Management of Tuberculosis Infection: Current Situation, Recent Developments and Operational Challenges
Abstract
:1. Introduction
2. The Landscape of TBI Prevention in High- and Low-Burden Countries
2.1. The Evolving Concept of TBI
2.2. Global Burden
2.3. Target Population
2.4. TBI and COVID-19 Pandemic
3. Recent Developments in TBI Management
3.1. TBI Diagnosis
3.2. Blood Biomarkers for Incipient TB
3.3. Tuberculosis Preventive Treatment
4. Cost-Effectiveness of TBI Prevention
5. Programmatic Challenges
5.1. TBI Screening
5.2. Initiating TB Preventive Therapy
- -
- TPT priority, drug stock-outs or access problems: In TB-endemic areas where resources are limited, the focus is more on treating than preventing TB [66]. Fear of drug stock-outs, especially in peripheral centers, had been identified as the main cause of non-initiation of isoniazid preventive therapy [67]. In addition, operational and logistical issues may also lead to limited access to TBI screening and to TPT [68];
- -
- -
- Approach to screening and TPT: Routine screening for TBI may create anxiety and fear of stigma for individuals who do not feel sick. The WHO recommends decentralized, family-centered and integrated models of care to deliver services to children, adolescents and adults exposed to TB [71];
- -
- Diagnostic of TBI and active TB: The inherent limitations in the currently available tests for diagnosis of TBI as well as those for ruling out active TB and their limited availability in resource-poor countries are hampering wide programmatic management of TBI and may lead to the emergence of drug-resistance if TPT is not appropriately prescribed [72];
- -
- Availability of shortened regimens: The current high cost of rifapentine and the limited access to appropriate drug formulations, especially the dispersible rifapentine for infants, fixed-dose combinations for HP [41] and single-dose of rifampicin for 4R [23] are a further limit to the wide provision of TPT;
- -
- Monitoring and evaluation: Few low- and middle-income countries (LMICs) have an established system for monitoring and evaluating the implementation of TPT [73]. In addition, the reporting requirements by different donor agencies, which are not harmonized with international and national indicators, may contribute to unnecessary program overload [73].
6. Further Research and Future Direction
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization Global Tuberculosis Report 2022. Available online: https://www.who.int/publications-detail-redirect/9789240061729 (accessed on 17 November 2022).
- Getahun, H.; Matteelli, A.; Chaisson, R.E.; Raviglione, M. Latent Mycobacterium Tuberculosis Infection. N. Engl. J. Med. 2015, 372, 2127–2135. [Google Scholar] [CrossRef] [Green Version]
- Comstock, G.W.; Livesay, V.T.; Woolpert, S.F. The Prognosis of a Positive Tuberculin Reaction in Childhood and Adolescence. Am. J. Epidemiol. 1974, 99, 131–138. [Google Scholar] [CrossRef]
- Houben, R.M.G.J.; Dodd, P.J. The Global Burden of Latent Tuberculosis Infection: A Re-Estimation Using Mathematical Modelling. PLoS Med. 2016, 13, e1002152. [Google Scholar] [CrossRef] [Green Version]
- Lienhardt, C. From Exposure to Disease: The Role of Environmental Factors in Susceptibility to and Development of Tuberculosis. Epidemiol. Rev. 2001, 23, 288–301. [Google Scholar] [CrossRef]
- Uplekar, M.; Weil, D.; Lonnroth, K.; Jaramillo, E.; Lienhardt, C.; Dias, H.M.; Falzon, D.; Floyd, K.; Gargioni, G.; Getahun, H.; et al. WHO’s New End TB Strategy. Lancet 2015, 385, 1799–1801. [Google Scholar] [CrossRef]
- World Health Organization. WHO Guidelines on Tuberculosis Infection Prevention and Control: 2019 Update; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Barry, C.E.; Boshoff, H.I.; Dartois, V.; Dick, T.; Ehrt, S.; Flynn, J.; Schnappinger, D.; Wilkinson, R.J.; Young, D. The Spectrum of Latent Tuberculosis: Rethinking the Biology and Intervention Strategies. Nat. Rev. Microbiol. 2009, 7, 845–855. [Google Scholar] [CrossRef]
