Antimicrobial Effects of Lactoferrin against Helicobacter pylori Infection
Abstract
:1. Introduction
2. Protective Activity of Lactoferrin
3. Intragastric Lactoferrin and H. pylori Colonization
4. Antimicrobial Effect of LF against H. pylori In Vitro
5. Antimicrobial Effects of LF in Animal Models
6. Effect of b-LF on Urease Activity in Humans
7. The Effect of b-LF Supplementation on H. pylori Eradication Therapy
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kusters, J.G.; van Vliet, A.H.; Kuipers, E.J. Pathogenesis of Helicobacter pylori infection. Clin. Microbiol. Rev. 2006, 19, 449–490. [Google Scholar] [CrossRef] [Green Version]
- Argueta, E.A.; Moss, S.F. The prevention of gastric cancer by Helicobacter pylori eradication. Curr. Opin. Gastroenterol. 2021, 37, 625–630. [Google Scholar] [CrossRef] [PubMed]
- Asaka, M.; Kato, M.; Graham, D.Y. Prevention of gastric cancer by Helicobacter pylori eradication. Intern. Med. 2010, 49, 633–636. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.J.; Bair, M.J.; Chen, P.Y.; Lee, J.Y.; Yang, T.H.; Fang, Y.J.; Chen, C.C.; Chang, A.T.; Hsiao, W.D.; Yu, J.J.; et al. Declining trends of prevalence of Helicobacter pylori infection and incidence of gastric cancer in Taiwan: An updated cross-sectional survey and meta-analysis. Helicobacter 2022, 27, e12914. [Google Scholar] [CrossRef] [PubMed]
- Ford, A.C.; Tsipotis, E.; Yuan, Y.; Leontiadis, G.I.; Moayyedi, P. Efficacy of Helicobacter pylori eradication therapy for functional dyspepsia: Updated systematic review and meta-analysis. Gut 2022, 71, 1967–1975. [Google Scholar] [CrossRef]
- O’Connor, A.; O’Morain, C.A.; Ford, A.C. Population screening and treatment of Helicobacter pylori infection. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 230–240. [Google Scholar] [CrossRef] [PubMed]
- Sugano, K. Effect of Helicobacter pylori eradication on the incidence of gastric cancer: A systematic review and meta-analysis. Gastric. Cancer 2019, 22, 435–445. [Google Scholar] [CrossRef] [Green Version]
- Chey, W.D.; Leontiadis, G.I.; Howden, C.W.; Moss, S.F. ACG Clinical Guideline: Treatment of Helicobacter pylori Infection. Am. J. Gastroenterol. 2017, 112, 212–239. [Google Scholar] [CrossRef]
- Fallone, C.A.; Chiba, N.; van Zanten, S.V.; Fischbach, L.; Gisbert, J.P.; Hunt, R.H.; Jones, N.L.; Render, C.; Leontiadis, G.I.; Moayyedi, P.; et al. The Toronto Consensus for the Treatment of Helicobacter pylori Infection in Adults. Gastroenterology 2016, 151, 51–69.e14. [Google Scholar] [CrossRef] [Green Version]
- Malfertheiner, P.; Megraud, F.; Rokkas, T.; Gisbert, J.P.; Liou, J.M.; Schulz, C.; Gasbarrini, A.; Hunt, R.H.; Leja, M.; O’Morain, C.; et al. Management of Helicobacter pylori infection: The Maastricht VI/Florence consensus report. Gut 2022, 71, 1724–1762. [Google Scholar] [CrossRef]
- Kato, M.; Ota, H.; Okuda, M.; Kikuchi, S.; Satoh, K.; Shimoyama, T.; Suzuki, H.; Handa, O.; Furuta, T.; Mabe, K.; et al. Guidelines for the management of Helicobacter pylori infection in Japan: 2016 Revised Edition. Helicobacter 2019, 24, e12597. [Google Scholar] [CrossRef]
- Malfertheiner, P.; Megraud, F.; O’Morain, C.A.; Atherton, J.; Axon, A.T.; Bazzoli, F.; Gensini, G.F.; Gisbert, J.P.; Graham, D.Y.; Rokkas, T.; et al. Management of Helicobacter pylori infection—The Maastricht IV/ Florence Consensus Report. Gut 2012, 61, 646–664. [Google Scholar] [CrossRef] [Green Version]
- Horiki, N.; Omata, F.; Uemura, M.; Suzuki, S.; Ishii, N.; Iizuka, Y.; Fukuda, K.; Fujita, Y.; Katsurahara, M.; Ito, T.; et al. Annual change of primary resistance to clarithromycin among Helicobacter pylori isolates from 1996 through 2008 in Japan. Helicobacter 2009, 14, 86–90. [Google Scholar] [CrossRef]
