Understanding Animal-Plant-Parasite Interactions to Improve the Management of Gastrointestinal Nematodes in Grazing Ruminants
Abstract
:1. Introduction
2. Effects of Gastrointestinal Nematode Infections on Biological Functioning, Behaviour, and Affective States
3. Interactions between Nutrition and Gastrointestinal Nematodes and Animal Strategies to Cope with Parasite Infections
4. Resistance to Gastrointestinal Nematodes
5. Some Environmental and Grazing Management Effects on the Parasite-Host Cycle in the Pasture
6. Conclusions and Final Considerations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Lima, S.L.; Dill, L.M. Behavioral decisions made under the risk of predation: A review and prospectus. Can. J. Zool. 1990, 68, 619–640. [Google Scholar] [CrossRef]
- Sharp, J.G.; Garnick, S.; Elgar, M.A.; Coulson, G. Parasite and predator risk assessment: Nuanced use of olfactory cues. Proc. R. Soc. B 2015, 282, 20151941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Craig, B.H.; Pilkington, J.G.; Pemberton, J.M. Gastrointestinal nematode species burdens and host mortality in a feral sheep population. Parasitology 2006, 133, 485–496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, J.E.; Kaplan, R.M.; Pugh, D.G. Chapter 6-Internal Parasites. In Sheep and Goat Medicine, 2nd ed.; Pugh, D.G., Baird, A.N., Eds.; W.B. Saunders: St. Louis, MO, USA, 2012; pp. 106–125. [Google Scholar]
- Mavrot, F.; Hertzberg, H.; Torgerson, P. Effect of gastro-intestinal nematode infection on sheep performance: A systematic review and meta-analysis. Parasites Vectors 2015, 8, 557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sutherland, I.A.; Leathwick, D.M. Anthelmintic resistance in nematode parasites of cattle: A global issue? Trends Parasitol. 2011, 27, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Baiak, B.H.B.; Lehnen, C.R.; Rocha, R.A. Anthelmintic resistance in cattle: A systematic review and meta-analysis. Livest. Sci. 2018, 217, 127–135. [Google Scholar] [CrossRef]
- Rose Vineer, H.; Morgan, E.R.; Hertzberg, H.; Bartley, D.J.; Bosco, A.; Charlier, J.; Chartier, C.; Claerebout, E.; De Waal, T.; Hendrickx, G. Increasing importance of anthelmintic resistance in European livestock: Creation and meta-analysis of an open database. Parasite 2020, 27, 69. [Google Scholar] [CrossRef]
- Charlier, J.; Bartley, D.; Sotiraki, S.; Martinez-Valladares, M.; Claerebout, E.; von Samson-Himmelstjerna, G.; Thamsborg, S.; Hoste, H.; Morgan, E.; Rinaldi, L. Anthelmintic resistance in ruminants: Challenges and solutions. Adv. Parasitol. 2022, 115, 171–227. [Google Scholar] [PubMed]
- Kaplan, R.M.; Vidyashankar, A.N. An inconvenient truth: Global worming and anthelmintic resistance. Vet. Parasitol. 2012, 186, 70–78. [Google Scholar] [CrossRef]
- Gravdal, M.; Robertson, L.J.; Tysnes, K.R.; Höglund, J.; Chartier, C.; Stuen, S. Treatment against helminths in Norwegian sheep: A questionnaire-based survey. Parasite 2021, 28, 63. [Google Scholar] [CrossRef]
- Zanzani, S.A.; Gazzonis, A.L.; Di Cerbo, A.; Varady, M.; Manfredi, M.T. Gastrointestinal nematodes of dairy goats, anthelmintic resistance and practices of parasite control in Northern Italy. BMC Vet. Res. 2014, 10, 114. [Google Scholar] [CrossRef] [Green Version]
- Zajac, A.M.; Garza, J. Biology, Epidemiology, and Control of Gastrointestinal Nematodes of Small Ruminants. Vet. Clin. Food Anim. 2020, 36, 73–87. [Google Scholar] [CrossRef]
- Charlier, J.; De Waele, V.; Ducheyne, E.; van der Voort, M.; Vande Velde, F.; Claerebout, E. Decision making on helminths in cattle: Diagnostics, economics and human behaviour. Ir. Vet. J. 2016, 69, 14. [Google Scholar] [CrossRef] [Green Version]
- Silva, S.R.; Sacarrão-Birrento, L.; Almeida, M.; Ribeiro, D.M.; Guedes, C.; González Montaña, J.R.; Pereira, A.F.; Zaralis, K.; Geraldo, A.; Tzamaloukas, O.; et al. Extensive Sheep and Goat Production: The Role of Novel Technologies towards Sustainability and Animal Welfare. Animals 2022, 12, 885. [Google Scholar] [CrossRef] [PubMed]
- Beynon, S. Potential environmental consequences of administration of anthelmintics to sheep. Vet. Parasitol. 2012, 189, 113–124. [Google Scholar] [CrossRef]
- Niezen, J.; Robertson, H.; Miller, C.; Hay, F. The development of Trichostrongylus colubriformis larvae on a range of herbage species or on plots of differing topographical aspect. Vet. Parasitol. 2003, 112, 227–240. [Google Scholar] [CrossRef]
- Rocha, R.A.D.; Rocha, G.P.D.; Bricarello, P.A.; Amarante, A.F. Recuperação de larvas infectantes de Trichostrongylus colubriformis em três espécies de gramíneas contaminadas no verão. Rev. Bras. Parasitol. Vet. 2008, 17, 227–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lumaret, J.-P.; Errouissi, F. Use of anthelmintics in herbivores and evaluation of risks for the non target fauna of pastures. Vet. Res. 2002, 33, 547–562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zortéa, T.; Segat, J.C.; Maccari, A.P.; Sousa, J.P.; Da Silva, A.S.; Baretta, D. Toxicity of four veterinary pharmaceuticals on the survival and reproduction of Folsomia candida in tropical soils. Chemosphere 2017, 173, 460–465. [Google Scholar] [CrossRef]
- Junco, M.; Iglesias, L.; Sagués, M.; Guerrero, I.; Zegbi, S.; Saumell, C.A. Effect of macrocyclic lactones on nontarget coprophilic organisms: A review. Parasitol. Res. 2021, 120, 773–783. [Google Scholar] [CrossRef]
- Kołodziejska, M.; Maszkowska, J.; Białk-Bielińska, A.; Steudte, S.; Kumirska, J.; Stepnowski, P.; Stolte, S. Aquatic toxicity of four veterinary drugs commonly applied in fish farming and animal husbandry. Chemosphere 2013, 92, 1253–1259. [Google Scholar] [CrossRef]
