A Complete Genome Sequence of Podosphaera xanthii Isolate YZU573, the Causal Agent of Powdery Mildew Isolated from Cucumber in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pathogen Infection and Phenotype Evaluation
2.2. Library Preparation and Sequencing
2.3. Genome Assembly and Annotation
2.4. Identification of Effector Proteins
3. Results and Discussion
3.1. Pathogen Isolation and Physiological Race of YZU573
3.2. Genome Assembly
3.3. Annotation of YZU573 Genome
3.4. Prediction of Effector Proteins
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gafni, A.; Calderon, C.; Harris, R.; Buxdorf, K.; Dafa-Berger, A.; Zeilinger-Reichert, E.; Levy, M. Biological control of the cucurbit powdery mildew pathogen Podosphaera xanthii by means of the epiphytic fungus pseudozyma aphidis and parasitism as a mode of action. Front. Plant Sci. 2015, 6, 132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-Cruz, J.; Romero, D.; de Vicente, A.; Pérez-García, A. Transformation of the cucurbit powdery mildew pathogen Podosphaera xanthii by Agrobacterium tumefaciens. New Phytol. 2017, 213, 1961–1973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Ren, Y.; Guo, S.; Zhang, H.; Gong, G.; Du, Y.; Xu, Y. Application of comparative genomics in developing markers tightly linked to the Pm-2F gene for powdery mildew resistance in melon (Cucumis melo L.). Euphytica 2013, 190, 157–168. [Google Scholar] [CrossRef]
- Cui, H.; Ding, Z.; Fan, C.; Zhu, Z.; Zhang, H.; Gao, P.; Luan, F. Genetic mapping and nucleotide diversity of two powdery mildew resistance loci in melon (Cucumis melo). Phytopathology 2020, 110, 1970–1979. [Google Scholar]
- Hosoya, K.; Kuzuya, M.; Murakami, T.; Kato, K.; Narisawa, K.; Ezura, H. Impact of resistant melon cultivars on Sphaerotheca fuliginea. Plant Breed. 2000, 119, 286–288. [Google Scholar] [CrossRef]
- Bardin, M.; Nicot, P.; Normand, P.; Lemaire, J. Virulence variation and DNA polymorphism in Sphaerotheca fuliginea, causal agent of powdery mildew of cucurbits. Eur. J. Plant Pathol. 1997, 103, 545–554. [Google Scholar] [CrossRef]
- Del Pino, D.; Olalla, L.; Pérez-García, A.; Rivera, M.E.; García, S.; Moreno, R.; De Vicente, A.; Torés, J. Occurrence of races and pathotypes of cucurbit powdery mildew in southeastern Spain. Phytoparasitica 2002, 30, 459–466. [Google Scholar] [CrossRef]
- Ma, H.; Wei, Z.; Zu, Y.; Luan, F. Physiological races identification of powdery mildew on main cucurbits in Heilongjiang province during 2009–2010. Acta Phytophylacica Sin. 2011, 38, 287–288. [Google Scholar]
- Wang, J.; Gong, G.; Guo, S.; Wang, Q.; Xu, Y. Identification of physiological races of powdery mildew on cucurbits in Beijing. China Veg. 2006, 8, 7–9, (In Chinese with English abstract). [Google Scholar]
- He, X.; Li, Y.; Pandey, S.; Yandell, B.; Pathak, M.; Weng, Y. QTL mapping of powdery mildew resistance in WI 2757 cucumber (Cucumis sativus L.). Theor. Appl. Genet. 2013, 126, 2149–2161. [Google Scholar] [CrossRef]
