Significance of Circulating Cell-Free DNA Biomarkers in HBeAg-Negative Chronic Hepatitis B Virus Infection and Their Changes after Treatment Initiation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Patients
2.2. Definitions
2.3. Follow-Up
2.4. Laboratory Analysis
2.5. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Circulating cf-DNA Species
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jeng, W.J.; Papatheodoridis, G.V.; Lok, A.S.F. Hepatitis B. Lancet 2023, in press. [Google Scholar] [CrossRef] [PubMed]
- European Association for the Study of the Liver. EASL 2017 Clinical Practice Guidelines on the management of hepatitis B virus infection. J. Hepatol. 2017, 67, 370–398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papatheodoridis, G.V.; Manolakopoulos, S.; Dusheiko, G.; Archimandritis, A.J. Therapeutic strategies in the management of patients with chronic hepatitis B virus infection. Lancet Infect. Dis. 2008, 8, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Papatheodoridis, G.V.; Sypsa, V.; Dalekos, G.; Yurdaydin, C.; van Boemmel, F.; Buti, M.; Goulis, J.; Calleja, J.L.; Chi, H.; Manolakopoulos, S.; et al. Eight-year survival in chronic hepatitis B patients under long-term entecavir or tenofovir therapy is similar to the general population. J. Hepatol. 2018, 68, 1129–1136. [Google Scholar] [CrossRef]
- Papatheodoridis, G.V.; Lampertico, P.; Manolakopoulos, S.; Lok, A. Incidence of hepatocellular carcinoma in chronic hepatitis B patients receiving nucleos(t)ide therapy: A systematic review. J. Hepatol. 2010, 53, 348–356. [Google Scholar] [CrossRef] [Green Version]
- Papatheodoridis, G.V.; Sypsa, V.; Dalekos, G.N.; Yurdaydin, C.; Van Boemmel, F.; Buti, M.; Calleja, J.L.; Chi, H.; Goulis, J.; Manolakopoulos, S.; et al. Hepatocellular carcinoma prediction beyond year 5 of oral therapy in a large cohort of Caucasian patients with chronic hepatitis B. J. Hepatol. 2020, 72, 1088–1096. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, M.H.; Wong, G.; Gane, E.; Kao, J.H.; Dusheiko, G. Hepatitis B Virus: Advances in Prevention, Diagnosis, and Therapy. Clin. Microbiol. Rev. 2020, 33, e00046-19. [Google Scholar] [CrossRef]
- Volik, S.; Alcaide, M.; Morin, R.D.; Collins, C. Cell-free DNA (cfDNA): Clinical Significance and Utility in Cancer Shaped By Emerging Technologies. Mol. Cancer Res. MCR 2016, 14, 898–908. [Google Scholar] [CrossRef] [Green Version]
- Ranucci, R. Cell-Free DNA: Applications in Different Diseases. Methods Mol. Biol. 2019, 1909, 3–12. [Google Scholar] [CrossRef]
- Heitzer, E.; Auinger, L.; Speicher, M.R. Cell-Free DNA and Apoptosis: How Dead Cells Inform About the Living. Trends Mol. Med. 2020, 26, 519–528. [Google Scholar] [CrossRef]
- Kustanovich, A.; Schwartz, R.; Peretz, T.; Grinshpun, A. Life and death of circulating cell-free DNA. Cancer Biol. Ther. 2019, 20, 1057–1067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hummel, E.M.; Hessas, E.; Muller, S.; Beiter, T.; Fisch, M.; Eibl, A.; Wolf, O.T.; Giebel, B.; Platen, P.; Kumsta, R.; et al. Cell-free DNA release under psychosocial and physical stress conditions. Transl. Psychiatry 2018, 8, 236. [Google Scholar] [CrossRef] [Green Version]