- Esmail, H.; Barry, C.E.; Wilkinson, R.J. Understanding Latent Tuberculosis: The Key to Improved Diagnostic and Novel Treatment Strategies. Drug Discov. Today 2012, 17, 514–521. [Google Scholar] [CrossRef] [Green Version]
- Esmail, H.; Barry, C.E.; Young, D.B.; Wilkinson, R.J. The Ongoing Challenge of Latent Tuberculosis. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369, 20130437. [Google Scholar] [CrossRef] [Green Version]
- Achkar, J.M.; Jenny-Avital, E.R. Incipient and Subclinical Tuberculosis: Defining Early Disease States in the Context of Host Immune Response. J. Infect. Dis. 2011, 204, S1179–S1186. [Google Scholar] [CrossRef]
- Drain, P.K.; Bajema, K.L.; Dowdy, D.; Dheda, K.; Naidoo, K.; Schumacher, S.G.; Ma, S.; Meermeier, E.; Lewinsohn, D.M.; Sherman, D.R. Incipient and Subclinical Tuberculosis: A Clinical Review of Early Stages and Progression of Infection. Clin. Microbiol. Rev. 2018, 31, e00021-18. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Development of a Target Product Profile (TPP) and a Framework for Evaluation for a Test for Predicting Progression from Tuberculosis Infection to Active Disease; World Health Organization Consensus Meeting Report; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Migliori, G.B.; Ong, C.W.M.; Petrone, L.; D’Ambrosio, L.; Centis, R.; Goletti, D. The Definition of Tuberculosis Infection Based on the Spectrum of Tuberculosis Disease. Breathe 2021, 17, 210079. [Google Scholar] [CrossRef]
- Cohen, A.; Mathiasen, V.D.; Schön, T.; Wejse, C. The Global Prevalence of Latent Tuberculosis: A Systematic Review and Meta-Analysis. Eur. Respir. J. 2019, 54, 1900655. [Google Scholar] [CrossRef]
- Ding, C.; Hu, M.; Guo, W.; Hu, W.; Li, X.; Wang, S.; Shangguan, Y.; Zhang, Y.; Yang, S.; Xu, K. Prevalence Trends of Latent Tuberculosis Infection at the Global, Regional, and Country Levels from 1990–2019. Int. J. Infect. Dis. 2022, 122, 46–62. [Google Scholar] [CrossRef]
- Knight, G.M.; McQuaid, C.F.; Dodd, P.J.; Houben, R.M.G.J. Global Burden of Latent Multidrug-Resistant Tuberculosis: Trends and Estimates Based on Mathematical Modelling. Lancet Infect. Dis. 2019, 19, 903–912. [Google Scholar] [CrossRef] [Green Version]
- Nolt, D.; Starke, J.R. Committee on Infectious Diseases Tuberculosis Infection in Children and Adolescents: Testing and Treatment. Pediatrics 2021, 148, e2021054663. [Google Scholar] [CrossRef]
- World Health Organization Global Tuberculosis Report 2021. Available online: https://www.who.int/publications/digital/global-tuberculosis-report-2021 (accessed on 9 February 2022).
- Moore, D.; Liechty, C.; Ekwaru, P.; Were, W.; Mwima, G.; Solberg, P.; Rutherford, G.; Mermin, J. Prevalence, Incidence and Mortality Associated with Tuberculosis in HIV-Infected Patients Initiating Antiretroviral Therapy in Rural Uganda. AIDS 2007, 21, 713–719. [Google Scholar] [CrossRef]
- Lawn, S.D.; Churchyard, G. Epidemiology of HIV-Associated Tuberculosis. Curr. Opin. HIV AIDS 2009, 4, 325–333. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.; Wood, R.; Kaplan, R.; Bekker, L.-G.; Lawn, S.D. Tuberculosis Incidence Rates during 8 Years of Follow-up of an Antiretroviral Treatment Cohort in South Africa: Comparison with Rates in the Community. PLoS ONE 2012, 7, e34156. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. WHO Operational Handbook on Tuberculosis: Module 1: Prevention: Tuberculosis Preventive Treatment; World Health Organization: Geneva, Switzerland, 2020; ISBN 978-92-4-000290-6. [Google Scholar]
- World Health Organization. WHO Operational Handbook on Tuberculosis: Module 3: Diagnosis: Tests for Tuberculosis Infection. Available online: https://www.who.int/publications-detail-redirect/9789240058347 (accessed on 17 November 2022).