- Cooper, K.M.; McMahon, C.; Fairweather, I.; Elliott, C.T. Potential impacts of climate change on veterinary medicinal residues in livestock produce: An island of Ireland perspective. Trends Food Sci. Technol. 2015, 44, 21–35. [Google Scholar] [CrossRef] [Green Version]
- Mooney, D.; Richards, K.G.; Danaher, M.; Grant, J.; Gill, L.; Mellander, P.E.; Coxon, C.E. An analysis of the spatio-temporal occurrence of anthelmintic veterinary drug residues in groundwater. Sci. Total Environ. 2021, 769, 144804. [Google Scholar] [CrossRef]
- Horvat, A.; Babić, S.; Pavlović, D.; Ašperger, D.; Pelko, S.; Kaštelan-Macan, M.; Petrović, M.; Mance, A. Analysis, occurrence and fate of anthelmintics and their transformation products in the environment. TrAC Trends Anal. Chem. 2012, 31, 61–84. [Google Scholar] [CrossRef]
- Floate, K.D.; Wardhaugh, K.G.; Boxall, A.B.A.; Sherratt, T.N. FECAL RESIDUES OF VETERINARY PARASITICIDES: Nontarget Effects in the Pasture Environment. Annu. Rev. Entomol. 2004, 50, 153–179. [Google Scholar] [CrossRef] [PubMed]
- Vandewalle, M.; De Bello, F.; Berg, M.P.; Bolger, T.; Dolédec, S.; Dubs, F.; Feld, C.K.; Harrington, R.; Harrison, P.A.; Lavorel, S. Functional traits as indicators of biodiversity response to land use changes across ecosystems and organisms. Biodivers. Conserv. 2010, 19, 2921–2947. [Google Scholar] [CrossRef] [Green Version]
- Hötzel, M.J.; Vandresen, B. Brazilians’ attitudes to meat consumption and production: Present and future challenges to the sustainability of the meat industry. Meat Sci. 2022, 192, 108893. [Google Scholar] [CrossRef]
- Macedo, F.; Marsico, E.T.; Conte-Júnior, C.A.; Furtado, L.d.A.; Brasil, T.F.; Pereira Netto, A.D. Short communication: Macrocyclic lactone residues in butter from Brazilian markets. J. Dairy Sci. 2015, 98, 3695–3700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papadopoulos, E.; Gallidis, E.; Ptochos, S. Anthelmintic resistance in sheep in Europe: A selected review. Vet. Parasitol. 2012, 189, 85–88. [Google Scholar] [CrossRef]
- Thamsborg, S.M.; Roepstorff, A.; Larsen, M. Integrated and biological control of parasites in organic and conventional production systems. Vet. Parasitol. 1999, 84, 169–186. [Google Scholar] [CrossRef]
- Cabaret, J.; Bouilhol, M.; Mage, C. Managing helminths of ruminants in organic farming. Vet. Res. 2002, 33, 625–640. [Google Scholar] [CrossRef] [Green Version]
- Clark, B.; Stewart, G.B.; Panzone, L.A.; Kyriazakis, I.; Frewer, L.J. A systematic review of public attitudes, perceptions and behaviours towards production diseases associated with farm animal welfare. J. Agric. Environ. Ethics 2016, 29, 455–478. [Google Scholar] [CrossRef] [Green Version]
- Sinclair, M.; Lee, N.Y.P.; Hötzel, M.J.; de Luna, M.C.T.; Sharma, A.; Idris, M.; Islam, M.A.; Iyasere, O.S.; Navarro, G.; Ahmed, A.A.; et al. Consumer attitudes towards egg production systems and hen welfare across the world. Front. Anim. Sci. 2022, 3, 995430. [Google Scholar] [CrossRef]
- Zinsstag, J.; Schelling, E.; Waltner-Toews, D.; Tanner, M. From “one medicine” to “one health” and systemic approaches to health and well-being. Prev. Vet. Med. 2011, 101, 148–156. [Google Scholar] [CrossRef] [Green Version]
- von Keyserlingk, M.A.G.; Hötzel, M.J. The ticking clock: Addressing farm animal welfare in emerging countries. J. Agric. Environ. Ethics 2015, 28, 179–195. [Google Scholar] [CrossRef]
- Hötzel, M.J. Improving farm animal welfare: Is evolution or revolution needed in production systems? In Dilemmas in Animal Welfare; Appleby, M.C., Weary, D.M., Sandoe, P., Eds.; CABI: Oxfordshire, UK, 2014; pp. 67–84. [Google Scholar]
- Broom, D.M. Animal welfare concepts. In Routledge Handbook of Animal Welfare; Routledge: London, UK, 2022; pp. 12–21. [Google Scholar]
- Fraser, D.; Weary, D.M.; Pajor, E.A.; Milligan, B.N. A scientific conception of animal welfare that reflects ethical concerns. Anim. Welf. 1997, 6, 187–205. [Google Scholar] [CrossRef]
- Prickett, R.W.; Norwood, B.F.; Lusk, J. Consumer preferences for farm animal welfare: Results from a telephone survey of US households. Anim. Welf. 2010, 19, 335–347. [Google Scholar] [CrossRef]
- Cardoso, C.S.; von Keyserlingk, M.G.; Hötzel, M.J. Views of dairy farmers, agricultural advisors, and lay citizens on the ideal dairy farm. J. Dairy Sci. 2019, 102, 1811–1821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Sousa, K.T.; Deniz, M.; Vale, M.M.d.; Dittrich, J.R.; Hötzel, M.J. Influence of microclimate on dairy cows’ behavior in three pasture systems during the winter in south Brazil. J. Therm. Biol. 2021, 97, 102873. [Google Scholar] [CrossRef] [PubMed]
- Balcão, L.F.; Longo, C.; Costa, J.H.C.; Uller-Gómez, C.; Filho, L.C.P.M.; Hötzel, M.J. Characterisation of smallholding dairy farms in southern Brazil. Anim. Prod. Sci. 2017, 57, 735–745. [Google Scholar] [CrossRef]
- Vigors, B.; Ewing, D.A.; Lawrence, A.B. Happy or healthy? How members of the public prioritise farm animal health and natural behaviours. PLoS ONE 2021, 16, e0247788. [Google Scholar] [CrossRef]
- Cardoso, C.S.; von Keyserlingk, M.A.G.; Hötzel, M.J.; Robbins, J.; Weary, D.M. Hot and bothered: Public attitudes towards heat stress and outdoor access for dairy cows. PLoS ONE 2018, 13, e0205352. [Google Scholar] [CrossRef] [Green Version]
- Busch, G.; Kassas, B.; Palma, M.A.; Risius, A. Perceptions of antibiotic use in livestock farming in Germany, Italy and the United States. Livest. Sci. 2020, 241, 104251. [Google Scholar] [CrossRef]