- Liu, P.; Miao, H.; Lu, H.; Cui, J.; Tian, G.; Wehner, T.; Gu, X.; Zhang, S. Molecular mapping and candidate gene analysis for resistance to powdery mildew in Cucumis sativus stem. Genet. Mol. Res. 2017, 16, gmr16039680. [Google Scholar] [CrossRef]
- Gawehns, F.; Cornelissen, B.; Takken, F. The potential of effector-target genes in breeding for plant innate immunity. Microb. Biotechnol. 2013, 6, 223–229. [Google Scholar] [CrossRef]
- Koseoglou, E.; van der Wolf, J.; Visser, R.; Bai, Y. Susceptibility reversed: Modified plant susceptibility genes for resistance to bacteria. Trends Plant Sci. 2022, 27, 69–79. [Google Scholar] [CrossRef]
- Satheesh, G.; Koyyappurath, S.; Varghese, L.; Thomas, G. Genome and transcriptome sequence resources and effector repertoire of Pythium myriotylum Drechsler. Mol. Plant Microbe Interact. 2022, 35, 715–718. [Google Scholar] [CrossRef]
- Sperschneider, J.; Dodds, P. EffectorP 3.0: Prediction of apoplastic and cytoplasmic effectors in fungi and oomycetes. Mol. Plant Microbe Interact. 2022, 35, 146–156. [Google Scholar] [CrossRef]
- Kim, S.; Subramaniyam, S.; Jung, M.; Oh, E.; Kim, T.; Kim, J. Genome resource of Podosphaera xanthii, the host-specific fungal pathogen that causes cucurbit powdery mildew. Mol. Plant Microbe Interact. 2021, 34, 457–459. [Google Scholar] [CrossRef]
- Polonio, Á.; Díaz-Martínez, L.; Fernández-Ortuño, D.; de Vicente, A.; Romero, D.; López-Ruiz, F.; Pérez-García, A. A hybrid genome assembly resource for Podosphaera xanthii, the main causal agent of powdery mildew disease in cucurbits. Mol. Plant Microbe Interact. 2021, 34, 319–324. [Google Scholar] [CrossRef]
- Feehan, J.; Scheibel, K.; Bourras, S.; Underwood, W.; Keller, B.; Somerville, S. Purification of high molecular weight genomic DNA from powdery mildew for long-read sequencing. J. Vis. Exp. 2017, 121, 55463. [Google Scholar]
- Li, L.; Collier, B.; Spanu, P.D. Isolation of powdery mildew haustoria from infectedbarley. Bio Protoc. 2019, 9, e3299. [Google Scholar] [CrossRef]
- Xu, X.; Liu, X.; Tan, M.; Qi, X.; Xu, Q.; Chen, X. First report of powdery mildew caused by Podosphaera xanthii on Cucumis dipsaceus in China. Plant Dis. 2020, 104, 3. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. Fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef] [PubMed]
- Salmela, L.; Rivals, E. LoRDEC: Accurate and efficient long read error correction. Bioinformatics 2014, 30, 3506–3514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koren, S.; Walenz, B.; Berlin, K.; Miller, J.; Bergman, N.; Phillippy, A. Canu: Scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017, 27, 722–736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H. Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics 2018, 34, 3094–3100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, J.; Fan, J.; Sun, Z.; Liu, S. NextPolish: A fast and efficient genome polishing tool for long-read assembly. Bioinformatics 2020, 36, 2253–2255. [Google Scholar] [CrossRef]
- Walker, B.; Abeel, T.; Shea, T.; Priest, M.; Abouelliel, A.; Sakthikumar, S.; Cuomo, C.; Zeng, Q.; Wortman, J.; Young, S.; et al. Pilon: An integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 2014, 9, e112963. [Google Scholar] [CrossRef]