- Jylhava, J.; Kotipelto, T.; Raitala, A.; Jylha, M.; Hervonen, A.; Hurme, M. Aging is associated with quantitative and qualitative changes in circulating cell-free DNA: The Vitality 90+ study. Mech. Ageing Dev. 2011, 132, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Jylhava, J.; Nevalainen, T.; Marttila, S.; Jylha, M.; Hervonen, A.; Hurme, M. Characterization of the role of distinct plasma cell-free DNA species in age-associated inflammation and frailty. Aging Cell 2013, 12, 388–397. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Wang, L. Cell-Free DNA Methylation Profiling Analysis-Technologies and Bioinformatics. Cancers 2019, 11, 1741. [Google Scholar] [CrossRef] [Green Version]
- Zeng, H.; He, B.; Yi, C.; Peng, J. Liquid biopsies: DNA methylation analyses in circulating cell-free DNA. J. Genet. Genom. Yi Chuan Xue Bao 2018, 45, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Liu, G.; Zhou, F.; Su, B.; Li, Y. DNA methylation profiles in cancer diagnosis and therapeutics. Clin. Exp. Med. 2018, 18, 1–14. [Google Scholar] [CrossRef]
- Unnikrishnan, A.; Freeman, W.M.; Jackson, J.; Wren, J.D.; Porter, H.; Richardson, A. The role of DNA methylation in epigenetics of aging. Pharmacol. Ther. 2019, 195, 172–185. [Google Scholar] [CrossRef]
- Hattori, N.; Ushijima, T. Analysis of DNA Methylation in Tissues Exposed to Inflammation. Methods Mol. Biol. 2018, 1725, 185–199. [Google Scholar] [CrossRef]
- Hammaker, D.; Firestein, G.S. Epigenetics of inflammatory arthritis. Curr. Opin. Rheumatol. 2018, 30, 188–196. [Google Scholar] [CrossRef]
- Low, D.; Mizoguchi, A.; Mizoguchi, E. DNA methylation in inflammatory bowel disease and beyond. World J. Gastroenterol. 2013, 19, 5238–5249. [Google Scholar] [CrossRef] [PubMed]
- Frank, M.O. Circulating Cell-Free DNA Differentiates Severity of Inflammation. Biol. Res. Nurs. 2016, 18, 477–488. [Google Scholar] [CrossRef] [PubMed]
- Bae, J.H.; Jo, S.I.; Kim, S.J.; Lee, J.M.; Jeong, J.H.; Kang, J.S.; Cho, N.J.; Kim, S.S.; Lee, E.Y.; Moon, J.S. Circulating Cell-Free mtDNA Contributes to AIM2 Inflammasome-Mediated Chronic Inflammation in Patients with Type 2 Diabetes. Cells 2019, 8, 328. [Google Scholar] [CrossRef] [Green Version]
- Karakousis, N.D.; Papatheodoridi, A.; Chatzigeorgiou, A.; Papatheodoridis, G. Cellular senescence and hepatitis B-related hepatocellular carcinoma: An intriguing link. Liver Int. Off. J. Int. Assoc. Study Liver 2020, 40, 2917–2927. [Google Scholar] [CrossRef] [PubMed]
- Papatheodoridi, A.; Chatzigeorgiou, A.; Chrysavgis, L.; Lembessis, P.; Loglio, A.; Facchetti, F.; Cholongitas, E.; Koutsilieris, M.; Lampertico, P.; Papatheodoridis, G. Circulating cell-free DNA species affect the risk of hepatocellular carcinoma in treated chronic hepatitis B patients. J. Viral Hepat. 2021, 28, 464–474. [Google Scholar] [CrossRef]
- Gong, B.; Xue, J.; Yu, J.; Li, H.; Hu, H.; Yen, H.; Hu, J.; Dong, Q.; Chen, F. Cell-free DNA in blood is a potential diagnostic biomarker of breast cancer. Oncol. Lett. 2012, 3, 897–900. [Google Scholar] [CrossRef] [Green Version]
- Diehl, F.; Schmidt, K.; Choti, M.A.; Romans, K.; Goodman, S.; Li, M.; Thornton, K.; Agrawal, N.; Sokoll, L.; Szabo, S.A.; et al. Circulating mutant DNA to assess tumor dynamics. Nat. Med. 2008, 14, 985–990. [Google Scholar] [CrossRef]
- Ding, S.C.; Lo, Y.M.D. Cell-Free DNA Fragmentomics in Liquid Biopsy. Diagnostics 2022, 12, 978. [Google Scholar] [CrossRef]