- Li, S.Y.; Li, J.; Dong, X.H.; Teng, G.G.; Zhang, W.; Cheng, H.; Gao, W.; Dai, Y.; Zhang, X.H.; Wang, W.H. The effect of previous eradication failure on antibiotic resistance of Helicobacter pylori: A retrospective study over 8 years in Beijing. Helicobacter 2021, 26, e12804. [Google Scholar] [CrossRef] [PubMed]
- Murakami, K.; Sakurai, Y.; Shiino, M.; Funao, N.; Nishimura, A.; Asaka, M. Vonoprazan, a novel potassium-competitive acid blocker, as a component of first-line and second-line triple therapy for Helicobacter pylori eradication: A phase III, randomised, double-blind study. Gut 2016, 65, 1439–1446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graham, D.Y.; Lu, H.; Shiotani, A. Vonoprazan-containing Helicobacter pylori triple therapies contribution to global antimicrobial resistance. J. Gastroenterol. Hepatol. 2021, 36, 1159–1163. [Google Scholar] [CrossRef] [PubMed]
- Nyssen, O.P.; Perez-Aisa, A.; Tepes, B.; Castro-Fernandez, M.; Kupcinskas, J.; Jonaitis, L.; Bujanda, L.; Lucendo, A.; Jurecic, N.B.; Perez-Lasala, J.; et al. Adverse Event Profile During the Treatment of Helicobacter pylori: A Real-World Experience of 22,000 Patients From the European Registry on H. pylori Management (Hp-EuReg). Am. J. Gastroenterol. 2021, 116, 1220–1229. [Google Scholar] [CrossRef]
- Mizukami, K.; Sugano, K.; Takeshima, T.; Murakami, K. Disease trends after Helicobacter pylori eradication based on Japanese nationwide claims and the health check-up database. World J. Gastroenterol. 2023, 29, 692–705. [Google Scholar] [CrossRef]
- Sitkin, S.; Lazebnik, L.; Avalueva, E.; Kononova, S.; Vakhitov, T. Gastrointestinal microbiome and Helicobacter pylori: Eradicate, leave it as it is, or take a personalized benefit-risk approach? World J. Gastroenterol. 2022, 28, 766–774. [Google Scholar] [CrossRef]
- Chen, L.; Xu, W.; Lee, A.; He, J.; Huang, B.; Zheng, W.; Su, T.; Lai, S.; Long, Y.; Chu, H.; et al. The impact of Helicobacter pylori infection, eradication therapy and probiotic supplementation on gut microenvironment homeostasis: An open-label, randomized clinical trial. EBioMedicine 2018, 35, 87–96. [Google Scholar] [CrossRef] [Green Version]
- Sorensen, M.; Sorensen, S. The proteins in Whey. Compte rendu des Travaux du Laboratoire de Carlsberg. Ser. Chim 1940, 23, 55–99. [Google Scholar]
- Hennart, P.F.; Brasseur, D.J.; Delogne-Desnoeck, J.B.; Dramaix, M.M.; Robyn, C.E. Lysozyme, lactoferrin, and secretory immunoglobulin A content in breast milk: Influence of duration of lactation, nutrition status, prolactin status, and parity of mother. Am. J. Clin. Nutr. 1991, 53, 32–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masson, P.L.; Heremans, J.F. Lactoferrin in milk from different species. Comp. Biochem. Physiol. B 1971, 39, 119–129. [Google Scholar] [CrossRef]
- Gonzalez-Chavez, S.A.; Arevalo-Gallegos, S.; Rascon-Cruz, Q. Lactoferrin: Structure, function and applications. Int. J. Antimicrob. Agents 2009, 33, 301 e301–308. [Google Scholar] [CrossRef] [PubMed]
- Masson, P.L.; Heremans, J.F.; Schonne, E. Lactoferrin, an iron-binding protein in neutrophilic leukocytes. J. Exp. Med. 1969, 130, 643–658. [Google Scholar] [CrossRef] [Green Version]
- Cao, X.; Ren, Y.; Lu, Q.; Wang, K.; Wu, Y.; Wang, Y.; Zhang, Y.; Cui, X.S.; Yang, Z.; Chen, Z. Lactoferrin: A glycoprotein that plays an active role in human health. Front. Nutr. 2022, 9, 1018336. [Google Scholar] [CrossRef]
- Luqmani, Y.A.; Campbell, T.A.; Bennett, C.; Coombes, R.C.; Paterson, I.M. Expression of lactoferrin in human stomach. Int. J. Cancer 1991, 49, 684–687. [Google Scholar] [CrossRef]
