Evaluation of Molecular Methods to Identify Chagas Disease and Leishmaniasis in Blood Donation Candidates in Two Brazilian Centers
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. ELISA to Detect Anti-T. cruzi Antibodies
2.3. IFAT to Detect Anti-Leishmania Antibodies
2.4. DNA Extraction
2.5. Nested PCR to Detect T. cruzi Satellite DNA
2.6. PCR to Detect Leishmania Kinetoplast DNA
2.7. Real-Time PCR for DNA Quantification and Melting Curve Analysis (MCA)
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ANVISA–Agência nacional de Vigilância Sanitária. 6 Boletim de Produção Hemoterápica. Brasília, 2018. Available online: https://www.gov.br/anvisa/pt-br/centraisdeconteudo/publicacoes/sangue-tecidos-celulas-e-orgaos/producao-e-avaliacao-de-servicos-de-hemoterapia/6deg-boletim-de-producao-hemoterapica-2018.pdf/view (accessed on 15 April 2022).
- BRASIL. Resolução RDC nº 343, de 13 de dezembro de 2002. Diário Oficial da União, seção 1, p.133–143. Brasília, 2002. Available online: https://pesquisa.in.gov.br/imprensa/jsp/visualiza/index.jsp?data=19/12/2002&jornal=1&pagina=133&totalArquivos=336 (accessed on 15 April 2022).
- World Health Organization. Chagas Disease (American Trypanosomiasis). Fact Sheet; 2016. Available online: http://www.who.int/mediacentre/factsheets/fs340/en/ (accessed on 13 May 2020).
- Coura, J.R. The main sceneries of Chagas disease transmission. The vectors, blood and oral transmissions—A comprehensive review. Mem. Inst. Oswaldo Cruz 2015, 110, 277–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigues Coura, J.; Viñas, P.A.; Junqueira, A.C. Ecoepidemiology, short history and control of Chagas disease in the endemic countries and the new challenge for non-endemic countries. Mem. Inst. Oswaldo Cruz 2014, 109, 856–862. Available online: http://www.scielo.br/pdf/mioc/v109n7/0074-0276-mioc-0074-0276140236.pdf (accessed on 1 April 2019). [CrossRef] [Green Version]
- França, A.; Castro, V.; Lima, M., Jr.; Pontes, E.; Dorval, M. Anti-Leishmania antibodies in blood donors from the Midwest region of Brazil. Transf. Apher. Sci. 2013, 49, 627–630. [Google Scholar] [CrossRef] [PubMed]
- Aliaga, L.; Ceballos, J.; Sampedro, A.; Fernando, C.; López-Nevot, M.Á.; Merino-Espinosa, G.; Morillas-Márquez, F.; Martín-Sánchez, J. Asymptomatic Leishmania infection in blood donors from the Southern of Spain. Infection 2019, 47, 739–747. [Google Scholar] [CrossRef] [PubMed]
- Asfaram, S.; Fakhar, M.; Mohebali, M.; Mardani, A.; Banimostafavi, E.S.; Ziaei Hezarjaribi, H.; Soosaraei, M. Asymptomatic human blood donors carriers of Leishmania infantum: Potential reservoirs for visceral leishmaniasis in northwestern Iran. Transfus. Apher. Sci. 2017, 56, 474–479. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira França, A.; de Oliveira Ramos Pereira, L.; Ortiz Tanaka, T.S.; Pereira de Oliveira, M.; Cavalheiros Dorval, M.E. Viability of Leishmania in blood donors: A tangible possibility of transfusion transmission. J. Microbiol. Immunol. Infect. 2020, 53, 176–178. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Control of the Leishmaniases: Report of a Meeting of the WHO Expert Commitee on the Control of Leishmaniases. Geneva. 2010. Available online: https://apps.who.int/iris/handle/10665/44412 (accessed on 27 April 2020).
