015, 282, 20151993. [Google Scholar] [CrossRef] [Green Version]
- Paxton, R.J.; Fries, I.; Pieniazek, N.J.; Tengo, J. High Incidence of Infection of an Undescribed Microsporidium (Microspora) in the Communal Bee Andrena Scotica (Hymenoptera, Andrenidae). Apidologie 1997, 28, 129–141. [Google Scholar] [CrossRef] [Green Version]
- Tehel, A.; Vu, Q.; Bigot, D.; Gogol-Döring, A.; Koch, P.; Jenkins, C.; Doublet, V.; Theodorou, P.; Paxton, R. The Two Prevalent Genotypes of an Emerging Infectious Disease, Deformed Wing Virus, Cause Equally Low Pupal Mortality and Equally High Wing Deformities in Host Honey Bees. Viruses 2019, 11, 114. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.-I.; Mofller, F.E. The Division of Labor and Queen Attendance Behavior of Nosema-Infected Worker Honey Bees12. J. Econ. Entomol. 1970, 63, 1539–1541. [Google Scholar] [CrossRef]
- Khongphinitbunjong, K.; Neumann, P.; Chantawannakul, P.; Williams, G.R. The Ectoparasitic Mite Tropilaelaps Mercedesae Reduces Western Honey Bee, Apis mellifera, Longevity and Emergence Weight, and Promotes Deformed Wing Virus Infections. J. Invertebr. Pathol. 2016, 137, 38–42. [Google Scholar] [CrossRef] [Green Version]
- Kralj, J.; Fuchs, S. Parasitic Varroa Destructor Mites Influence Flight Duration and Homing Ability of Infested Apis mellifera Foragers. Apidologie 2006, 37, 577–587. [Google Scholar] [CrossRef] [Green Version]
- Coulon, M.; Dalmon, A.; Di Prisco, G.; Prado, A.; Arban, F.; Dubois, E.; Ribiere-Chabert, M.; Alaux, C.; Thiery, R.; Le Conte, Y. Interactions Between Thiamethoxam and Deformed Wing Virus Can Drastically Impair Flight Behavior of Honey Bees. Front. Microbiol. 2020, 11, 766. [Google Scholar] [CrossRef]
- Naug, D. Infected Honeybee Foragers Incur a Higher Loss in Efficiency than in the Rate of Energetic Gain. Biol. Lett. 2014, 10, 20140731. [Google Scholar] [CrossRef]
- Figueroa, L.L.; Blinder, M.; Grincavitch, C.; Jelinek, A.; Mann, E.K.; Merva, L.A.; Metz, L.E.; Zhao, A.Y.; Irwin, R.E.; McArt, S.H.; et al. Bee Pathogen Transmission Dynamics: Deposition, Persistence and Acquisition on Flowers. Proc. R. Soc. B Biol. Sci. 2019, 286, 20190603. [Google Scholar] [CrossRef] [Green Version]
- Gegear, R.J.; Otterstatter, M.C.; Thomson, J.D. Does Parasitic Infection Impair the Ability of Bumblebees to Learn Flower-Handling Techniques? Anim. Behav. 2005, 70, 209–215. [Google Scholar] [CrossRef]
- Gegear, R.J.; Otterstatter, M.C.; Thomson, J.D. Bumble-Bee Foragers Infected by a Gut Parasite Have an Impaired Ability to Utilize Floral Information. Proc. R. Soc. B Biol. Sci. 2006, 273, 1073–1078. [Google Scholar] [CrossRef] [Green Version]
- Giacomini, J.J.; Leslie, J.; Tarpy, D.R.; Palmer-Young, E.C.; Irwin, R.E.; Adler, L.S. Medicinal Value of Sunflower Pollen against Bee Pathogens. Sci. Rep. 2018, 8, 14394. [Google Scholar] [CrossRef] [Green Version]