- Nakao, K.; Imoto, I.; Gabazza, E.C.; Yamauchi, K.; Yamazaki, N.; Taguchi, Y.; Shibata, T.; Takaji, S.; Ikemura, N.; Misaki, M. Gastric juice levels of lactoferrin and Helicobacter pylori infection. Scand J. Gastroenterol. 1997, 32, 530–534. [Google Scholar] [CrossRef]
- Nakao, K.; Imoto, I.; Ikemura, N.; Shibata, T.; Takaji, S.; Taguchi, Y.; Misaki, M.; Yamauchi, K.; Yamazaki, N. Relation of lactoferrin levels in gastric mucosa with Helicobacter pylori infection and with the degree of gastric inflammation. Am. J. Gastroenterol. 1997, 92, 1005–1011. [Google Scholar]
- Imoto, I.; Okuda, M.; Nakazawa, T.; Yamauchi, K.; Adachi, Y. Effect of lactoferrin on H. pylori colonization. Nihon Rinsho 2005, 63 (Suppl. S11), 577–581. [Google Scholar]
- Okuda, M.; Nakazawa, T.; Yamauchi, K.; Miyashiro, E.; Koizumi, R.; Booka, M.; Teraguchi, S.; Tamura, Y.; Yoshikawa, N.; Adachi, Y.; et al. Bovine lactoferrin is effective to suppress Helicobacter pylori colonization in the human stomach: A randomized, double-blind, placebo-controlled study. J. Infect. Chemother. 2005, 11, 265–269. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, N.; Yamauchi, K.; Kawase, K.; Hayasawa, H.; Nakao, K.; Imoto, I. Antibacterial effects of lactoferrin and a pepsin-generated lactoferrin peptide against Helicobacter pylori in vitro. J. Infect. Chemother. 1997, 3, 85–89. [Google Scholar] [CrossRef]
- Moreno-Exposito, L.; Illescas-Montes, R.; Melguizo-Rodriguez, L.; Ruiz, C.; Ramos-Torrecillas, J.; de Luna-Bertos, E. Multifunctional capacity and therapeutic potential of lactoferrin. Life Sci. 2018, 195, 61–64. [Google Scholar] [CrossRef]
- Gruden, S.; Poklar Ulrih, N. Diverse Mechanisms of Antimicrobial Activities of Lactoferrins, Lactoferricins, and Other Lactoferrin-Derived Peptides. Int. J. Mol. Sci. 2021, 22, 11264. [Google Scholar] [CrossRef] [PubMed]
- Cheok, Y.Y.; Lee, C.Y.Q.; Cheong, H.C.; Vadivelu, J.; Looi, C.Y.; Abdullah, S.; Wong, W.F. An Overview of Helicobacter pylori Survival Tactics in the Hostile Human Stomach Environment. Microorganisms 2021, 9, 2502. [Google Scholar] [CrossRef]
- Asaad, G.F.; Mostafa, R.E. Lactoferrin mitigates ethanol-induced gastric ulcer via modulation of ROS/ICAM-1/Nrf2 signaling pathway in Wistar rats. Iran. J. Basic Med. Sci. 2022, 25, 1522–1527. [Google Scholar] [CrossRef]
- Inamori, M.; Togawa, J.; Matsumoto, S.; Harad, K.; Matsuura, M.; Iida, H.; Akimoto, K.; Endo, H.; Nonaka, T.; Takahashi, H.; et al. Protective effect of lactoferrin on acute acid reflux-induced esophageal mucosal damage. Hepatogastroenterology 2014, 61, 1595–1600. [Google Scholar]
- Mir, R.; Singh, N.; Vikram, G.; Kumar, R.P.; Sinha, M.; Bhushan, A.; Kaur, P.; Srinivasan, A.; Sharma, S.; Singh, T.P. The structural basis for the prevention of nonsteroidal antiinflammatory drug-induced gastrointestinal tract damage by the C-lobe of bovine colostrum lactoferrin. Biophys. J. 2009, 97, 3178–3186. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Wu, Q.; Cheng, G.; Liu, X.; Liu, S.; Luo, J.; Zhang, A.; Bian, L.; Chen, J.; Lv, J.; et al. Recombinant human lactoferrin enhances the efficacy of triple therapy in mice infected with Helicobacter pylori. Int. J. Mol. Med. 2015, 36, 363–368. [Google Scholar] [CrossRef] [Green Version]
- Fan, L.L.; Yao, Q.Q.; Wu, H.M.; Wen, F.; Wang, J.Q.; Li, H.Y.; Zheng, N. Protective effects of recombinant lactoferrin with different iron saturations on enteritis injury in young mice. J. Dairy Sci. 2022, 105, 4791–4803. [Google Scholar] [CrossRef] [PubMed]