- Martinez, L.; Cords, O.; Horsburgh, C.R.; Andrews, J.R. Pediatric TB Contact Studies Consortium The Risk of Tuberculosis in Children after Close Exposure: A Systematic Review and Individual-Participant Meta-Analysis. Lancet 2020, 395, 973–984. [Google Scholar] [CrossRef] [Green Version]
- Getahun, H.; Matteelli, A.; Abubakar, I.; Aziz, M.A.; Baddeley, A.; Barreira, D.; Den Boon, S.; Borroto Gutierrez, S.M.; Bruchfeld, J.; Burhan, E.; et al. Management of Latent Mycobacterium Tuberculosis Infection: WHO Guidelines for Low Tuberculosis Burden Countries. Eur. Respir. J. 2015, 46, 1563–1576. [Google Scholar] [CrossRef] [Green Version]
- Ranasinghe, L.; Achar, J.; Gröschel, M.I.; Whittaker, E.; Dodd, P.J.; Seddon, J.A. Global Impact of COVID-19 on Childhood Tuberculosis: An Analysis of Notification Data. Lancet Glob. Health 2022, 10, e1774–e1781. [Google Scholar] [CrossRef]
- Ruhwald, M.; Carmona, S.; Pai, M. Learning from COVID-19 to Reimagine Tuberculosis Diagnosis. Lancet Microbe 2021, 2, e169–e170. [Google Scholar] [CrossRef]
- Baggaley, R.F.; Zenner, D.; Bird, P.; Hargreaves, S.; Griffiths, C.; Noori, T.; Friedland, J.S.; Nellums, L.B.; Pareek, M. Prevention and Treatment of Infectious Diseases in Migrants in Europe in the Era of Universal Health Coverage. Lancet Public Health 2022, 7, e876–e884. [Google Scholar] [CrossRef]
- Zimmer, A.J.; Klinton, J.S.; Oga-Omenka, C.; Heitkamp, P.; Nawina Nyirenda, C.; Furin, J.; Pai, M. Tuberculosis in Times of COVID-19. J. Epidemiol. Community Health 2022, 76, 310–316. [Google Scholar] [CrossRef]
- Haas, M.K.; Belknap, R.W. Diagnostic Tests for Latent Tuberculosis Infection. Clin. Chest Med. 2019, 40, 829–837. [Google Scholar] [CrossRef]
- Won, D.; Park, J.Y.; Kim, H.-S.; Park, Y. Comparative Results of QuantiFERON-TB Gold In-Tube and QuantiFERON-TB Gold Plus Assays for Detection of Tuberculosis Infection in Clinical Samples. J. Clin. Microbiol. 2020, 58, e01854-19. [Google Scholar] [CrossRef]
- Matteelli, A.; Lönnroth, K.; Getahun, H.; Falzon, D.; Migliori, G.B.; Raviglione, M. Numbers Needed to Treat to Prevent Tuberculosis. Eur. Respir. J. 2015, 46, 1838–1839. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.H.; Jo, K.-W.; Shim, T.S. QuantiFERON-TB Gold PLUS versus QuantiFERON- TB Gold In-Tube Test for Diagnosing Tuberculosis Infection. Korean J. Intern. Med. 2020, 35, 383–391. [Google Scholar] [CrossRef] [Green Version]
- Sotgiu, G.; Saderi, L.; Petruccioli, E.; Aliberti, S.; Piana, A.; Petrone, L.; Goletti, D. QuantiFERON TB Gold Plus for the Diagnosis of Tuberculosis: A Systematic Review and Meta-Analysis. J. Infect. 2019, 79, 444–453. [Google Scholar] [CrossRef]
- Della Bella, C.; Spinicci, M.; Alnwaisri, H.F.M.; Bartalesi, F.; Tapinassi, S.; Mencarini, J.; Benagiano, M.; Grassi, A.; D’Elios, S.; Troilo, A.; et al. LIOFeron®TB/LTBI: A Novel and Reliable Test for LTBI and Tuberculosis. Int. J. Infect. Dis. 2020, 91, 177–181. [Google Scholar] [CrossRef] [Green Version]
- Brantestig, S.; Kinnunen, A.; Almeflo, S.; Restorp, K.; Ahlqvist, J.; Dyrdak, R. Comparative Evaluation of CLIA and EIA for Quantiferon-TB Gold Plus. APMIS 2020, 128, 343–349. [Google Scholar] [CrossRef]