- Gama, M.E.A.; Costa, J.M.L.; Gomes, C.M.C.; Corbett, C.E.P. Subclinical Form of the American Visceral Leishmaniasis. Mem. Inst. Oswaldo Cruz 2004, 99, 889–893. [Google Scholar] [CrossRef] [Green Version]
- Andrade-Narvaez, F.J.; Nalleli Loría-Cervera, E.; Sosa-Bibiano, E.I.; Van Wynsberghe, N.R. Asymptomatic infection with American cutaneous leishmaniasis: Epidemiological and immunological studies. Mem. Inst. Oswaldo Cruz 2016, 111, 599. [Google Scholar] [CrossRef] [Green Version]
- Simpson, L. The Mitochondrial Genome of Kinetoplastid Protozoa: Genomic Organization, Transcription, Replication, and Evolution. Annu. Rev. Microbiol. 1987, 41, 363–382. Available online: http://dna.kdna.ucla.edu/simpsonlab/Labpublications/Scanned/ThemitochodiralGenomeof.pdf (accessed on 29 August 2017).
- Mcconville, M.J.; Mullin, K.A.; Ilgoutz, S.C.; Teasdale, R.D. Secretory Pathway of Trypanosomatid Parasites. Microbiol. Mol. Biol. Rev. 2002, 66, 122–154. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, S.M.; Márcia, R.; De Paiva, C.; Kangussu-Marcolino, M.M.; Darocha, W.D. Trypanosomatid comparative genomics: Contributions to the study of parasite biology and different parasitic diseases Tri-Tryp Diseases and The Tri-Tryp Genomes. Genet. Mol. Biol. 2012, 35, 1–17. Available online: www.sbg.org.br (accessed on 30 April 2020).
- Maria Ferreira-Silva, M.; Fernando Guimarães Carvalho, S.; Fernandes Lula, J.; De Freitas Teles, L.; Valadares Basques, F.; Almeida Silva Teixeira, L.; Tibúrcio, M.G.S.; Moraes-Souza, H. Evaluation of Cross Reactivity between Trypanosoma cruzi and Leishmania infantum in Serologically Ineligible Blood Donors due to Chagas Disease. Rev. Patol. Trop. 2017, 46, 113–119. [Google Scholar] [CrossRef] [Green Version]
- WHO. Chagas disease: Control and elimination. In SIxty-Third World Healhy Assembly; WHO: Geneva, Switzerland, 2010; p. 4. [Google Scholar]
- Dias, J.; Ramos, A., Jr.; Gontijo, E.; Luquetti, A.; Shikanai-Yasuda, M.; Coura, J.R.; Torres, R.M.; da Cunha Melo, J.R.; de Almeida, E.A.; de Oliveira, W., Jr.; et al. II Consenso Brasileiro em doença de Chagas, 2015. Epidemiol. Serv. Saúde. 2015, 25, 7–86. [Google Scholar]
- Umezawa, E.S.; Bastos, S.F.; Coura, J.R.; Levin, M.J.; Gonzalez, A.; Rangel-Aldao, R.; Zingales, B.; Luquetti, A.O.; da Silveira, J.F. An improved serodiagnostic test for Chagas’ disease employing a mixture of Trypanosoma cruzi recombinant antigens. Transfusion 2003, 43, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Caballero, Z.C.; Sousa, O.E.; Marques, W.P.; Saez-Alquezar, A.; Umezawa, E.S. Evaluation of Serological Tests To Identify Trypanosoma cruzi Infection in Humans and Determine Cross-Reactivity with Trypanosoma rangeli and Leishmania spp. Clin. Vaccine Immunol. 2007, 14, 1045–1049. [Google Scholar] [CrossRef] [Green Version]
- Santos, F.L.N.; Celedon, P.A.F.; Zanchin, N.I.T.; De Arruda Campos Brasil, T.; Foti, L.; De Souza, W.V.; Silva, E.D.; de Miranda Gomes, Y.; Krieger, M.A. Performance assessment of four chimeric Trypanosoma cruzi antigens based on antigen-antibody detection for diagnosis of chronic chagas disease. PLoS ONE 2016, 11, e0161100. [Google Scholar] [CrossRef] [Green Version]