- Amarante, A.F.T.; Bricarello, P.A.; Huntley, J.F.; Mazzolin, L.P.; Gomes, J.C. Relationship of abomasal histology and parasite-specific immunoglobulin A with the resistance to Haemonchus contortus infection in three breeds of sheep. Vet. Parasitol. 2005, 128, 99–107. [Google Scholar] [CrossRef]
- Cardia, D.; Rocha-Oliveira, R.; Tsunemi, M.; Amarante, A.F.T.d. Immune response and performance of growing Santa Ines lambs to artificial Trichostrongylus colubriformis infections. Vet. Parasitol. 2011, 182, 248–258. [Google Scholar] [CrossRef] [Green Version]
- Bricarello, P.; Gennari, S.; Oliveira-Sequeira, T.; Vaz, C.; de Gonçalves, I.G.; Echevarria, F. Response of Corriedale and Crioula Lanada sheep to artificial primary infection with Haemonchus contortus. Vet. Res. Commun. 2002, 26, 447–457. [Google Scholar] [CrossRef] [PubMed]
- Bricarello, P.A.; Gennari, S.M.; Oliveira-Sequeira, T.C.G.; Vaz, C.M.S.L.; Gonçalves de Gonçalves, I.; Echevarria, F.A.M. Worm burden and immunological responses in Corriedale and Crioula Lanada sheep following natural infection with Haemonchus contortus. Small Rumin. Res. 2004, 51, 75–83. [Google Scholar] [CrossRef]
- Bricarello, P.A.; Zaros, L.G.; Coutinho, L.L.; Rocha, R.A.; Kooyman, F.N.J.; De Vries, E.; Gonçalves, J.R.S.; Lima, L.G.; Pires, A.V.; Amarante, A.F.T. Field study on nematode resistance in Nelore-breed cattle. Vet. Parasitol. 2007, 148, 272–278. [Google Scholar] [CrossRef]
- Bricarello, P.A.; Zaros, L.G.; Coutinho, L.L.; Rocha, R.A.; Silva, M.B.; Kooyman, F.N.J.; De Vries, E.; Yatsuda, A.P.; Amarante, A.F.T. Immunological responses and cytokine gene expression analysis to Cooperia punctata infections in resistant and susceptible Nelore cattle. Vet. Parasitol. 2008, 155, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.M.; Masters, D.G.; Adams, N.R. Potential impact of nematode parasitism on nutrient partitioning for wool production, growth and reproduction in sheep. Aust. J. Exp. Agric. 2003, 43, 1409–1417. [Google Scholar] [CrossRef]
- Högberg, N.; Lidfors, L.; Hessle, A.; Arvidsson Segerkvist, K.; Herlin, A.; Höglund, J. Effects of nematode parasitism on activity patterns in first-season grazing cattle. Vet. Parasitol. X 2019, 1, 100011. [Google Scholar] [CrossRef]
- Rocha, R.A.; Amarante, A.F.T.; Bricarello, P.A. Comparison of the susceptibility of Santa Inês and Ile de France ewes to nematode parasitism around parturition and during lactation. Small Rumin. Res. 2004, 55, 65–75. [Google Scholar] [CrossRef]
- Flay, K.J.; Hill, F.I.; Muguiro, D.H. A Review: Haemonchus contortus Infection in Pasture-Based Sheep Production Systems, with a Focus on the Pathogenesis of Anaemia and Changes in Haematological Parameters. Animals 2022, 12, 1238. [Google Scholar] [CrossRef] [PubMed]
- Bertoni, G.; Trevisi, E.; Houdijk, J.; Calamari, L.; Athanasiadou, S. Welfare Is Affected by Nutrition Through Health, Especially Immune Function and Inflammation. In Nutrition and the Welfare of farm Animals; Springer: Berlin/Heidelberg, Germany, 2016; pp. 85–113. [Google Scholar]
- Parkins, J.J.; Holmes, P.H. Effects of gastrointestinal helminth parasites on ruminant nutrition. Nutr. Res. Rev. 1989, 2, 227–246. [Google Scholar] [CrossRef] [Green Version]
- Fox, M. Pathophysiology of infection with gastrointestinal nematodes in domestic ruminants: Recent developments. Vet. Parasitol. 1997, 72, 285–308. [Google Scholar] [CrossRef]
- MacRae, J.C. Metabolic consequences of intestinal parasitism. Proc. Nutr. Soc. 1993, 52, 121–130. [Google Scholar] [CrossRef] [Green Version]
- Sykes, A.R.; Coop, R.L. Interaction between nutrition and gastrointestinal parasitism in sheep. N. Z. Vet. J. 2001, 49, 222–226. [Google Scholar] [CrossRef]
- Bricarello, P.A.; Amarante, A.F.T.; Rocha, R.A.; Cabral Filho, S.L.; Huntley, J.F.; Houdijk, J.G.M.; Abdalla, A.L.; Gennari, S.M. Influence of dietary protein supply on resistance to experimental infections with Haemonchus contortus in Ile de France and Santa Ines lambs. Vet. Parasitol. 2005, 134, 99–109. [Google Scholar] [CrossRef]
- Gunn, A.; Irvine, R.J. Subclinical parasitism and ruminant foraging strategies: A review. Wildl. Soc. Bull. 2003, 31, 117–126. [Google Scholar]
- Nehra, A.K.; Gowane, G.R.; Kuriyal, A.; Chaurasiya, A.; Kumar, R.; Bhinsara, D.B.; Parthasarathi, B.C.; Bhawana, K.; Khare, R.K.; Prasad, A.; et al. Immune response against subclinical haemonchosis in Himalayan hill goats. Vet. Parasitol. 2019, 267, 47–53. [Google Scholar] [CrossRef]
- Louvandini, H.; Rodrigues, R.R.; Gennari, S.M.; McManus, C.M.; Vitti, D.M.S.S. Phosphorus kinetics in calves experimentally submitted to a trickle infection with Cooperia punctata. Vet. Parasitol. 2009, 163, 47–51. [Google Scholar] [CrossRef]
- Van Houtert, M.F.; Sykes, A.R. Implications of nutrition for the ability of ruminants to withstand gastrointestinal nematode infections. Int. J. Parasitol. 1996, 26, 1151–1167. [Google Scholar] [CrossRef] [PubMed]
- Arsenopoulos, K.V.; Fthenakis, G.C.; Katsarou, E.I.; Papadopoulos, E. Haemonchosis: A Challenging Parasitic Infection of Sheep and Goats. Animals 2021, 11, 363. [Google Scholar] [CrossRef] [PubMed]
- Dantzer, R. Cytokine-induced sickness behaviour: A neuroimmune response to activation of innate immunity. Eur. J. Pharmacol. 2004, 500, 399–411. [Google Scholar] [CrossRef] [PubMed]
- Lopes, P.C. When is it socially acceptable to feel sick? Proc. R. Soc. B 2014, 281, 20140218. [Google Scholar] [CrossRef] [Green Version]
- Weary, D.M.; Niel, L.; Flower, F.C.; Fraser, D. Identifying and preventing pain in animals. Appl. Anim. Behav. Sci. 2006, 100, 64–76. [Google Scholar] [CrossRef] [Green Version]