- Ruhwald, M.; Aggerbeck, H.; Gallardo, R.V.; Hoff, S.T.; Villate, J.I.; Borregaard, B.; Martinez, J.A.; Kromann, I.; Penas, A.; Anibarro, L.L.; et al. Safety and Efficacy of the C-Tb Skin Test to Diagnose Mycobacterium Tuberculosis Infection, Compared with an Interferon γ Release Assay and the Tuberculin Skin Test: A Phase 3, Double-Blind, Randomised, Controlled Trial. Lancet Respir. Med. 2017, 5, 259–268. [Google Scholar] [CrossRef]
- World Health Organization. Rapid Communication: TB Antigen-Based Skin Tests for the Diagnosis of TB Infection; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Diel, R.; Loddenkemper, R.; Nienhaus, A. Evidence-Based Comparison of Commercial Interferon-Gamma Release Assays for Detecting Active TB: A Metaanalysis. Chest 2010, 137, 952–968. [Google Scholar] [CrossRef]
- World Health Organization. Latent Tuberculosis Infection: Updated and Consolidated Guidelines for Programmatic Management; World Health Organization: Geneva, Switzerland, 2018; ISBN 978-92-4-155023-9. [Google Scholar]
- Goletti, D.; Lee, M.-R.; Wang, J.-Y.; Walter, N.; Ottenhoff, T.H.M. Update on Tuberculosis Biomarkers: From Correlates of Risk, to Correlates of Active Disease and of Cure from Disease. Respirology 2018, 23, 455–466. [Google Scholar] [CrossRef]
- Deng, M.; Lv, X.-D.; Fang, Z.-X.; Xie, X.-S.; Chen, W.-Y. The Blood Transcriptional Signature for Active and Latent Tuberculosis. Infect. Drug Resist. 2019, 12, 321–328. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; He, L.; Wu, J.; Zhou, Z.; Gao, Y.; Chen, J.; Shao, L.; Zhang, Y.; Zhang, W. Transcriptional Profiling of Human Peripheral Blood Mononuclear Cells Identifies Diagnostic Biomarkers That Distinguish Active and Latent Tuberculosis. Front. Immunol. 2019, 10, 2948. [Google Scholar] [CrossRef] [Green Version]
- Wawrocki, S.; Seweryn, M.; Kielnierowski, G.; Rudnicka, W.; Wlodarczyk, M.; Druszczynska, M. IL-18/IL-37/IP-10 Signalling Complex as a Potential Biomarker for Discriminating Active and Latent TB. PLoS ONE 2019, 14, e0225556. [Google Scholar] [CrossRef] [Green Version]
- Gupta, R.K.; Turner, C.T.; Venturini, C.; Esmail, H.; Rangaka, M.X.; Copas, A.; Lipman, M.; Abubakar, I.; Noursadeghi, M. Concise Whole Blood Transcriptional Signatures for Incipient Tuberculosis: A Systematic Review and Patient-Level Pooled Meta-Analysis. Lancet Respir. Med. 2020, 8, 395–406. [Google Scholar] [CrossRef]
- Lu, C.; Wu, J.; Wang, H.; Wang, S.; Diao, N.; Wang, F.; Gao, Y.; Chen, J.; Shao, L.; Weng, X.; et al. Novel Biomarkers Distinguishing Active Tuberculosis from Latent Infection Identified by Gene Expression Profile of Peripheral Blood Mononuclear Cells. PLoS ONE 2011, 6, e24290. [Google Scholar] [CrossRef]
- Jacobsen, M.; Repsilber, D.; Gutschmidt, A.; Neher, A.; Feldmann, K.; Mollenkopf, H.J.; Ziegler, A.; Kaufmann, S.H.E. Candidate Biomarkers for Discrimination between Infection and Disease Caused by Mycobacterium Tuberculosis. J. Mol. Med. 2007, 85, 613–621. [Google Scholar] [CrossRef]
- Petersen, E.; Chakaya, J.; Jawad, F.M.; Ippolito, G.; Zumla, A. Latent Tuberculosis Infection: Diagnostic Tests and When to Treat. Lancet Infect. Dis. 2019, 19, 231–233. [Google Scholar] [CrossRef]