- Tavares Daltro, R.; Maia Leony, L.; Erdens Maron Freitas, N.; Antônio Oliveira Silva, Â.; Ferreira Santos, E.; Pimenta Del-Rei, R.; Brito, M.E.F.; Brandão-Filho, S.P.; Gomes, Y.M.; Silva, M.S.; et al. Cross-Reactivity Using Chimeric Trypanosoma cruzi Antigens: Diagnostic Performance in Settings Where Chagas Disease and American Cutaneous or Visceral Leishmaniasis Are Coendemic. J. Clin. Microb. 2019, 57, e00762-19. [Google Scholar]
- Reis-Cunha, J.; Mendes, T.; Lourdes, R.; Ribeiro, D.; Machado-de-Avila, R.; Tavares, M.; Lemos, D.S.; Câmara, A.C.J.; Olórtegui, C.C.; de Lana, M.; et al. Genome-Wide Screening and Identification of New Trypanosoma cruzi Antigens with Potential Application for Chronic Chagas Disease Diagnosis. PLoS ONE 2014, 9, e106304. Available online: www.plosone.org (accessed on 30 March 2020).
- Schijman, A.G.; Bisio, M.; Orellana, L.; Sued, M.; Duffy, T.; Mejia Jaramillo, A.M.; Cura, C.; Autor, F.; Veron, V.; Qvarnstrom, Y.; et al. International study to evaluate PCR methods for detection of Trypanosoma cruzi DNA in blood samples from Chagas disease patients. PLoS Negl. Trop. Dis. 2011, 5, e931. [Google Scholar] [CrossRef]
- Higuera, S.L.; Guhl, F.; Ramírez, J.D. Identification of Trypanosoma cruzi Discrete Typing Units (DTUs) through the implementation of a High-Resolution Melting (HRM) genotyping assay. Parasit. Vectors 2013, 6, 112. [Google Scholar] [CrossRef] [Green Version]
- Pita-Pereira, D.; Lins, R.; Oliveira, M.P.; Lima, R.B.; Pereira, B.A.; Moreira, O.C.; Brazil, R.P.; Britto, C. SYBR Green-based Real-Time PCR targeting kinetoplast DNA can be used to discriminate between the main etiologic agents of Brazilian cutaneous and visceral leishmaniases. Parasit. Vectors 2012, 5, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ceccarelli, M.; Galluzzi, L.; Diotallevi, A.; Andreoni, F.; Fowler, H.; Petersen, C.; Vitale, F.; Magnani, M. The use of kDNA minicircle subclass relative abundance to differentiate between Leishmania (L.) infantum and Leishmania (L.) amazonensis. Parasit. Vectors 2017, 10, 239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Morais, R.C.S.; da Costa Oliveira, C.N.; da Cunha Gonçalves de Albuquerque, S.; Mendonça Trajano Silva, L.A.; Pessoa-e-Silva, R.; Alves da Cruz, H.L.; de Brito, M.D.F.; de Paiva Cavalcanti, M. Real-time PCR for Leishmania species identification: Evaluation and comparison with classical techniques. Exp. Parasitol. 2016, 165, 43–50. [Google Scholar] [CrossRef] [PubMed]
- De Paiva Cavalcanti, M.; Dantas-Torres, F.; da Cunha Gonçalves de Albuquerque, S.; Carla Silva de Morais, R.; Edileuza Felinto de Brito, M.; Otranto, D.; Brandão-Filho, S.P. Quantitative real time PCR assays for the detection of Leishmania (Viannia) braziliensis in animals and humans. Mol. Cell. Probes. 2013, 27, 122–128. [Google Scholar] [CrossRef]