- Simão, F.; Waterhouse, R.; Ioannidis, P.; Kriventseva, E.; Zdobnov, E. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 2015, 31, 3210–3212. [Google Scholar] [CrossRef] [Green Version]
- Ranallo-Benavidez, T.; Jaron, K.; Schatz, M. GenomeScope 2.0 and Smudgeplot for reference-free profiling of polyploid genomes. Nat. Commun. 2020, 11, 1432. [Google Scholar] [CrossRef] [Green Version]
- Stanke, M.; Diekhans, M.; Baertsch, R.; Haussler, D. Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics 2008, 24, 637–644. [Google Scholar] [CrossRef] [Green Version]
- Lagesen, K.; Hallin, P.; Rødland, E.; Stærfeldt, H.; Rognes, T.; Ussery, D. RNAmmer: Consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 2007, 35, 3100–3108. [Google Scholar] [CrossRef]
- Chan, P.; Lin, B.; Mak, A.; Lowe, T. tRNAscan-SE 2.0: Improved detection and functional classification of transfer RNA genes. Nucleic Acids Res. 2021, 49, 9077–9096. [Google Scholar] [CrossRef]
- Nawrocki, E.; Burge, S.; Bateman, A.; Daub, J.; Eberhardt, R.; Eddy, S.R.; Floden, E.W.; Gardner, P.P.; Jones, T.A.; Tate, J.; et al. Rfam 12.0: Updates to the RNA families database. Nucleic Acids Res. 2015, 43, D130–D137. [Google Scholar] [CrossRef]
- Tarailo-Graovac, M.; Chen, N. Using repeat masker to identify repetitive elements in genomic sequences. Curr. Protocols Bioinform. 2009, 25, 4–10. [Google Scholar] [CrossRef]
- Smit, A.; Hubley, R.; Green, P. RepeatMasker Open-40. 2019. Available online: https://www.repeatmasker.org (accessed on 21 October 2022).
- Nielsen, H. Predicting secretory proteins with SignalP. Methods Mol. Biol. 2017, 1611, 59–73. [Google Scholar]
- Krogh, A.; Larsson, B.; von Heijne, G.; Sonnhammer, E. Predicting transmembrane protein topology with a hidden markov model: Application to complete genomes. J. Mol. Biol. 2001, 305, 567–580. [Google Scholar] [CrossRef] [Green Version]
- Mccreight, J. Melon-powdery mildew interactions reveal variation in melon cultigens and Podosphaera xanthii races 1 and 2. J. Am. Soc. Hortic. Sci. 2006, 131, 59–65. [Google Scholar] [CrossRef] [Green Version]
- Hong, Y.; Hossain, M.; Kim, H.; Park, J.; Nou, I. Identification of two new races of Podosphaera xanthii causing powdery mildew in melon in south Korea. Plant Pathol J. 2018, 34, 182–190. [Google Scholar] [CrossRef]
- Takikawa, Y.; Nonomura, T.; Miyamoto, S.; Okamoto, N.; Murakami, T.; Matsuda, Y.; Kakutani, K.; Kusakari, S.; Toyoda, H. Digital microscopic analysis of conidiogenesis of powdery mildew pathogens isolated from melon leaves. Phytoparasitica 2015, 43, 517–530. [Google Scholar] [CrossRef]
- Zaccaron, A.; Stergiopoulos, I. Characterization of the mitochondrial genomes of three powdery mildew pathogens reveals remarkable variation in size and nucleotide composition. Microb. Genom. 2021, 7, 000720. [Google Scholar] [CrossRef]