- Alsdurf, H.; Hill, P.C.; Matteelli, A.; Getahun, H.; Menzies, D. The Cascade of Care in Diagnosis and Treatment of Latent Tuberculosis Infection: A Systematic Review and Meta-Analysis. Lancet Infect. Dis. 2016, 16, 1269–1278. [Google Scholar] [CrossRef]
- Kim, H.W.; Kim, J.S. Treatment of Latent Tuberculosis Infection and Its Clinical Efficacy. Tuberc. Respir. Dis. 2018, 81, 6–12. [Google Scholar] [CrossRef]
- Lobue, P.; Menzies, D. Treatment of Latent Tuberculosis Infection: An Update. Respirology 2010, 15, 603–622. [Google Scholar] [CrossRef]
- Menzies, D.; Adjobimey, M.; Ruslami, R.; Trajman, A.; Sow, O.; Kim, H.; Obeng Baah, J.; Marks, G.B.; Long, R.; Hoeppner, V.; et al. Four Months of Rifampin or Nine Months of Isoniazid for Latent Tuberculosis in Adults. N. Engl. J. Med. 2018, 379, 440–453. [Google Scholar] [CrossRef]
- Sterling, T.R.; Scott, N.A.; Miro, J.M.; Calvet, G.; La Rosa, A.; Infante, R.; Chen, M.P.; Benator, D.A.; Gordin, F.; Benson, C.A.; et al. Three Months of Weekly Rifapentine and Isoniazid for Treatment of Mycobacterium Tuberculosis Infection in HIV-Coinfected Persons. AIDS 2016, 30, 1607–1615. [Google Scholar] [CrossRef] [Green Version]
- Swindells, S.; Ramchandani, R.; Gupta, A.; Benson, C.A.; Leon-Cruz, J.; Mwelase, N.; Jean Juste, M.A.; Lama, J.R.; Valencia, J.; Omoz-Oarhe, A.; et al. One Month of Rifapentine plus Isoniazid to Prevent HIV-Related Tuberculosis. N. Engl. J. Med. 2019, 380, 1001–1011. [Google Scholar] [CrossRef]
- Campbell, J.R.; Trajman, A.; Cook, V.J.; Johnston, J.C.; Adjobimey, M.; Ruslami, R.; Eisenbeis, L.; Fregonese, F.; Valiquette, C.; Benedetti, A.; et al. Adverse Events in Adults with Latent Tuberculosis Infection Receiving Daily Rifampicin or Isoniazid: Post-Hoc Safety Analysis of Two Randomised Controlled Trials. Lancet Infect. Dis. 2020, 20, 318–329. [Google Scholar] [CrossRef]
- Doan, T.N.; Fox, G.J.; Meehan, M.T.; Scott, N.; Ragonnet, R.; Viney, K.; Trauer, J.M.; McBryde, E.S. Cost-Effectiveness of 3 Months of Weekly Rifapentine and Isoniazid Compared with Other Standard Treatment Regimens for Latent Tuberculosis Infection: A Decision Analysis Study. J. Antimicrob. Chemother. 2019, 74, 218–227. [Google Scholar] [CrossRef]
- Uppal, A.; Rahman, S.; Campbell, J.R.; Oxlade, O.; Menzies, D. Economic and Modeling Evidence for Tuberculosis Preventive Therapy among People Living with HIV: A Systematic Review and Meta-Analysis. PLoS Med. 2021, 18, e1003712. [Google Scholar] [CrossRef]
- Johnson, K.T.; Churchyard, G.J.; Sohn, H.; Dowdy, D.W. Cost-Effectiveness of Preventive Therapy for Tuberculosis with Isoniazid and Rifapentine Versus Isoniazid Alone in High-Burden Settings. Clin. Infect. Dis. 2018, 67, 1072–1078. [Google Scholar] [CrossRef]
- Shin, H.; Jo, Y.; Chaisson, R.E.; Turner, K.; Churchyard, G.; Dowdy, D.W. Cost-Effectiveness of a 12 Country-Intervention to Scale up Short Course TB Preventive Therapy among People Living with HIV. J. Int. AIDS Soc. 2020, 23, e25629. [Google Scholar] [CrossRef]
- Shepardson, D.; Marks, S.M.; Chesson, H.; Kerrigan, A.; Holland, D.P.; Scott, N.; Tian, X.; Borisov, A.S.; Shang, N.; Heilig, C.M.; et al. Cost-Effectiveness of a 12-Dose Regimen for Treating Latent Tuberculous Infection in the United States. Int. J. Tuberc. Lung Dis. 2013, 17, 1531–1537. [Google Scholar] [CrossRef] [Green Version]