- Zampieri, R.A.; Laranjeira-Silva, M.F.; Muxel, S.M.; Stocco de Lima, A.C.; Shaw, J.J.; Floeter-Winter, L.M. High Resolution Melting Analysis Targeting hsp70 as a Fast and Efficient Method for the Discrimination of Leishmania Species. PLoS Negl. Trop. Dis. 2016, 10, e0004485. [Google Scholar] [CrossRef] [Green Version]
- De Almeida, M.E.; Koru, O.; Steurer, F.; Herwaldt, B.L.; Da Silva, A.J. Detection and Differentiation of Leishmania spp. in Clinical Specimens by Use of a SYBR Green-Based Real-Time PCR Assay. J. Clin. Microb. 2017, 55, 281–290. [Google Scholar] [CrossRef] [Green Version]
- Diotallevi, A.; Buffi, G.; Ceccarelli, M.; Neitzke-Abreu, H.C.; Gnutzmann, L.V.; da Costa Lima, M.S., Jr.; Di Domenico, A.; De Santi, M.; Magnani, M.; Galluzzi, L. Real-time PCR to differentiate among Leishmania (Viannia) subgenus, Leishmania (Leishmania) infantum and Leishmania (Leishmania) amazonensis: Application on Brazilian clinical samples. Acta Trop. 2020, 201, 105178. [Google Scholar] [CrossRef]
- Ceccarelli, M.; Diotallevi, A.; Buffi, G.; De Santi, M.; Fernández-Figueroa, E.A.; Rangel-Escareño, C.; Muñoz-Montero, S.A.; Becker, I.; Magnani, M.; Galluzzi, L. Differentiation of Leishmania (L.) infantum, Leishmania (L.) amazonensis and Leishmania (L.) Mexicana using sequential QPCR assays and high resolution melt analysis. Microorganisms 2020, 8, 818. [Google Scholar] [CrossRef]
- Moser, D.R.; Kirchhoff, L.V.; Donelson, J.E. Detection of Trypanosoma cruzi by DNA Amplification Using the Polymerase Chain Reaction. J. Clin. Microbiol. 1989, 27, 1477–1482. [Google Scholar] [CrossRef] [Green Version]
- Kirchhoff, L.V.; Votava, J.R.; Ochs, D.E.; Moser, D.R. Comparison of PCR and Microscopic Methods for Detecting Trypanosoma cruzi. J. Clin. Microbiol. 1996, 34, 1171–1175. [Google Scholar] [CrossRef] [Green Version]
- Marcon, G.; Andrade, P.; Albuquerque, D.; Wanderley, J.; Almeida, E.; Guariento, M.; Costa, S.C.B. Use of a nested polymerase chain reaction (N-PCR) to detect Trypanosoma cruzi in blood samples from chronic chagasic patients and patients with doubtful serologies. Diagn. Microb. Infect. Dis. 2002, 43, 39–43. [Google Scholar] [CrossRef] [PubMed]
- Pirmez, C.; Da Silva Trajano, V.; Neto, M.P.O.; Da-Cruz, A.M.; Gonçalves-Da-Costa, S.C.; Catanho, M.; Degrave, W.; Fernandes, O. Use of PCR in diagnosis of human American tegumentary leishmaniasis in Rio de Janeiro, Brazil. J. Clin. Microbiol. 1999, 37, 1819–1823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castro, L.S.; de Oliveira França, A.; de Castro Ferreira, E.; da Costa Lima Lina Júnior, M.S.; Gontijo, C.M.F.; Pereira, A.A.S.; Dorval, M.E.C. Characterization of Leishmania species from Central-West Region of Brazil. Parasitol. Res. 2018, 117, 1839–1845. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira França, A.; Pompilio, M.A.; Pontes, E.R.J.C.; de Oliveira, M.P.; Pereira, L.O.R.; Lima, R.B.; Goto, H.; Sanchez, M.C.A.; Fujimori, M.; da Costa Lima-Júnior, M.S.; et al. Leishmania infection in blood donors: A new challenge in leishmaniasis transmission? PLoS ONE 2018, 13, e0198199. [Google Scholar]