- Goncalves, E.; Goncalves-Reis, M.; Pereira-Leal, J.B.; Cardoso, J. DNA methylation fingerprint of hepatocellular carcinoma from tissue and liquid biopsies. Sci. Rep. 2022, 12, 11512. [Google Scholar] [CrossRef]
- Kay, J.; Thadhani, E.; Samson, L.; Engelward, B. Inflammation-induced DNA damage, mutations and cancer. DNA Repair 2019, 83, 102673. [Google Scholar] [CrossRef]
- Zhao, Z.; Dong, Q.; Liu, X.; Wei, L.; Liu, L.; Li, Y.; Wang, X. Dynamic transcriptome profiling in DNA damage-induced cellular senescence and transient cell-cycle arrest. Genomics 2020, 112, 1309–1317. [Google Scholar] [CrossRef] [PubMed]
- Sieben, C.J.; Sturmlechner, I.; van de Sluis, B.; van Deursen, J.M. Two-Step Senescence-Focused Cancer Therapies. Trends Cell Biol. 2018, 28, 723–737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chrysavgis, L.; Papatheodoridi, A.; Cholongitas, E.; Koutsilieris, M.; Papatheodoridis, G.; Chatzigeorgiou, A. Significance of Circulating Cell-Free DNA Species in Non-Alcoholic Fatty Liver Disease. Int. J. Mol. Sci. 2021, 22, 8849. [Google Scholar] [CrossRef]
- Ishida, T.; Ishida, M.; Tashiro, S.; Takeishi, Y. DNA Damage and Senescence-Associated Inflammation in Cardiovascular Disease. Biol. Pharm. Bull. 2019, 42, 531–537. [Google Scholar] [CrossRef] [Green Version]
- Tachtatzis, P.M.; Marshall, A.; Arvinthan, A.; Verma, S.; Penrhyn-Lowe, S.; Mela, M.; Scarpini, C.; Davies, S.E.; Coleman, N.; Alexander, G.J. Chronic Hepatitis B Virus Infection: The Relation between Hepatitis B Antigen Expression, Telomere Length, Senescence, Inflammation and Fibrosis. PLoS ONE 2015, 10, e0127511. [Google Scholar] [CrossRef] [Green Version]
- Sidler, C.; Woycicki, R.; Kovalchuk, I.; Kovalchuk, O. WI-38 senescence is associated with global and site-specific hypomethylation. Aging 2014, 6, 564–574. [Google Scholar] [CrossRef] [Green Version]
- Park, I.Y.; Sohn, B.H.; Yu, E.; Suh, D.J.; Chung, Y.H.; Lee, J.H.; Surzycki, S.J.; Lee, Y.I. Aberrant epigenetic modifications in hepatocarcinogenesis induced by hepatitis B virus X protein. Gastroenterology 2007, 132, 1476–1494. [Google Scholar] [CrossRef]
- Sampath, D.; Rao, V.A.; Plunkett, W. Mechanisms of apoptosis induction by nucleoside analogs. Oncogene 2003, 22, 9063–9074. [Google Scholar] [CrossRef] [Green Version]
- Bogdanovic, O.; Lister, R. DNA methylation and the preservation of cell identity. Curr. Opin. Genet. Dev. 2017, 46, 9–14. [Google Scholar] [CrossRef]
- Moore, L.D.; Le, T.; Fan, G. DNA methylation and its basic function. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 2013, 38, 23–38. [Google Scholar] [CrossRef] [Green Version]
- Pastor-Anglada, M.; Cano-Soldado, P.; Molina-Arcas, M.; Lostao, M.P.; Larrayoz, I.; Martinez-Picado, J.; Casado, F.J. Cell entry and export of nucleoside analogues. Virus Res. 2005, 107, 151–164. [Google Scholar] [CrossRef] [PubMed]
HBV Carriers (n = 30) | HBeAg-Negative CHB Patients (n = 31) | p Value | |
---|---|---|---|
Age, years | 42 ± 11 | 49 ± 13 | 0.033 |
Sex, males (%) | 18 (60) | 17 (55) | 0.684 |
Alcohol, n (%) No use Mild use | 21 (70) 9 (30) | 24 (77) 7 (23) | 0.510 |
Smoking, n (%) No Yes | 21 (70) 9 (30) | 25 (81) 6 (19) | 0.334 |
Type 2 diabetes, n (%) No Yes | 29 (96.7) 1 (3.3) | 30 (96.8) 1 (3.2) | 0.981 |
Dyslipidaemia, n (%) No Yes | 28 (93.3) 2 (6.7) | 30 (96.8) 1 (3.2) | 0.534 |