- Nsengiyumva, N.P.; Campbell, J.R.; Oxlade, O.; Vesga, J.F.; Lienhardt, C.; Trajman, A.; Falzon, D.; Boon, S.D.; Arinaminpathy, N.; Schwartzman, K. Scaling up Target Regimens for Tuberculosis Preventive Treatment in Brazil and South Africa: An Analysis of Costs and Cost-Effectiveness. PLoS Med. 2022, 19, e1004032. [Google Scholar] [CrossRef]
- Marks, S.M.; Mase, S.R.; Morris, S.B. Systematic Review, Meta-Analysis, and Cost-Effectiveness of Treatment of Latent Tuberculosis to Reduce Progression to Multidrug-Resistant Tuberculosis. Clin. Infect. Dis. 2017, 64, 1670–1677. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. WHO Operational Handbook on Tuberculosis: Module 2: Screening: Systematic Screening for Tuberculosis Disease; World Health Organization: Geneva, Switzerland, 2021; ISBN 978-92-4-002261-4. [Google Scholar]
- Kunst, H. Diagnosis of Latent Tuberculosis Infection: The Potential Role of New Technologies. Respir. Med. 2006, 100, 2098–2106. [Google Scholar] [CrossRef] [Green Version]
- Diel, R.; Loddenkemper, R.; Zellweger, J.-P.; Sotgiu, G.; D’Ambrosio, L.; Centis, R.; van der Werf, M.J.; Dara, M.; Detjen, A.; Gondrie, P.; et al. Old Ideas to Innovate Tuberculosis Control: Preventive Treatment to Achieve Elimination. Eur. Respir. J. 2013, 42, 785–801. [Google Scholar] [CrossRef] [Green Version]
- Reddy, M.M.; Thekkur, P.; Ramya, N.; Kamath, P.B.T.; Shastri, S.G.; Kumar, R.B.N.; Chinnakali, P.; Nirgude, A.S.; Rangaraju, C.; Somashekar, N.; et al. To Start or to Complete?—Challenges in Implementing Tuberculosis Preventive Therapy among People Living with HIV: A Mixed-Methods Study from Karnataka, India. Glob. Health Action 2020, 13, 1704540. [Google Scholar] [CrossRef] [Green Version]
- Masini, E.; Mungai, B.; Wandwalo, E. Tuberculosis Preventive Therapy Uptake Barriers: What Are the Low-Lying Fruits to Surmount This? Public Health Action 2020, 10, 3. [Google Scholar] [CrossRef]
- Ahmed, A.A.; Grammatico, M.; Moll, A.P.; Malinga, S.; Makhunga, P.; Charalambous, S.; Ladines-Lim, J.B.; Jones, J.; Choi, K.; Shenoi, S.V. Factors Associated with Low Tuberculosis Preventive Therapy Prescription Rates among Health Care Workers in Rural South Africa. Glob. Health Action 2021, 14, 1979281. [Google Scholar] [CrossRef]
- Figueroa-Munoz, J.; Palmer, K.; Dal Poz, M.R.; Blanc, L.; Bergström, K.; Raviglione, M. The Health Workforce Crisis in TB Control: A Report from High-Burden Countries. Hum. Resour. Health 2005, 3, 2. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. WHO Consolidated Guidelines on Tuberculosis: Module 5: Management of Tuberculosis in Children and Adolescents. Available online: https://www.who.int/publications-detail-redirect/9789240046764 (accessed on 21 November 2022).
- Getahun, H.; Matteelli, A.; Abubakar, I.; Hauer, B.; Pontali, E.; Migliori, G.B. Advancing Global Programmatic Management of Latent Tuberculosis Infection for at Risk Populations. Eur. Respir. J. 2016, 47, 1327–1330. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Scaling up Prevention and Treatment for TB and HIV Global TB/HIV Working Group of the Stop TB Partnership, Addis Ababa, Ethiopia, 20–21 September 2004; World Health Organization: Geneva, Switzerland, 20–21 September 2014.