- Piron, M.; Fisa, R.; Casamitjana, N.; López-Chejade, P.; Puig, L.; Vergés, M.; Gascón, J.; Prat, J.G.; Portús, M.; Sauleda, S. Development of a real-time PCR assay for Trypanosoma cruzi detection in blood samples. Acta Trop. 2007, 103, 195–200. [Google Scholar] [CrossRef]
- Ceccarelli, M.; Galluzzi, L.; Migliazzo, A.; Magnani, M. Detection and Characterization of Leishmania (Leishmania) and Leishmania (Viannia) by SYBR Green-Based Real-Time PCR and High Resolution Melt Analysis Targeting Kinetoplast Minicircle DNA. PLoS ONE 2014, 9, e88845. [Google Scholar] [CrossRef] [Green Version]
- Ceccarelli, M.; Galluzzi, L.; Sisti, D.; Bianchi, B.; Magnani, M. Application of qPCR in conjunctival swab samples for the evaluation of canine leishmaniasis in borderline cases or disease relapse and correlation with clinical parameters. Parasit. Vectors 2014, 7, 460. Available online: http://www.parasitesandvectors.com/content/7/1/460 (accessed on 23 September 2020). [CrossRef]
- Schijman, A.G.; Alonso-Padilla, J.; Longhi, S.A.; Picado, A. Parasitological, serological and molecular diagnosis of acute and chronic chagas disease: From field to laboratory. Mem. Inst. Oswaldo Cruz 2022, 117, e200444. [Google Scholar] [CrossRef]
- Moreira, O.C.; Ramírez, J.D.; Velázquez, E.; Melo, M.F.A.D.; Lima-Ferreira, C.; Guhl, F.; Sosa-Estani, S.; Martin-Neto, J.A.; Morillo, C.A.; Britto, C. Towards the establishment of a consensus real-time qPCR to monitor Trypanosoma cruzi parasitemia in patients with chronic Chagas disease cardiomyopathy: A substudy from the BENEFIT trial. Acta Trop. 2013, 125, 23–31. [Google Scholar] [CrossRef]
- Sidstedt, M.; Rådström, P.; Hedman, J. PCR inhibition in qPCR, dPCR and MPS—Mechanisms and solutions. Anal. Bioanal. Chem. 2020, 412, 2009–2023. [Google Scholar] [CrossRef] [Green Version]
- Acharya, K.R.; Dhand, N.K.; Whittington, R.J.; Plain, K.M. PCR inhibition of a quantitative PCR for detection of Mycobacterium avium subspecies paratuberculosis DNA in feces: Diagnostic implications and potential solutions. Front. Microbiol. 2017, 8, 115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, J.; Nascimento, F.; Marcon, G.; De Almeida, E.; Costa, S. Methods and parameters of melting curve analysis for identification of Leishmania species: A scoping review. Asian Pac. J. Trop. Med. 2021, 14, 528–542. [Google Scholar] [CrossRef]
- Batista-Dos-Santos, S.A.; Freitas, D.R.C.; Raiol, M.; Cabral, G.F.; Feio, A.C.; Póvoa, M.M.; Cunha, M.G.; Ribeiro-Dos-Santos, Â. Strategy to improve malaria surveillance system preventing transfusion-transmitted malaria in blood banks using molecular diagnostic. Malar, J. 2018, 17, 344, PMCID:PMC6167815. [Google Scholar] [CrossRef] [PubMed]
- Brasil Ministério da Saúde. Secretaria de Atenção à Saúde. Departamento de Atenção Hospitalar e de Urgência. Implantação e rotina dos testes de ácidos nucleicos (NAT) em serviços de hemoterapia – manual operacional 1. ed. – Brasília. 2013. Available online: https://bvsms.saude.gov.br/bvs/publicacoes/implantacao_rotina_acidos_nucleicos_manual.pdf (accessed on 22 February 2023).