- Otterstatter, M.C.; Gegear, R.J.; Colla, S.R.; Thomson, J.D. Effects of Parasitic Mites and Protozoa on the Flower Constancy and Foraging Rate of Bumble Bees. Behav. Ecol. Sociobiol. 2005, 58, 383–389. [Google Scholar] [CrossRef]
- Shykoff, J.A.; Schmid-Hempel, P. Incidence and Effects of Four Parasites in Natural Populations of Bumble Bees in Switzerland. Apidologie 1991, 22, 117–125. [Google Scholar] [CrossRef]
- Brown, M.J.F.; Loosli, R.; Schmid-Hempel, P. Condition-Dependent Expression of Virulence in a Trypanosome Infecting Bumblebees. Oikos 2000, 91, 421–427. [Google Scholar] [CrossRef]
- Brown, M.J.F.; Schmid-Hempel, R.; Schmid-Hempel, P. Strong Context-Dependent Virulence in a Host-Parasite System: Reconciling Genetic Evidence with Theory. J. Anim. Ecol. 2003, 72, 994–1002. [Google Scholar] [CrossRef] [Green Version]
- Brown, M.J.F.; Moret, Y.; Schmid-Hempel, P. Activation of Host Constitutive Immune Defence by an Intestinal Trypanosome Parasite of Bumble Bees. Parasitology 2003, 126, 253–260. [Google Scholar] [CrossRef] [Green Version]
- Yourth, C.P.; Brown, M.J.F.; Schmid-Hempel, P. Effects of Natal and Novel Crithidia bombi (Trypanosomatidae) Infections on Bombus terrestris Hosts. Insectes Soc. 2008, 55, 86–90. [Google Scholar] [CrossRef] [Green Version]
- Mueller, U.; McMahon, D.P.; Rolff, J. Exposure of the Wild Bee Osmia Bicornis to the Honey Bee Pathogen Nosema Ceranae. Agric. For. Entomol. 2019, 21, 363–371. [Google Scholar] [CrossRef]
- Gillespie, S.D.; Carrero, K.; Adler, L.S. Relationships between Parasitism, Bumblebee Foraging Behaviour, and Pollination Service to Trifolium Pratense Flowers. Ecol. Entomol. 2015, 40, 650–653. [Google Scholar] [CrossRef]
- Izhar, R.; Ben-Ami, F. Host Age Modulates Parasite Infectivity, Virulence and Reproduction. J. Anim. Ecol. 2015, 84, 1018–1028. [Google Scholar] [CrossRef]
- Ashby, B.; Bruns, E. The Evolution of Juvenile Susceptibility to Infectious Disease. Proc. R. Soc. B-BIOLOGICAL Sci. 2018, 285, 20180844. [Google Scholar] [CrossRef]
- Grozinger, C.M.; Flenniken, M.L. Bee Viruses: Ecology, Pathogenicity, and Impacts. Annu. Rev. Entomol. 2019, 64, 205–226. [Google Scholar] [CrossRef]
- Cory, J.S.; Myers, J.H. The Ecology and Evolution of Insect Baculoviruses. Annu. Rev. Ecol. Evol. Syst. 2003, 34, 239–272. [Google Scholar] [CrossRef] [Green Version]
- Macgregor, C.J.; Pocock, M.J.O.; Fox, R.; Evans, D.M. Pollination by Nocturnal Lepidoptera, and the Effects of Light Pollution: A Review. Ecol. Entomol. 2015, 40, 187–198. [Google Scholar] [CrossRef] [Green Version]
- Kevan, P.G.; Baker, H.G. Insects as Flower Visitors and Pollinators. Annu. Rev. Entomol. 1983, 28, 407–453. [Google Scholar] [CrossRef]
- Wiens, J.J.; Lapoint, R.T.; Whiteman, N.K. Herbivory Increases Diversification across Insect Clades. Nat. Commun. 2015, 6, 8370. [Google Scholar] [CrossRef] [Green Version]
- Inouye, D.W.; Larson, B.M.H.; Ssymank, A.; Kevan, P.G. Flies and Flowers III: Ecology of Foraging and Pollination. J. Pollinat. Ecol. 2015, 16, 115–133. [Google Scholar] [CrossRef]