- Adams, D.B.; Fell, L.R. The effect of infection with the abomasal nematode, Haemonchus contortus, on the avoidance behaviour of sheep in a motivational-choice test. Int. J. Parasitol. 1997, 27, 665–673. [Google Scholar] [CrossRef]
- Falzon, G.; Schneider, D.; Trotter, M.; Lamb, D.W. A relationship between faecal egg counts and the distance travelled by sheep. Small Rumin. Res. 2013, 111, 171–174. [Google Scholar] [CrossRef]
- Szyszka, O.; Kyriazakis, I. What is the relationship between level of infection and ‘sickness behaviour’ in cattle? Appl. Anim. Behav. Sci. 2013, 147, 1–10. [Google Scholar] [CrossRef]
- Burgunder, J.; Petrželková, K.J.; Modrý, D.; Kato, A.; MacIntosh, A.J.J. Fractal measures in activity patterns: Do gastrointestinal parasites affect the complexity of sheep behaviour? Appl. Anim. Behav. Sci. 2018, 205, 44–53. [Google Scholar] [CrossRef]
- Grant, E.P.; Wickham, S.L.; Anderson, F.; Barnes, A.L.; Fleming, P.A.; Miller, D.W. Behavioural assessment of sheep is sensitive to level of gastrointestinal parasite infection. Appl. Anim. Behav. Sci. 2020, 223, 104920. [Google Scholar] [CrossRef]
- Coop, R.; Holmes, P. Nutrition and parasite interaction. Int. J. Parasitol. 1996, 26, 951–962. [Google Scholar] [CrossRef] [PubMed]
- Crompton, D. Influence of parasitic infection on food intake. Fed. Proc. 1984, 43, 239–245. [Google Scholar] [PubMed]
- Sykes, A. Parasitism and production in farm animals. Anim. Sci. 1994, 59, 155–172. [Google Scholar] [CrossRef]
- MacRae, J.; Walker, A.; Brown, D.; Lobley, G. Accretion of total protein and individual amino acids by organs and tissues of growing lambs and the ability of nitrogen balance techniques to quantitate protein retention. Anim. Sci. 1993, 57, 237–245. [Google Scholar] [CrossRef]
- Bertoni, G.; Minuti, A.; Trevisi, E. Immune system, inflammation and nutrition in dairy cattle. Anim. Prod. Sci. 2015, 55, 943–948. [Google Scholar] [CrossRef]
- Atiba, E.M.; Zewei, S.; Qingzhen, Z. Influence of metabolizable protein and minerals supplementation on detrimental effects of endoparasitic nematodes infection in small ruminants. Trop. Anim. Health Prod. 2020, 52, 2213–2219. [Google Scholar] [CrossRef]
- Houdijk, J.G.; Jessop, N.S.; Knox, D.P.; Kyriazakis, I. Breakdown of immunity to Nippostrongylus brasiliensis in lactating rats. Br. J. Nutr. 2003, 90, 809–814. [Google Scholar] [CrossRef] [Green Version]
- Houdijk, J.G.; Jackson, F.; Kyriazakis, I. Nutritional sensitivity of resistance to Trichostrongylus colubriformis in lactating ewes. Vet. Parasitol. 2009, 160, 258–266. [Google Scholar] [CrossRef]
- Rocha, R.; Bricarello, P.; Silva, M.; Houdijk, J.; Almeida, F.; Cardia, D.; Amarante, A.F.T.d. Influence of protein supplementation during late pregnancy and lactation on the resistance of Santa Ines and Ile de France ewes to Haemonchus contortus. Vet. Parasitol. 2011, 181, 229–238. [Google Scholar] [CrossRef]
- Houdijk, J. Influence of periparturient nutritional demand on resistance to parasites in livestock. Parasite Immunol. 2008, 30, 113–121. [Google Scholar] [CrossRef]
- López-Leyva, Y.; González-Garduño, R.; Cruz-Tamayo, A.A.; Arece-García, J.; Huerta-Bravo, M.; Ramírez-Valverde, R.; Torres-Hernández, G.; López-Arellano, M.E. Protein Supplementation as a Nutritional Strategy to Reduce Gastrointestinal Nematodiasis in Periparturient and Lactating Pelibuey Ewes in a Tropical Environment. Pathogens 2022, 11, 941. [Google Scholar] [CrossRef]
- Louvandini, H.; Abdalla, A.L.; Coop, R.L.; Mc Manus, C.M.; Gennari, S.M. Effect of dietary protein intake on calf resilience to Haemonchus placei infection. Braz. J. Vet. Res. Anim. Sci. 2002, 39, 227–232. [Google Scholar] [CrossRef] [Green Version]
- Neves, J.H.d.; Carvalho, N.; Amarante, A.F.T.D. Gastrointestinal nematode infections do not hinder the development of Simmental X Nellore crossbred calves raised with a nutritionally enhanced diet. Rev. Bras. Parasitol. Vet. 2020, 29, e015819. [Google Scholar] [CrossRef] [PubMed]
- Chartier, C.; Etter, E.; Hoste, H.; Pors, I.; Mallereau, M.P.; Broqua, C.; Mallet, S.; Koch, C.; Massé, A. Effects of the initial level of milk production and of the dietary protein intake on the course of natural nematode infection in dairy goats. Vet. Parasitol. 2000, 92, 1–13. [Google Scholar] [CrossRef]
- Etter, E.; Hoste, H.; Chartier, C.; Pors, I.; Koch, C.; Broqua, D.; Coutineau, H. The effect of two levels of dietary protein on resistance and resilience of dairy goats experimentally infected with Trichostrongylus colubriformis: Comparison between high and low producers. Vet. Res. 2000, 31, 247–258. [Google Scholar] [CrossRef] [Green Version]
- Houdijk, J.G.M.; Kyriazakis, I.; Kidane, A.; Athanasiadou, S. Manipulating small ruminant parasite epidemiology through the combination of nutritional strategies. Vet. Parasitol. 2012, 186, 38–50. [Google Scholar] [CrossRef] [PubMed]
- Costes-Thiré, M.; Laurent, P.; Ginane, C.; Villalba, J.J. Diet selection and trade-offs between condensed tannins and nutrients in parasitized sheep. Vet. Parasitol. 2019, 271, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Hutchings, M.R.; Judge, J.; Gordon, I.J.; Athanasiadou, S.; Kyriazakis, I. Use of trade-off theory to advance understanding of herbivore-parasite interactions. Mammal Rev. 2006, 36, 1–16. [Google Scholar] [CrossRef]
- Kyriazakis, I. Pathogen-induced anorexia: A herbivore strategy or an unavoidable consequence of infection? Anim. Prod. Sci. 2014, 54, 1190–1197. [Google Scholar] [CrossRef]