- Sperschneider, J.; Gardiner, D.; Dodds, P.; Tini, F.; Covarelli, L.; Singh, K.; Manners, J.; Taylor, J. EffectorP: Predicting fungal effector proteins from secretomes using machine learning. New Phytol. 2016, 210, 743–761. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Tian, L.; Zhang, D.D.; Song, J.; Song, S.S.; Yin, C.M.; Zhou, L.; Liu, Y.; Wang, B.L.; Kong, Z.Q.; et al. Functional analyses of small secreted cysteine-rich proteins identified candidate effectors in Verticillium dahliae. Mol. Plant Pathol. 2020, 21, 667–685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Z.; Li, H.; Zhou, Y.; Bao, Y.; Duan, Z.; Wang, C.; Powell, C.A.; Chen, B.; Zhang, M.; Yao, W. Predication of the effector proteins secreted by Fusarium sacchari using genomic analysis and heterogenous expression. J. Fungi 2022, 8, 59. [Google Scholar] [CrossRef] [PubMed]
Accession | DI2020 | DI2021 | DI2022 | Reaction Level |
---|---|---|---|---|
Iran H | 75.6 ± 5.3 | 78.9 ± 1.9 | 53.6 ± 3.6 | S |
Top Mark | 68.2 ± 2.0 | 86.7 ± 4.6 | 64.5 ± 3.7 | S |
PMR 5 | 2.2 ± 0.5 | 2.2 ± 1.1 | 3.2 ± 1.5 | R |
Vedrantais | 82.5 ± 3.5 | 52.5 ± 4.0 | 80.8 ± 4.4 | S |
PI414723 | 0 | 0 | 0 | R |
PMR 45 | 112.3 ± 3.5 | 93.5 ± 5.6 | 107.7 ± 6.4 | S |
WMR29 | 0 | 0 | 0 | R |
MR-1 | 1.6 ± 1.1 | 0.5 ± 0.4 | 7.2 ± 1.1 | R |
PI124111 | 3.3 ± 1.3 | 4.1 ± 2.5 | 4.2 ± 1.8 | R |
Edisto47 | 0 | 0 | 0 | R |
PI124112 | 5.3 ± 1.0 | 2.4 ± 0.3 | 3.2 ± 1.1 | R |
PMR6 | 8.6 ± 1.6 | 2.1 ± 0.5 | 7.2 ± 1.6 | R |
Nantais Oblong | 68.5 ± 3.5 | 63.5 ± 5.9 | 97.7 ± 5.4 | S |
Metric | Value |
---|---|
Assembly size (bp) | 152,748,770 |
Number of contigs | 58 |
Number of contigs (≥25,000 bp) | 57 |
Number of contigs (≥50,000 bp) | 48 |
Largest contig (bp) | 14,306,468 |
GC (%) | 43.27 |
N50 (bp) | 6,916,385 |
L50 | 8 |
Number of Ns per 100 kb | 0 |
BUSCOs (%) | |
Complete BUSCOs (C) | 99.2% |
Complete and single-copy (S) | 99.1% |
Complete and duplicated (D) | 0.1% |
Fragmented (F) | 0.4% |
Missing (M) | 0.4% |
Gene | |
protein-coding genes | 6491 |
Average gene length (bp) | 1563.8 |
Non-coding RNA | |
tRNA | 423 |
rRNA | 12 |
sRNA | 64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Du, Y.; Li, S.; Xu, X.; Chen, X. A Complete Genome Sequence of Podosphaera xanthii Isolate YZU573, the Causal Agent of Powdery Mildew Isolated from Cucumber in China. Pathogens 2023, 12, 561. https://doi.org/10.3390/pathogens12040561
Wang Z, Du Y, Li S, Xu X, Chen X. A Complete Genome Sequence of Podosphaera xanthii Isolate YZU573, the Causal Agent of Powdery Mildew Isolated from Cucumber in China. Pathogens. 2023; 12(4):561. https://doi.org/10.3390/pathogens12040561
Chicago/Turabian StyleWang, Ziyi, Yujiao Du, Suhao Li, Xuewen Xu, and Xuehao Chen. 2023. "A Complete Genome Sequence of Podosphaera xanthii Isolate YZU573, the Causal Agent of Powdery Mildew Isolated from Cucumber in China" Pathogens 12, no. 4: 561. https://doi.org/10.3390/pathogens12040561
APA StyleWang, Z., Du, Y., Li, S., Xu, X., & Chen, X. (2023). A Complete Genome Sequence of Podosphaera xanthii Isolate YZU573, the Causal Agent of Powdery Mildew Isolated from Cucumber in China. Pathogens, 12(4), 561. https://doi.org/10.3390/pathogens12040561