- Potts, S.G.; Biesmeijer, J.C.; Kremen, C.; Neumann, P.; Schweiger, O.; Kunin, W.E. Global Pollinator Declines: Trends, Impacts and Drivers. Trends Ecol. Evol. 2010, 25, 345–353. [Google Scholar] [CrossRef]
- Charbonneau, L.R.; Hillier, N.K.; Rogers, R.E.L.; Williams, G.R.; Shutler, D. Effects of Nosema apis, N. ceranae, and Coinfections on Honey Bee (Apis mellifera) Learning and Memory. Sci. Rep. 2016, 6, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Cox-Foster, D.L.; Conlan, S.; Holmes, E.C.; Palacios, G.; Evans, J.D.; Moran, N.A.; Quan, P.L.; Briese, T.; Hornig, M.; Geiser, D.M.; et al. A Metagenomic Survey of Microbes in Honey Bee Colony Collapse Disorder. Science 2007, 318, 283–287. [Google Scholar] [CrossRef] [Green Version]
- Sletvold, N.; Grindeland, J.M.; Agren, J. Vegetation of Pollinator-Mediated Selection in a Deceptive Orchid R Eports. Evol. Biol. 2013, 94, 1236–1242. [Google Scholar] [CrossRef] [Green Version]
- Chapurlat, E.; Ågren, J.; Sletvold, N. Spatial Variation in Pollinator-Mediated Selection on Phenology, Floral Display and Spur Length in the Orchid Gymnadenia Conopsea. N. Phytol. 2015, 208, 1264–1275. [Google Scholar] [CrossRef] [Green Version]
- Sletvold, N.; Ågren, J. Experimental Reduction in Interaction Intensity Strongly Affects Biotic Selection. Ecology 2016, 97, 3091–3098. [Google Scholar] [CrossRef]
- Sletvold, N. The Context Dependence of Pollinator-Mediated Selection in Natural Populations. Int. J. Plant Sci. 2019, 180, 934–943. [Google Scholar] [CrossRef]
- Boots, M.; Begon, M. Trade-Offs with Resistance to a Granulosis Virus in the Indian Meal Moth, Examined by a Laboratory Evolution Experiment. Funct. Ecol. 1993, 7, 528–534. [Google Scholar] [CrossRef]
- Bartlett, L.J.; Wilfert, L.; Boots, M. A Genotypic Trade-off between Constitutive Resistance to Viral Infection and Host Growth Rate. Evolution 2018, 72, 2749–2757. [Google Scholar] [CrossRef] [Green Version]
- Földesi, R.; Howlett, B.G.; Grass, I.; Batáry, P. Larger Pollinators Deposit More Pollen on Stigmas across Multiple Plant Species—A Meta-Analysis. J. Appl. Ecol. 2021, 58, 699–707. [Google Scholar] [CrossRef]
- Johnson, S.D.; Steiner, K.E. Generalization versus Specialization in Plant Pollination Systems. Trends Ecol. Evol. 2000, 15, 140–143. [Google Scholar] [CrossRef]
- Elderd, B.D.; Reilly, J.R. Warmer Temperatures Increase Disease Transmission and Outbreak Intensity in a Host-Pathogen System. J. Anim. Ecol. 2014, 83, 838–849. [Google Scholar] [CrossRef]
- Lester, P.J.; Bulgarella, M. A Citizen Science Project Reveals Contrasting Latitudinal Gradients of Wing Deformity and Parasite Infection of Monarch Butterflies in New Zealand. Ecol. Entomol. 2021, 46, 1128–1135. [Google Scholar] [CrossRef]
- Ackerly, D.D.; Bazzaz, F.A. Plant Growth and Reproduction along CO2 Gradients: Non-linear Responses and Implications for Community Change. Glob. Chang. Biol. 1995, 1, 199–207. [Google Scholar] [CrossRef]