- Hutchings, M.; Knowler, K.; McAnulty, R.; McEwan, J. Genetically resistant sheep avoid parasites to a greater extent than do susceptible sheep. Proc. R. Soc. B Biol. Sci. 2007, 274, 1839–1844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Provenza, F.D. Origins of food preference in herbivores. In Proceedings of the National Wildlife Research Center Repellents Conference 1995, Denver, CO, USA, 8–10 August 1995. [Google Scholar]
- Niezen, J.; Charleston, W.; Hodgson, J.; Miller, C.; Waghorn, T.; Robertson, H. Effect of plant species on the larvae of gastrointestinal nematodes which parasitise sheep. Int. J. Parasitol. 1998, 28, 791–803. [Google Scholar] [CrossRef]
- Villalba, J.J.; Landau, S.Y. Host behavior, environment and ability to self-medicate. Small Rumin. Res. 2012, 103, 50–59. [Google Scholar] [CrossRef]
- Yoshihara, Y.; Saiga, C.; Tamura, T.; Kinugasa, T. Relationships between sheep nematode infection, nutrition, and grazing behavior on improved and semi-natural pastures. Vet. Anim. Sci. 2023, 19, 100278. [Google Scholar] [CrossRef]
- Hart, B.L. Behavioral adaptations to pathogens and parasites: Five strategies. Neurosci. Biobehav. Rev. 1990, 14, 273–294. [Google Scholar] [CrossRef]
- Lozano, G.A. Optimal foraging theory: A possible role for parasites. Oikos 1991, 60, 391–395. [Google Scholar] [CrossRef] [Green Version]
- Hutchings, M.R.; Kyriazakis, I.; Anderson, D.; Gordon, I.J.; Coop, R. Behavioural strategies used by parasitized and non-parasitized sheep to avoid ingestion of gastro-intestinal nematodes associated with faeces. Anim. Sci. 1998, 67, 97–106. [Google Scholar] [CrossRef]
- Hutchings, M.R.; Kyriazakis, I.; Papachristou, T.G.; Gordon, I.J.; Jackson, F. The herbivores’ dilemma: Trade-offs between nutrition and parasitism in foraging decisions. Oecologia 2000, 124, 242–251. [Google Scholar] [CrossRef]
- Hutchings, M.R.; Kyriazakis, I.; Gordon, I.J. Herbivore physiological state affects foraging trade-off decisions between nutrient intake and parasite avoidance. Ecology 2001, 82, 1138–1150. [Google Scholar] [CrossRef]
- Rocha, R.A.; Rocha, G.P.; Bricarello, P.A.; Amarante, A.F. Recovery of Trichostrongylus colubriformis infective larvae from three grass species contaminated in summer. Rev. Bras. Parasitol. Vet. 2008, 17, 227–234. [Google Scholar] [CrossRef] [Green Version]
- Boval, M.; Sauvant, D. Ingestive behaviour of grazing ruminants: Meta-analysis of the components linking bite mass to daily intake. Anim. Feed Sci. Technol. 2021, 278, 115014. [Google Scholar] [CrossRef]
- Hutchings, M.R.; Gordon, I.J.; Kyriazakis, I.; Robertson, E.; Jackson, F. Grazing in heterogeneous environments: Infra-and supra-parasite distributions determine herbivore grazing decisions. Oecologia 2002, 132, 453–460. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.A.; Marion, G.; Swain, D.L.; White, P.C.L.; Hutchings, M.R. The effect of grazing management on livestock exposure to parasites via the faecal–oral route. Prev. Vet. Med. 2009, 91, 95–106. [Google Scholar] [CrossRef] [PubMed]
- Colvin, A.F.; Walkden-Brown, S.W.; Knox, M. Role of host and environment in mediating reduced gastrointestinal nematode infections in sheep due to intensive rotational grazing. Vet. Parasitol. 2012, 184, 180–192. [Google Scholar] [CrossRef]
- Meier, J.S.; Kreuzer, M.; Marquardt, S. Design and methodology of choice feeding experiments with ruminant livestock. Appl. Anim. Behav. Sci. 2012, 140, 105–120. [Google Scholar] [CrossRef]
- Hutchings, M.; Kyriazakis, I.; Gordon, I.; Jackson, F. Trade-offs between nutrient intake and faecal avoidance in herbivore foraging decisions: The effect of animal parasitic status, level of feeding motivation and sward nitrogen content. J. Anim. Ecol. 1999, 68, 310–323. [Google Scholar] [CrossRef]
- Seó, H.L.S.; Pinheiro Machado Filho, L.C.; Honorato, L.A.; da Silva, B.F.; do Amarante, A.F.T.; Bricarello, P.A. The Effect of Gastrointestinal Nematode Infection Level on Grazing Distance from Dung. PLoS ONE 2015, 10, e0126340. [Google Scholar] [CrossRef]
- Smith, L.A.; White, P.C.; Hutchings, M.R. Effect of the nutritional environment and reproductive investment on herbivore–parasite interactions in grazing environments. Behav. Ecol. 2006, 17, 591–596. [Google Scholar] [CrossRef]
- Gregorini, P.; Tamminga, S.; Gunter, S. Review: Behavior and daily grazing patterns of cattle. Prof. Anim. Sci. 2006, 22, 201–209. [Google Scholar] [CrossRef]
- Gregorini, P.; Eirin, M.; Wade, M.; Refi, R.; Ursino, M.; Ansin, O.; Masino, C.; Agnelli, L.; Wakita, K.; Gunter, S. The effects of a morning fasting on the evening grazing behavior and performance of strip-grazed beef heifers. Prof. Anim. Sci. 2007, 23, 642–648. [Google Scholar] [CrossRef]
- Fox, N.J.; Marion, G.; Davidson, R.S.; White, P.C.L.; Hutchings, M.R. Modelling Parasite Transmission in a Grazing System: The Importance of Host Behaviour and Immunity. PLoS ONE 2013, 8, e77996. [Google Scholar] [CrossRef] [Green Version]
- Coulson, G.; Cripps, J.K.; Garnick, S.; Bristow, V.; Beveridge, I. Parasite insight: Assessing fitness costs, infection risks and foraging benefits relating to gastrointestinal nematodes in wild mammalian herbivores. Philos. Trans. R. Soc. Lond. B Biol. Sci 2018, 373, 20170197. [Google Scholar] [CrossRef] [Green Version]
- Gregorini, P.; Villalba, J.J.; Chilibroste, P.; Provenza, F.D. Grazing management: Setting the table, designing the menu and influencing the diner. Anim. Prod. Sci. 2017, 57, 1248–1268. [Google Scholar] [CrossRef]
- Saccareau, M.; Sallé, G.; Robert-Granié, C.; Duchemin, T.; Jacquiet, P.; Blanchard, A.; Cabaret, J.; Moreno, C.R. Meta-analysis of the parasitic phase traits of Haemonchus contortus infection in sheep. Parasites Vectors 2017, 10, 201. [Google Scholar] [CrossRef] [Green Version]