Variable | Donation Candidates (n = 37) | Positive Controls (n = 18) | Negative Controls (n = 11) |
---|---|---|---|
Gender | |||
male | 20 (54.1%) | 06 (33.3%) | 04 (36.4%) |
female | 17 (45.9%) | 12 (66.7%) | 07 (63.6%) |
Age Mean ± SD (years) | 44.4 ± 13.4 | 62.8 ± 9.9 | 40.3 ± 13.3 |
Birth location (State) | |||
São Paulo | 18 (48.65%) | 04 (22.2%) | 11 (100%) |
Mato Grosso do Sul | 06 (16.22 %) | - | - |
Bahia | 03 (8.11%) | 01 (5.6%) | - |
Paraná | 03 (8.11%) | 02 (11 %) | - |
Minas Gerais | 02 (5.41%) | 08 (44.4%) | - |
Ceará | 01 (2.7%) | 01 (5.6%) | - |
Rio de Janeiro | 01 (2.7%) | - | - |
Alagoas | 01 (2.7%) | 01 (5.6%) | - |
Pernambuco | 01 (2.7%) | - | - |
Rio Grande do Sul | 01 (2.7%) | - | - |
Paraíba | 00 (0.00%) | 01 (5.6%) | - |
Educational level | |||
None | 03 (8.11%) | - | - |
Primary School | 05 (13.51%) | 15 (83.4%) | 01 (9.1%) |
Secondary School | 15 (40.54%) | 02 (11%) | 02 (18.2%) |
Higher Education | 14 (37.84%) | 01 (5.6%) | 07 (72.7%) |
Chagas Disease Tests | ||||||
---|---|---|---|---|---|---|
CMIA Blood Banks | ELISA | nPCR | qPCR | Interpretation Tests | ||
Blood donor candidates | HCPS 1 | I | NR | P | ND | Positive |
HCPS 2 | I | NR | N | 0.132 Par Eq/mL | Positive | |
HCPS 3 | I | NR | P | 0.007 Par Eq/mL | Positive | |
HCPS 4 | I | NR | N | 0.07 Par Eq/mL | Positive | |
HCPS 5 | I | NR | P | 0.005 Par Eq/mL | Positive | |
HCPS 6 | I | NR | P | 0.004 Par Eq/mL | Positive | |
HCPS 7 | I | NR | N | ND | Inconclusive | |
HCPS 8 | I | NR | N | ND | Inconclusive | |
HCPS 9 | I | NR | IRT | 0.1 Par Eq/mL | Positive | |
HCPS 10 | I | R | IRT | ND | Inconclusive | |
HCPS 11 | I | NR | N | 0.002 Par Eq/mL | Positive | |
HCPS 12 | I | NR | N | ND | Inconclusive | |
HCPS 13 | I | NR | P | 0.07 Par Eq/mL | Positive | |
HCPS 14 | R | NR | N | ND | Inconclusive | |
HCPS 15 | I | NR | P | ND | Positive | |
HCPS 16 | R | R | N | ND | Positive | |
HCPS 17 | I | NR | N | ND | Inconclusive | |
HCPS 18 | I | NR | P | D < 0.002 Par Eq/mL | Positive | |
HCPS 19 | I | R | P | ND | Positive | |
HCPS 20 | I | NR | N | ND | Inconclusive | |
HCPS 21 | I | NR | P | ND | Positive | |
HCPS 22 | I | R | N | ND | Inconclusive | |
HCPS 23 | I | NR | N | ND | Inconclusive | |
HCPS 24 | I | R | N | ND | Inconclusive | |
HCPS 25 | I | NR | WS | WS | Inconclusive | |
HCPS 26 | I | WS | P | ND | Positive | |
HCPS 27 | R | R | P | D < 0.002 Par Eq/mL | Positive | |
HCPS 28 | I | R | N | ND | Inconclusive | |
HMS 1 | I | NR | IRT | ND | Inconclusive | |
HMS 2 | I | WS | N | ND | Inconclusive | |
HMS 3 | I | NR | N | ND | Inconclusive | |
HMS 4 | I | NR | N | ND | Inconclusive | |
HMS 5 | I | NR | P | ND | Positive | |
HMS 6 | I | R | IRT | ND | Inconclusive | |
HMS 7 | I | NR | IRT | ND | Inconclusive | |