- Walther, G. Plants in a Warmer World. Perspect. Plant Ecol. Evol. Syst. 2004, 6, 169–185. [Google Scholar] [CrossRef]
- Wang, D.; Heckathorn, S.A.; Wang, X.; Philpott, S.M. A Meta-Analysis of Plant Physiological and Growth Responses to Temperature and Elevated CO2. Oecologia 2012, 169, 1–13. [Google Scholar] [CrossRef]
- Liancourt, P.; Spence, L.A.; Song, D.S.; Lkhagva, A.; Sharkhuu, A.; Boldgiv, B.; Helliker, B.R.; Petraitis, P.S.; Casper, B.B. Plant Response to Climate Change Varies with Topography, Interactions with Neighbors, and Ecotype. Ecology 2013, 94, 444–453. [Google Scholar] [CrossRef] [Green Version]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 72, n71. [Google Scholar] [CrossRef]
Insect Functional Group | Insect Order | Insect Species Name | Pathogen Name | Number of Comparisons by Trait Category (k) | Type of Study | Location of Study | Reference | |||
---|---|---|---|---|---|---|---|---|---|---|
Behav. | Demogr. | Morphol. | Physiol. | |||||||
Herbivore | Blattodea | Zootermopsis angusticollis | Serratia marcescens | 0 | 2 | 0 | 0 | Manipul. | Lab | Cole et al. 2018 [60] |
Coleoptera | Agriotes obscurus | Metarhizium brunneum | 0 | 1 | 0 | 0 | Manipul. | Lab | Zurowski et al. 2020 [61] | |
Phyllophaga vandinei | Iridovirus 6 | 1 | 2 | 0 | 0 | Manipul. | Lab | Jenkins et al. 2011 [62] | ||
Tribolium castaneum | Steinernema feltiae | 0 | 0 | 8 | 0 | Manipul. | Lab | Kramarz et al. 2014 [63] | ||
Hemiptera | Myzus persicae | MpDNV | 4 | 0 | 1 | 0 | Manipul. | Lab | Dupont et al. 2020 [64] | |
Lepidoptera | Anticarsia gemmatalis | AgNPV | 0 | 8 | 4 | 0 | Manipul. | Lab | Peng et al. 1997 [65] | |
Helicoverpa armigera | HearNPV | 0 | 3 | 0 | 0 | Manipul. | Lab | Eroglu et al. 2018 [66] | ||
Lymantria dispar | LdNPV | 0 | 0 | 2 | 0 | Manipul. | Lab | Paez et al. 2015 [67] | ||
Lymantria dispar | Nosema sp. | 0 | 1 | 0 | 4 | Manipul. | Lab | Goertz et al. 2004 [68] | ||
Malacosoma californicum | McplNPV | 6 | 10 | 12 | 0 | Manipul. | Field | Rothman 1997 [28] | ||
Orgyia antiqua | Metarhizium anisopliae | 0 | 2 | 0 | 0 | Manipul. | Lab | Sandre et al. 2011 [69] | ||
Spodoptera litura | SlGV | 0 | 20 | 2 | 0 | Manipul. | Lab | Gupta et al. 2010 [29] | ||
Thaumetopoea pityocampa | TpCPV | 2 | 2 | 0 | 0 | Manipul. | Lab | Ince et al. 2007 [70] | ||
Orthoptera | Camnula pellucida | Entomophaga grylli | 0 | 6 | 0 | 0 | Manipul. | Field | Kistner et al. 2014 [71] | |
Nemobius sylvestris | Paragordius tricuspidatus | 0 | 7 | 0 | 0 | Observat. | Field | Biron et al. 2005 [72] | ||
Multi-function | Lepidoptera | Danaus plexippus | Ophryocystis elektroscirrha | 0 | 6 | 6 | 2 | Manipul. | Lab | Altizer 2001 [44] |
Danaus plexippus | Ophryocystis elektroscirrha | 0 | 4 | 1 | 0 | Manipul. | Lab | Altizer and Oberhauser 1999 [17] | ||
Danaus plexippus | Ophryocystis elektroscirrha | 3 | 0 | 0 | 0 | Manipul. | Lab | Bradley et al. 2005 [18] | ||
Danaus plexippus | Ophryocystis elektroscirrha | 0 | 6 | 0 | 0 | Manipul. | Lab | Tao et al. 2015 [73] | ||