- Houdijk, J.G.M.; Jackson, F.; Coop, R.L.; Kyriazakis, I. Rapid improvement of immunity to Teladorsagia circumcincta is achieved through a reduction in the demand for protein in lactating ewes. Int. J. Parasitol. 2006, 36, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Coffey, L.; Hale, M.; Terrill, T.; Mosjidis, J.; Miller, J.; Burke, J. Tools for Managing Internal Parasites in Small Ruminants: Sericea Lespedeza; ATTRA: Lake Mary, FL, USA, 2007. [Google Scholar]
- Villalba, J.J.; Miller, J.; Ungar, E.D.; Landau, S.Y.; Glendinning, J. Ruminant self-medication against gastrointestinal nematodes: Evidence, mechanism, and origins. Parasite 2014, 21, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clayton, D.H.; Wolfe, N.D. The adaptive significance of self-medication. Trends Ecol. Evol. 1993, 8, 60–63. [Google Scholar] [CrossRef]
- Huffman, M.A. Animal self-medication and ethno-medicine: Exploration and exploitation of the medicinal properties of plants. Proc. Nutr. Soc. 2008, 62, 371–381. [Google Scholar] [CrossRef] [Green Version]
- Gradé, J.; Tabuti, J.R.; Van Damme, P. Four footed pharmacists: Indications of self-medicating livestock in Karamoja, Uganda. Econ. Bot. 2009, 63, 29–42. [Google Scholar] [CrossRef]
- Paolini, V.; Frayssines, A.; De La Farge, F.; Dorchies, P.; Hoste, H. Effects of condensed tannins on established populations and on incoming larvae of Trichostrongylus colubriformis and Teladorsagia circumcincta in goats. Vet. Res. 2003, 34, 331–339. [Google Scholar] [CrossRef] [Green Version]
- Villalba, J.J.; Provenza, F.D.; Hall, J.O.; Lisonbee, L.D. Selection of tannins by sheep in response to gastrointestinal nematode infection1. J. Anim. Sci. 2010, 88, 2189–2198. [Google Scholar] [CrossRef] [PubMed]
- Juhnke, J.; Miller, J.; Hall, J.O.; Provenza, F.; Villalba, J.J. Preference for condensed tannins by sheep in response to challenge infection with Haemonchus contortus. Vet. Parasitol. 2012, 188, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Hoste, H.; Torres-Acosta, J.; Sandoval-Castro, C.A.; Mueller-Harvey, I.; Sotiraki, S.; Louvandini, H.; Thamsborg, S.M.; Terrill, T.H. Tannin containing legumes as a model for nutraceuticals against digestive parasites in livestock. Vet. Parasitol. 2015, 212, 5–17. [Google Scholar] [CrossRef]
- Min, B.; Hart, S.; Miller, D.; Tomita, G.; Loetz, E.; Sahlu, T. The effect of grazing forage containing condensed tannins on gastro-intestinal parasite infection and milk composition in Angora does. Vet. Parasitol. 2005, 130, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Athanasiadou, S.; Gray, D.; Younie, D.; Tzamaloukas, O.; Jackson, F.; Kyriazakis, I. The use of chicory for parasite control in organic ewes and their lambs. Parasitology 2007, 134, 299–307. [Google Scholar] [CrossRef] [Green Version]
- Niezen, J.; Waghorn, T.; Charleston, W.; Waghorn, G. Growth and gastrointestinal nematode parasitism in lambs grazing either lucerne (Medicago sativa) or sulla (Hedysarum coronarium) which contains condensed tannins. J. Agric. Sci. 1995, 125, 281–289. [Google Scholar] [CrossRef]
- Lisonbee, L.D.; Villalba, J.J.; Provenza, F.D.; Hall, J.O. Tannins and self-medication: Implications for sustainable parasite control in herbivores. Behav. Process. 2009, 82, 184–189. [Google Scholar] [CrossRef] [PubMed]
- Besharati, M.; Maggiolino, A.; Palangi, V.; Kaya, A.; Jabbar, M.; Eseceli, H.; De Palo, P.; Lorenzo, J.M. Tannin in Ruminant Nutrition: Review. Molecules 2022, 27, 8273. [Google Scholar] [CrossRef]
- Zaros, L.G.; Bricarello, P.A.; Amarante, A.F.T.; Rocha, R.A.; Kooyman, F.N.J.; De Vries, E.; Coutinho, L.L. Cytokine gene expression in response to Haemonchus placei infections in Nelore cattle. Vet. Parasitol. 2010, 171, 68–73. [Google Scholar] [CrossRef]
- Aboshady, H.M.; Stear, M.J.; Johansson, A.; Jonas, E.; Bambou, J.C. Immunoglobulins as Biomarkers for Gastrointestinal Nematodes Resistance in Small Ruminants: A systematic review. Scie. Rep. 2020, 10, 7765. [Google Scholar] [CrossRef]
- Bricarello, P.A.; Costa, L.R.; Longo, C.; Seugling, J.; Basseto, C.C.; Amarante, A.F.T.d.; Hötzel, M.J. Dung avoidance behavior in Crioula Lanada lambs naturally infected with gastrointestinal nematodes in a rotational pasture system. Rev. Bras. Parasitol. Vet. 2022, 31, e014021. [Google Scholar] [CrossRef]
- Romero-Escobedo, E.; Torres-Hernández, G.; Becerril-Pérez, C.M.; Alarcón-Zúñiga, B.; Apodaca-Sarabia, C.A.; Díaz-Rivera, P. A comparison of Criollo and Suffolk ewes for resistance to Haemonchus contortus during the periparturient period. J. Appl. Anim. Res. 2018, 46, 17–23. [Google Scholar] [CrossRef] [Green Version]
- Besier, R.; Love, S. Anthelmintic resistance in sheep nematodes in Australia: The need for new approaches. Aust. J. Exp. Agric. 2003, 43, 1383–1391. [Google Scholar] [CrossRef]
- O’Connor, L.J.; Walkden-Brown, S.W.; Kahn, L.P. Ecology of the free-living stages of major trichostrongylid parasites of sheep. Vet. Parasitol. 2006, 142, 1–15. [Google Scholar] [CrossRef]
- Lösch, E.L.; Bricarello, P.A.; Gaia, M.C.d.M. Agroecology and food safety in times of the Covid-19 pandemic. Rev. Katálysis 2022, 25, 551–559. [Google Scholar] [CrossRef]
- Almeida, C.; Massarani, L. Farmers prevailing perception profiles regarding GM crops: A classification proposal. Public Underst. Sci. 2018, 27, 952–966. [Google Scholar] [CrossRef] [Green Version]