HMS 8 | I | NR | WS | WS | Inconclusive | |
HMS 9 | I | R | N | 0.15 Par Eq/mL | Positive | |
n = 37 03 P/34 I | n = 35 09 R/26 NR | n = 35 12 P/18 N/05 IRT | n = 35 11 D/24 ND | n = 37 18 P/19 I |
Study Population/Positive Tests for Chagas Disease | CMIA | ELISA | nPCR | qPCR |
---|---|---|---|---|
Non-negative for CD (n = 37) | 37 | 09/35 (24.3%) | 12/35 (34.28%) | 11/35 (31.42%) |
Positive controls (n = 18) | NT | 17/18 (94.4%) | 7/18 (38.8%) | 5/18 (27.7%) |
Negative controls (n = 11) | NT | 0/11 (0%) | 0/11 (0%) | 0/11 (0%) |
Parasite | Variable | Samples Tested | Average Temperature °C | Standard Deviation | Minimum Temperature °C | Median Temperature °C | Maximum Temperature °C | Variation Coefficient | p-Value |
---|---|---|---|---|---|---|---|---|---|
Leishmania infantum | MT | 179 | 81.28 | 0.58 | 79.20 | 81.30 | 83.00 | 0.72 | <0.0001 |
CT | 113 | 31.25 | 7.94 | 12.45 | 33.22 | 44.53 | 25.42 | ||
Trypanosoma cruzi | MT | 200 | 81.86 | 0.45 | 80.20 | 81.80 | 83.50 | 0.55 | |
CT | 186 | 25.72 | 7.14 | 12.14 | 26.94 | 40.00 | 27.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, J.d.J.G.; Costa, S.C.B.; Addas-Carvalho, M.; Pereira, M.B.; França, A.d.O.; de Lima, R.G.; Andrade, P.D.; Wanderley, J.d.S.; Martins, L.C.; de Almeida, E.A.; et al. Evaluation of Molecular Methods to Identify Chagas Disease and Leishmaniasis in Blood Donation Candidates in Two Brazilian Centers. Pathogens 2023, 12, 508. https://doi.org/10.3390/pathogens12040508
Ferreira JdJG, Costa SCB, Addas-Carvalho M, Pereira MB, França AdO, de Lima RG, Andrade PD, Wanderley JdS, Martins LC, de Almeida EA, et al. Evaluation of Molecular Methods to Identify Chagas Disease and Leishmaniasis in Blood Donation Candidates in Two Brazilian Centers. Pathogens. 2023; 12(4):508. https://doi.org/10.3390/pathogens12040508
Chicago/Turabian StyleFerreira, Juliana de Jesus Guimarães, Sandra Cecília Botelho Costa, Marcelo Addas-Carvalho, Mariane Barroso Pereira, Adriana de Oliveira França, Rodrigo Gonçalves de Lima, Paula Durante Andrade, Jamiro da Silva Wanderley, Luiz Cláudio Martins, Eros Antonio de Almeida, and et al. 2023. "Evaluation of Molecular Methods to Identify Chagas Disease and Leishmaniasis in Blood Donation Candidates in Two Brazilian Centers" Pathogens 12, no. 4: 508. https://doi.org/10.3390/pathogens12040508
APA StyleFerreira, J. d. J. G., Costa, S. C. B., Addas-Carvalho, M., Pereira, M. B., França, A. d. O., de Lima, R. G., Andrade, P. D., Wanderley, J. d. S., Martins, L. C., de Almeida, E. A., & Marcon, G. E. B. (2023). Evaluation of Molecular Methods to Identify Chagas Disease and Leishmaniasis in Blood Donation Candidates in Two Brazilian Centers. Pathogens, 12(4), 508. https://doi.org/10.3390/pathogens12040508