Pieris brassicae | PbGV | 1 | 9 | 0 | 0 | Manipul. | Lab | Sood et al. 2010 [30] | ||
Pollinator | Hymenoptera | Andrena scotica | Microsporidia | 0 | 0 | 2 | 0 | Observat. | Field | Paxton et al. 1997 [74] |
Apis mellifera | Deformed wing virus | 0 | 2 | 2 | 0 | Manipul. | Lab | Tehel et al. 2019 [75] | ||
Apis mellifera | Nosema apis | 4 | 0 | 0 | 0 | Manipul. | Lab | Wang et al. 1970 [76] | ||
Apis mellifera | Nosema ceranae | 3 | 3 | 0 | 0 | Manipul. | Lab | Ferguson et al. 2018 [27] | ||
Apis mellifera | Tropilaelaps mercedesae | 0 | 0 | 2 | 0 | Manipul. | Lab | Khongphinitbunjong et al. 2016 [77] | ||
Apis mellifera | Varroa destructor | 3 | 0 | 0 | 0 | Manipul. | Lab | Kralj 2006 [78] | ||
Apis sp. | Deformed wing virus | 1 | 0 | 0 | 0 | Manipul. | Lab | Coulon et al. 2020 [79] | ||
Apis sp. | Nosema ceranae | 1 | 0 | 0 | 0 | Manipul. | Lab | Naug 2014 [80] | ||
Bombus impatiens | Crithidia bombi | 1 | 0 | 0 | 0 | Manipul. | Lab | Figueroa et al. 2019 [81] | ||
Bombus impatiens | Crithidia bombi | 4 | 0 | 0 | 0 | Observat. | Lab | Gegear et al. 2005 [82] | ||
Bombus impatiens | Crithidia bombi | 3 | 0 | 0 | 0 | Both | Lab | Gegear et al. 2006 [83] | ||
Bombus impatiens | Crithidia bombi | 0 | 2 | 0 | 0 | Manipul. | Lab | Giacomini et al. 2018 [84] | ||
Bombus impatiens | Crithidia bombi & Locustacarus buchneri | 6 | 0 | 0 | 0 | Observat. | Lab | Otterstatter et al. 2005 [85] | ||
Bombus spp. | Crithidia bombi | 1 | 1 | 0 | 0 | Observat. | Lab | Shykoff et al. 1991 [86] | ||
Bombus terrestris | Crithidia bombi | 0 | 2 | 2 | 0 | Manipul. | Lab | Brown et al. 2000 [87] | ||
Bombus terrestris | Crithidia bombi | 0 | 6 | 1 | 0 | Manipul. | Lab | Brown et al. 2003a [88] | ||
Bombus terrestris | Crithidia bombi | 0 | 3 | 3 | 9 | Manipul. | Lab | Brown et al. 2003b [89] | ||
Bombus terrestris | Crithidia bombi | 0 | 3 | 0 | 0 | Manipul. | Lab | Yourth et al. 2008 [90] | ||
Osmia bicornis | Nosema ceranae | 0 | 2 | 0 | 0 | Manipul. | Lab | Mueller et al. 2019 [91] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Recart, W.; Bernhard, R.; Ng, I.; Garcia, K.; Fleming-Davies, A.E. Meta-Analysis of the Effects of Insect Pathogens: Implications for Plant Reproduction. Pathogens 2023, 12, 347. https://doi.org/10.3390/pathogens12020347
Recart W, Bernhard R, Ng I, Garcia K, Fleming-Davies AE. Meta-Analysis of the Effects of Insect Pathogens: Implications for Plant Reproduction. Pathogens. 2023; 12(2):347. https://doi.org/10.3390/pathogens12020347
Chicago/Turabian StyleRecart, Wilnelia, Rover Bernhard, Isabella Ng, Katherine Garcia, and Arietta E. Fleming-Davies. 2023. "Meta-Analysis of the Effects of Insect Pathogens: Implications for Plant Reproduction" Pathogens 12, no. 2: 347. https://doi.org/10.3390/pathogens12020347
APA StyleRecart, W., Bernhard, R., Ng, I., Garcia, K., & Fleming-Davies, A. E. (2023). Meta-Analysis of the Effects of Insect Pathogens: Implications for Plant Reproduction. Pathogens, 12(2), 347. https://doi.org/10.3390/pathogens12020347