- Fiel, C.; Fernández, A.; Rodríguez, E.; Fusé, L.; Steffan, P. Observations on the free-living stages of cattle gastrointestinal nematodes. Vet. Parasitol. 2012, 187, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Redbo, I.; Ehrlemark, A.; Redbo-Torstensson, P. Behavioural responses to climatic demands of dairy heifers housed outdoors. Can. J. Anim. Sci. 2001, 81, 9–15. [Google Scholar] [CrossRef]
- Stromberg, B.E. Environmental factors influencing transmission. Vet. Parasitol. 1997, 72, 247–264. [Google Scholar] [CrossRef]
- Santos, M.C.; Silva, B.F.; Amarante, A.F.T. Environmental factors influencing the transmission of Haemonchus contortus. Vet. Parasitol. 2012, 188, 277–284. [Google Scholar] [CrossRef] [Green Version]
- Dohi, H.; Yamada, A.; Entsu, S. Cattle feeding deterrents emitted from cattle feces. J. Chem. Ecol. 1991, 17, 1197–1203. [Google Scholar] [CrossRef] [PubMed]
- Hutchings, M.R.; Milner, J.M.; Gordon, I.J.; Kyriazakis, I.; Jackson, F. Grazing decisions of Soay sheep, Ovis aries, on St Kilda: A consequence of parasite distribution? Oikos 2002, 96, 235–244. [Google Scholar] [CrossRef]
- Wu, J.; Qi, Y. Dealing with scale in landscape analysis: An overview. Geogr. Inf. Sci. 2000, 6, 1–5. [Google Scholar] [CrossRef]
- Kang, Y.; Armbruster, D.; Kuang, Y. Dynamics of a plant–herbivore model. J. Biol. Dyn. 2008, 2, 89–101. [Google Scholar] [CrossRef]
- Fankhauser, R.; Galeffi, C.; Suter, W. Dung avoidance as a possible mechanism in competition between wild and domestic ungulates: Two experiments with chamois Rupicapra rupicapra. Eur. J. Wildl. Res. 2008, 54, 88–94. [Google Scholar] [CrossRef] [Green Version]
- White, K.; Hall, S. Behaviour of lambs (Ovis aries) in relation to spatial patterns of defecation on a pasture. J. Zool. 1998, 245, 111–117. [Google Scholar] [CrossRef]
- Garcia-Méndez, M.; Schmitt-Filho, A.L.; Rocha, R.A.; Bricarello, P.A. Effect of growing forage legumes on the migration and survival in the pasture of gastrointestinal nematodes of sheep. J. Helminthol. 2022, 96, e77. [Google Scholar] [CrossRef]
- Rocha, R.A.; Bricarello, P.A.; Rocha, G.P.; Amarante, A.F.T.d. Trichostrongylus colubriformis larvae recovery from different Brachiaria decumbens and Panicum maximum strata. Rev. Bras. Parasitol. Vet. 2007, 16, 77–82. [Google Scholar]
- Hart, R.; Bissio, J.; Samuel, M.; Waggoner, J. Grazing systems, pasture size, and cattle grazing behavior, distribution and gains. Rangel. Ecol. Manag./J. Range Manag. Arch. 1993, 46, 81–87. [Google Scholar] [CrossRef]
- Colvin, A.F.; Walkden-Brown, S.W.; Knox, M.; Scott, J.M. Intensive rotational grazing assists control of gastrointestinal nematodosis of sheep in a cool temperate environment with summer-dominant rainfall. Vet. Parasitol. 2008, 153, 108–120. [Google Scholar] [CrossRef]
- Pinheiro Machado Filho, L.C.; Seó, H.L.S.; Daros, R.R.; Enriquez-Hidalgo, D.; Wendling, A.V.; Pinheiro Machado, L.C. Voisin Rational Grazing as a Sustainable Alternative for Livestock Production. Animals 2021, 11, 3494. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, L.; Carvalho, P.d.F.; Mezzalira, J.; Bremm, C.; Galli, J.; Gregorini, P. Effect of sward surface height and level of herbage depletion on bite features of cattle grazing Sorghum bicolor swards. J. Anim. Sci. 2013, 91, 4357–4365. [Google Scholar] [CrossRef] [PubMed]
- Gregorini, P.; Gunter, S.; Beck, P.; Caldwell, J.; Bowman, M.; Coblentz, W. Short-term foraging dynamics of cattle grazing swards with different canopy structures. J. Anim. Sci. 2009, 87, 3817–3824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gregorini, P.; Gunter, S.; Masino, C.; Beck, P. Effects of ruminal fill on short-term herbage intake rate and grazing dynamics of beef heifers. Grass Forage Sci. 2007, 62, 346–354. [Google Scholar] [CrossRef]
- Burke, J.; Miller, J.; Terrill, T. Impact of rotational grazing on management of gastrointestinal nematodes in weaned lambs. Vet. Parasitol. 2009, 163, 67–72. [Google Scholar] [CrossRef]
- Kelly, G.A.; Kahn, L.; Walkden-Brown, S.W. Integrated parasite management for sheep reduces the effects of gastrointestinal nematodes on the Northern Tablelands of New South Wales. Anim. Prod. Sci. 2010, 50, 1043–1052. [Google Scholar] [CrossRef]
- Larsson, A.; Dimander, S.-O.; Rydzik, A.; Uggla, A.; Waller, P.; Höglund, J. A 3-year field evaluation of pasture rotation and supplementary feeding to control parasite infection in first-season grazing cattle—Effects on animal performance. Vet. Parasitol. 2006, 142, 197–206. [Google Scholar] [CrossRef]
- Larsson, A.; Dimander, S.O.; Rydzik, A.; Uggla, A.; Waller, P.J.; Höglund, J. A 3-year field evaluation of pasture rotation and supplementary feeding to control parasite infection in first-season grazing cattle—Dynamics of pasture infectivity. Vet. Parasitol. 2007, 145, 129–137. [Google Scholar] [CrossRef]
- Rapiya, M.; Hawkins, H.-J.; Muchenje, V.; Mupangwa, J.F.; Marufu, M.C.; Dzama, K.; Mapiye, C. Rotational grazing approaches reduces external and internal parasite loads in cattle. Afr. J. Range Forage Sci. 2019, 36, 151–159. [Google Scholar]
- Rocha, C.M.B.M.d.; Bruhn, F.R.P.; Leite, R.C.; Guimarães, A.M.; Sampaio, I.B.; Oliveira, P.R.d. Principal component analysis on the perceptions of milk producers about Rhipicephalus (Boophilus) microplus control in Minas Gerais. Rev. Bras. Parasitol. Vet. 2012, 21, 224–231. [Google Scholar] [CrossRef] [Green Version]
- Carneiro, R.; Amarante, A.F.T.d. Seasonal effect of three pasture plants species on the free-living stages of Haemonchus contortus. Arq. Bras. Med. Vet. Zootec. 2008, 60, 864–872. [Google Scholar] [CrossRef] [Green Version]