- Migliori, G.B.; Wu, S.J.; Matteelli, A.; Zenner, D.; Goletti, D.; Ahmedov, S.; Al-Abri, S.; Allen, D.M.; Balcells, M.E.; Garcia-Basteiro, A.L.; et al. Clinical Standards for the Diagnosis, Treatment and Prevention of TB Infection. Int. J. Tuberc. Lung Dis. 2022, 26, 190–205. [Google Scholar] [CrossRef]
- Houben, R.M.G.J.; Menzies, N.A.; Sumner, T.; Huynh, G.H.; Arinaminpathy, N.; Goldhaber-Fiebert, J.D.; Lin, H.-H.; Wu, C.-Y.; Mandal, S.; Pandey, S.; et al. Feasibility of Achieving the 2025 WHO Global Tuberculosis Targets in South Africa, China, and India: A Combined Analysis of 11 Mathematical Models. Lancet Glob. Health 2016, 4, e806–e815. [Google Scholar] [CrossRef] [Green Version]
People living with HIV |
---|
Adults and adolescents living with HIV who are unlikely to have active TB should receive TPT. Treatment should also be given to those on antiretroviral treatment, to pregnant women and to those who have previously been treated for active TB, irrespective of the degree of immunosuppression and even if TBI testing is unavailable. |
Infants aged < 12 months living with HIV who are in contact with a person with TB and who are unlikely to have active TB should receive TPT. |
Children aged ≥ 12 months living with HIV who are unlikely to have active TB should be offered TPT and care if they live in a setting with high TB transmission, regardless of contact with TB. |
All children living with HIV who have successfully completed treatment for active TB may receive TPT. |
Household contacts (regardless of HIV status) |
Children aged < 5 years who are HHCs of people with bacteriologically confirmed pulmonary TB and who are found not to have active TB should be given TPT even if TBI testing is unavailable. |
Children aged ≥ 5 years, adolescents and adults who are HHCs of people with bacteriologically confirmed pulmonary TB who are found not to have active TB may be given TPT. |
In selected high-risk HHCs of patients with MDR-TB, TPT may be considered based on individualized risk assessment and a sound clinical justification. |
Medicines | Isoniazid 6H | Isoniazid + Rifapentine 3HP | Isoniazid + Rifampicin 3HR | Rifampicin 4R | Isoniazid + Rifapentine 1HP | Isoniazid 36H |
---|---|---|---|---|---|---|
Duration (months) | 6 | 3 | 3 | 4 | 1 | 36 |
Interval | Daily | Weekly | Daily | Daily | Daily | Daily |
Indication | All ages; child-friendly formulation available£; preferred in HIV+ children on LPV-RTV, NVP or DTG | ≥2 years; no child-friendly formulation available | All ages; child-friendly formulation available and recommended up to 25 kg weight | All ages; no child- friendly formulation available; no formulation available for infants < 8 kg weight | >12 years; no rifapentine dosing available until 13 years of age | Adolescents and adults living with HIV |
Pregnant women | Safe for use * | Not known | Safe for use *$ | May be safe, although no safety or efficacy data available specifically in this population$ | Not known | _ |
Study (Reference) | Problem or Goal | Location | Design, Phase, Effective (n) | Treatment Strategy |
---|---|---|---|---|
Tuberculosis Preventive Therapy Among Latent Tuberculosis Infection in HIV-infected Individuals (NCT03785106) https://clinicaltrials.gov/ct2/show/NCT03785106 (accessed on 3 November 2022). | Treatment-shortening for TBI in HIV-infected patients | Thailand | Multicenter, open-label, randomized clinical trial Phase III n = 2500 | 4-week daily INH/RPT regimen (1HP) versus a 12-week INH/RPT regimen (3HP) |
SCRIPT-TB (NCT03900858) https://clinicaltrials.gov/ct2/show/NCT03900858 (accessed on 3 November 2022). | Efficacy and safety of 1RPT/INH in preventing TBI | China | Open-label, randomized clinical trial Phase III n = 566 | 1-month (3 times/week = 12 doses) rifapentine and isoniazid (1RPT/INH) versus a 3-month weekly rifapentine and isoniazid regimen (3RPT/INH) |
SCRIPT-LGTB (NCT04528277) https://clinicaltrials.gov/ct2/show/NCT04528277?term=rifapentine&draw=2 (accessed on 3 November 2022). | Efficacy and safety of 1RPT/INH in preventing latent genital TB preceding IVF among adult women with and without latent genital TB and experiencing recurrent implantation failure | China | Open-label, non-randomized clinical trial Phase III n = 1050 | 1-month (3 times/week = 12 doses) rifapentine and isoniazid (1RPT/INH) versus no treatment |