Other comorbidities, n (%) No Yes | 24 (80) 6 (20) | 22 (71) 9 (29) | 0.413 |
HBVDNA (IU/mL) | 229 {556} | 314,000 {3,490,000} | <0.001 |
ALT (IU/L) | 20 {13} | 95 {102} | <0.001 |
AST (IU/L) | 18 {6} | 50 {71} | <0.001 |
ALP (IU/L) | 72 {50} | 94 {75} | 0.015 |
GGT (IU/L) | 17 {14} | 27 {32} | 0.001 |
Total protein (g/L) | 71.5 ± 4 | 72 ± 4 | 0.660 |
Albumin (g/L) | 44 ± 4 | 42 ± 3 | 0.090 |
Platelets (×109/L) | 204 {72} | 176 {81} | 0.169 |
before Treatment | on Treatment | p Value | |
---|---|---|---|
ALT (IU/L) | 71 {100} | 25 {12} | <0.001 |
AST (IU/L) | 50 {59} | 24 {8} | 0.001 |
ALP (IU/L) | 96 {107} | 73 {18} | 0.008 |
GGT (IU/L) | 30 {28} | 16 {4} | 0.002 |
Total protein (g/L) | 72 ± 4 | 72 ± 3 | 0.609 |
Albumin (g/L) | 42 ± 3 | 41.5 ± 3 | 0.668 |
Platelets (×109/L) | 194 {79} | 170 {85} | 0.776 |
cf-DNA | 5-methyl-2′-deoxycytidine | |||
---|---|---|---|---|
Age, years | r = −0.030 | p = 0.816 | R= −0.018 | p = 0.896 |
Sex, male female | 13.0 {16.0} 11.3 {15.5} | p = 0.688 | 216.3 {126.6} 135.0 {85.2} | p = 0.001 |
Alcohol, No use Mild use | 13.0 {16.8} 8.5 {12.3} | p = 0.099 | 183.3 {114.1} 189.5 {148.0} | p = 0.479 |
Smoking, No Yes | 13.3 {18.3} 9.5 {9.5} | p = 0.110 | 168.8 {116.8} 192.1 {126.6} | p = 0.221 |
HBVDNA (IU/mL) | r = 0.143 | p = 0.274 | r = −0.134 | p = 0.333 |
ALT (IU/L) | r = 0.113 | p = 0.385 | r = −0.057 | p = 0.680 |
AST (IU/L) | r = 0.083 | p = 0.525 | r = −0.072 | p = 0.606 |
ALP (IU/L) | r = 0.022 | p = 0.869 | r = −0.061 | p = 0.671 |
GGT (IU/L) | r = 0.033 | p = 0.804 | r = 0.088 | p = 0.532 |
Total protein (g/L) | r = 0.023 | p = 0.894 | r = −0.034 | p = 0.854 |
Albumin (g/L) | r = −0.088 | p = 0.615 | r = 0.012 | p = 0.948 |
Platelets (×109/L) | r = 0.155 | p = 0.238 | r = −0.040 | p = 0.775 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karakousis, N.D.; Chrysavgis, L.; Papatheodoridi, A.; Legaki, A.-I.; Lembessis, P.; Cholongitas, E.; Chatzigeorgiou, A.; Papatheodoridis, G. Significance of Circulating Cell-Free DNA Biomarkers in HBeAg-Negative Chronic Hepatitis B Virus Infection and Their Changes after Treatment Initiation. Pathogens 2023, 12, 394. https://doi.org/10.3390/pathogens12030394
Karakousis ND, Chrysavgis L, Papatheodoridi A, Legaki A-I, Lembessis P, Cholongitas E, Chatzigeorgiou A, Papatheodoridis G. Significance of Circulating Cell-Free DNA Biomarkers in HBeAg-Negative Chronic Hepatitis B Virus Infection and Their Changes after Treatment Initiation. Pathogens. 2023; 12(3):394. https://doi.org/10.3390/pathogens12030394
Chicago/Turabian StyleKarakousis, Nikolaos D., Lampros Chrysavgis, Alkistis Papatheodoridi, Aigli-Ioanna Legaki, Panagiotis Lembessis, Evangelos Cholongitas, Antonios Chatzigeorgiou, and George Papatheodoridis. 2023. "Significance of Circulating Cell-Free DNA Biomarkers in HBeAg-Negative Chronic Hepatitis B Virus Infection and Their Changes after Treatment Initiation" Pathogens 12, no. 3: 394. https://doi.org/10.3390/pathogens12030394
APA StyleKarakousis, N. D., Chrysavgis, L., Papatheodoridi, A., Legaki, A. -I., Lembessis, P., Cholongitas, E., Chatzigeorgiou, A., & Papatheodoridis, G. (2023). Significance of Circulating Cell-Free DNA Biomarkers in HBeAg-Negative Chronic Hepatitis B Virus Infection and Their Changes after Treatment Initiation. Pathogens, 12(3), 394. https://doi.org/10.3390/pathogens12030394