- Almeida, F.A.; Albuquerque, A.C.A.; Bassetto, C.C.; Starling, R.Z.C.; Lins, J.G.G.; Amarante, A.F.T. Long spelling periods are required for pasture to become free of contamination by infective larvae of Haemonchus contortus in a humid subtropical climate of São Paulo state, Brazil. Vet. Parasitol. 2020, 279, 109060. [Google Scholar] [CrossRef]
- Chincarini, M.; Lanzoni, L.; Di Pasquale, J.; Morelli, S.; Vignola, G.; Paoletti, B.; Di Cesare, A. Animal Welfare and Parasite Infections in Organic and Conventional Dairy Farms: A Comparative Pilot Study in Central Italy. Animals 2022, 12, 351. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, L.; Seno, M.; Amarante, A.; Souza, H.; Belluzzo, C. Effect of rotational and alternate grazing with adult cattle on the control of nematode parasites in sheep. Arq. Bras. Med. Vet. Zootec. 2004, 56, 733–740. [Google Scholar] [CrossRef] [Green Version]
- Amarante, A.; Bagnola, J., Jr.; Amarante, M.; Barbosa, M. Host specificity of sheep and cattle nematodes in São Paulo state, Brazil. Vet. Parasitol. 1997, 73, 89–104. [Google Scholar] [CrossRef]
- Rocha, R.; Bresciani, K.D.S.; Barros, T.; Fernandes, L.; Silva, M.; Amarante, A. Sheep and cattle grazing alternately: Nematode parasitism and pasture decontamination. Small Rumin. Res. 2008, 75, 135–143. [Google Scholar] [CrossRef]
- Brito, D.L.; Dallago, B.S.L.; Louvandini, H.; Santos, V.R.V.d.; Torres, S.E.F.d.A.; Gomes, E.F.; Amarante, A.F.T.d.; Melo, C.B.d.; McManus, C.M. Effect of alternate and simultaneous grazing on endoparasite infection in sheep and cattle. Rev. Bras. Parasitol. Vet. 2013, 22, 485–494. [Google Scholar] [CrossRef] [PubMed]
- Bambou, J.-C.; Ceï, W.; Arquet, R.; Calif, V.; Bocage, B.; Mandonnet, N.; Alexandre, G. Mixed Grazing and Dietary Supplementation Improve the Response to Gastrointestinal Nematode Parasitism and Production Performances of Goats. Front. Vet. Sci. 2021, 8, 8686. [Google Scholar] [CrossRef]
- Maciel, S.; Giménez, A.M.; Gaona, C.; Waller, P.; Hansen, J. The prevalence of anthelmintic resistance in nematode parasites of sheep in Southern Latin America: Paraguay. Vet. Parasitol. 1996, 62, 207–212. [Google Scholar] [CrossRef]
- Fernandes, L.; Seno, M.; Amarante, A.F.T.d.; Souza, H.; Belluzzo, C. Efeito do pastejo rotacionado e alternado com bovinos adultos no controle da verminose em ovelhas. Arq. Bras. Med. Vet. Zootec. 2004, 56, 733–740. [Google Scholar] [CrossRef] [Green Version]
- Moss, R.; Burton, R.; Scales, G.; Saville, D. Effect of cattle grazing strategies and pasture species on internal parasites of sheep. N. Z. J. Agric. Res. 1998, 41, 533–544. [Google Scholar] [CrossRef] [Green Version]
- Dawkins, M.S. The science of animal suffering. Ethology 2008, 114, 937–945. [Google Scholar] [CrossRef]
- Held, S.D.E.; Spinka, M. Animal play and animal welfare. Anim. Behav. 2011, 81, 891–899. [Google Scholar] [CrossRef]
- Neville, V.; Nakagawa, S.; Zidar, J.; Paul, E.S.; Lagisz, M.; Bateson, M.; Løvlie, H.; Mendl, M. Pharmacological manipulations of judgement bias: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2020, 108, 269–286. [Google Scholar] [CrossRef] [PubMed]
- Neave, H.W.; Daros, R.R.; Costa, J.H.C.; von Keyserlingk, M.A.G.; Weary, D.M. Pain and Pessimism: Dairy Calves Exhibit Negative Judgement Bias following Hot-Iron Disbudding. PLoS ONE 2013, 8, e80556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verbeek, E.; Ferguson, D.; Lee, C. Are hungry sheep more pessimistic? The effects of food restriction on cognitive bias and the involvement of ghrelin in its regulation. Physiol. Behav. 2014, 123, 67–75. [Google Scholar] [CrossRef]
- Amarante, A.F.T.; Bricarello, P.A.; Rocha, R.A.; Gennari, S.M. Resistance of Santa Ines, Suffolk and Ile de France sheep to naturally acquired gastrointestinal nematode infections. Vet. Parasitol. 2004, 120, 91–106. [Google Scholar] [CrossRef]
- Marshall, K.; Mugambi, J.M.; Nagda, S.; Sonstegard, T.S.; Van Tassell, C.P.; Baker, R.L.; Gibson, J.P. Quantitative trait loci for resistance to Haemonchus contortus artificial challenge in Red Maasai and Dorper sheep of East Africa. Anim. Genet. 2013, 44, 285–295. [Google Scholar] [CrossRef]
- Amarante, A.F.T. Sustainable worm control practices in South America. Small Rumin. Res. 2014, 118, 56–62. [Google Scholar] [CrossRef]
- Sales, F.; Parraguez, V.H.; Freitas-de-Melo, A.; Ungerfeld, R. Maternal nutrition and antioxidant supplementation: Effects on mother–young behaviors in a Patagonian sheep extensive grazing system. Appl. Anim. Behav. Sci. 2020, 228, 105010. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bricarello, P.A.; Longo, C.; da Rocha, R.A.; Hötzel, M.J. Understanding Animal-Plant-Parasite Interactions to Improve the Management of Gastrointestinal Nematodes in Grazing Ruminants. Pathogens 2023, 12, 531. https://doi.org/10.3390/pathogens12040531
Bricarello PA, Longo C, da Rocha RA, Hötzel MJ. Understanding Animal-Plant-Parasite Interactions to Improve the Management of Gastrointestinal Nematodes in Grazing Ruminants. Pathogens. 2023; 12(4):531. https://doi.org/10.3390/pathogens12040531
Chicago/Turabian StyleBricarello, Patrizia Ana, Cibele Longo, Raquel Abdallah da Rocha, and Maria José Hötzel. 2023. "Understanding Animal-Plant-Parasite Interactions to Improve the Management of Gastrointestinal Nematodes in Grazing Ruminants" Pathogens 12, no. 4: 531. https://doi.org/10.3390/pathogens12040531
APA StyleBricarello, P. A., Longo, C., da Rocha, R. A., & Hötzel, M. J. (2023). Understanding Animal-Plant-Parasite Interactions to Improve the Management of Gastrointestinal Nematodes in Grazing Ruminants. Pathogens, 12(4), 531. https://doi.org/10.3390/pathogens12040531