PHOENIx MDR-TB (NCT03568383) https://clinicaltrials.gov/ct2/show/NCT03568383 (accessed on 3 November 2022). | Compare the efficacy and safety of 26 weeks of DLM for preventing confirmed or probable active TB among high-risk household contacts of adults with MDR-TB | Botswana, Brazil, Haiti, India, Kenya, Peru, Philippines, South Africa, Tanzania, Thailand, Uganda, Zimbabwe | Multicenter, open-label, randomized clinical trial Phase III n = 5610 | 26 weeks of DLM versus 26 weeks of INH |
ASTERoiD/TBTC Study 37 (NCT03474029) https://clinicaltrials.gov/ct2/show/record/NCT03474029?term=Asteroid (accessed on 3 November 2022). | Compare the safety and effectiveness of a novel short 6-week regimen of daily rifapentine among people ≥12 years of age with positive TST or IGRA and at high risk of disease progression | Canada, United States | Multicenter, open-label, randomized clinical trial Phase III n = 3400 | 6-week P vs. rifamycin-based standard-of-care regimens (3HP, 4R or 3HR) |
SDR Risk Study (NCT04094012) https://clinicaltrials.gov/ct2/show/record/NCT04094012?term=rifapentine&draw=6 (accessed on 3 November 2022). | Compare incidence rate of systemic drug reactions under 3HP and 1HP regimen for latent tuberculosis infection treatment | Taiwan | Pragmatic open-label, multicenter randomized control trial Phase III n = 490 | 3-month HP versus 1-month HP |
2R2 (NCT03988933) https://clinicaltrials.gov/ct2/show/record/NCT03988933?recrs=ab&rslt=Without&type=Intr&cond=TB&phase=123&sort=nwst&draw=2 (accessed on 3 November 2022). | Determine if rifampin at double or triple the standard dose for 2 months is as safe and effective as the standard dose | Canada, Vietnam | Multicenter, randomized, partially blind, controlled trial Phase IIb n = 1359 | High-dose R (20 or 30 mg/kg) taken daily for 2 months versus 4-month R |
TPT and Rheumatic Disease (ChiCTR1800018242) https://www.chictr.org.cn/showprojen.aspx?proj=30532 (accessed on 3 November 2022). | Evaluate the effectiveness, safety and compliance of different preventive anti-tuberculosis treatments in rheumatic patients at high risk of active tuberculosis | China | Multicenter, open-label, randomized clinical trial Phase IV n = 500 | 3 months of RPT/INH versus 9 months of INH |
PROTID (NCT04600167) https://clinicaltrials.gov/ct2/show/record/NCT04600167?term=rifapentine&draw=5 (accessed on 3 November 2022). | Safety and efficacy of 3HP vs. placebo to prevent TB in people with diabetes | Uganda, Tanzania | Multicenter, randomized, double blind, placebo-controlled trial Phase III n = 3000 | One weekly 3 months of RPT/INH versus placebo |
Ultra Curto (NCT04703075) https://clinicaltrials.gov/ct2/show/record/NCT04703075?term=rifapentine&draw=2 (accessed on 3 November 2022). | Treatment success and safety of 1HP vs. 3HP among HIV-negative adult and adolescent HHCs and documented conversion within 2 years | Brazil | Multicenter, open-label, randomized clinical trial Phase IV n = 500 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agbota, G.; Bonnet, M.; Lienhardt, C. Management of Tuberculosis Infection: Current Situation, Recent Developments and Operational Challenges. Pathogens 2023, 12, 362. https://doi.org/10.3390/pathogens12030362
Agbota G, Bonnet M, Lienhardt C. Management of Tuberculosis Infection: Current Situation, Recent Developments and Operational Challenges. Pathogens. 2023; 12(3):362. https://doi.org/10.3390/pathogens12030362
Chicago/Turabian StyleAgbota, Gino, Maryline Bonnet, and Christian Lienhardt. 2023. "Management of Tuberculosis Infection: Current Situation, Recent Developments and Operational Challenges" Pathogens 12, no. 3: 362. https://doi.org/10.3390/pathogens12030362
APA StyleAgbota, G., Bonnet, M., & Lienhardt, C. (2023). Management of Tuberculosis Infection: Current Situation, Recent Developments and Operational Challenges. Pathogens, 12(3), 362. https://doi.org/10.3390/pathogens12030362