- Hayworth, J.L.; Kasper, K.J.; Leon-Ponte, M.; Herfst, C.A.; Yue, D.; Brintnell, W.C.; Mazzuca, D.M.; Heinrichs, D.E.; Cairns, E.; Madrenas, J.; et al. Attenuation of massive cytokine response to the staphylococcal enterotoxin B superantigen by the innate immunomodulatory protein lactoferrin. Clin. Exp. Immunol. 2009, 157, 60–70. [Google Scholar] [CrossRef]
- Horie, K.; Watanabe, M.; Chanbora, C.; Awada, T.; Kunimatsu, R.; Uchida, T.; Takata, T.; Tanimoto, K. Bovine lactoferrin reduces extra-territorial facial allodynia/hyperalgesia following a trigeminal nerve injury in the rat. Brain Res. 2017, 1669, 89–96. [Google Scholar] [CrossRef]
- Siqueiros-Cendon, T.; Arevalo-Gallegos, S.; Iglesias-Figueroa, B.F.; Garcia-Montoya, I.A.; Salazar-Martinez, J.; Rascon-Cruz, Q. Immunomodulatory effects of lactoferrin. Acta Pharmacol. Sin. 2014, 35, 557–566. [Google Scholar] [CrossRef] [PubMed]
- Chea, C.; Miyauchi, M.; Inubushi, T.; Febriyanti Ayuningtyas, N.; Subarnbhesaj, A.; Nguyen, P.T.; Shrestha, M.; Haing, S.; Ohta, K.; Takata, T. Molecular mechanism of inhibitory effects of bovine lactoferrin on the growth of oral squamous cell carcinoma. PLoS ONE 2018, 13, e0191683. [Google Scholar] [CrossRef] [Green Version]
- Gibbons, J.A.; Kanwar, R.K.; Kanwar, J.R. Lactoferrin and cancer in different cancer models. Front. Biosci. 2011, 3, 1080–1088. [Google Scholar] [CrossRef] [Green Version]
- Chifman, J.; Laubenbacher, R.; Torti, S.V. A systems biology approach to iron metabolism. Adv. Exp. Med. Biol. 2014, 844, 201–225. [Google Scholar] [CrossRef] [Green Version]
- Hao, L.; Shan, Q.; Wei, J.; Ma, F.; Sun, P. Lactoferrin: Major Physiological Functions and Applications. Curr. Protein Pept. Sci. 2019, 20, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Haley, K.P.; Francis, J.D.; Guevara, M.A.; Doster, R.S.; Craft, K.M.; Moore, R.E.; Chambers, S.A.; Delgado, A.G.; Piazuelo, M.B.; et al. The Innate Immune Glycoprotein Lactoferrin Represses the Helicobacter pylori cag Type IV Secretion System. Chembiochem 2021, 22, 2783–2790. [Google Scholar] [CrossRef] [PubMed]
- Noto, J.M.; Romero-Gallo, J.; Piazuelo, M.B.; Peek, R.M. The Mongolian Gerbil: A Robust Model of Helicobacter pylori-Induced Gastric Inflammation and Cancer. Methods Mol. Biol. 2016, 1422, 263–280. [Google Scholar] [CrossRef] [Green Version]
- Farnaud, S.; Evans, R.W. Lactoferrin--a multifunctional protein with antimicrobial properties. Mol. Immunol. 2003, 40, 395–405. [Google Scholar] [CrossRef]
- Tomita, M.; Bellamy, W.; Takase, M.; Wakabayashi, H.; Kawase, K. Potent antibacterial peptides generated by pepsin digestion of bovine lactoferrin. J. Dairy Sci. 1991, 74, 4137–4142. [Google Scholar] [CrossRef]
- Beasley, F.C.; Heinrichs, D.E. Siderophore-mediated iron acquisition in the staphylococci. J. Inorg. Biochem. 2010, 104, 282–288. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, S.; Konradt, M.; Groll, C.; Scheid, P.; Hanauer, G.; Werling, H.O.; Josenhans, C.; Suerbaum, S. The spatial orientation of Helicobacter pylori in the gastric mucus. Proc. Natl. Acad. Sci. USA 2004, 101, 5024–5029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bella, A., Jr.; Kim, Y.S. Iron binding of gastric mucins. Biochim. Biophys. Acta 1973, 304, 580–585. [Google Scholar] [CrossRef]
- Senkovich, O.; Ceaser, S.; McGee, D.J.; Testerman, T.L. Unique host iron utilization mechanisms of Helicobacter pylori revealed with iron-deficient chemically defined media. Infect. Immun. 2010, 78, 1841–1849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Enns, C.A.; Rutledge, E.A.; Wiolliams, A.M. The transferrin receptor. In Biommembranes: A Multi-Volume Tratise; Lee, A.G., Ed.; JAI Press Inc.: Greenwich, UK, 1991; pp. 255–287. [Google Scholar] [CrossRef]
- Dhaenens, L.; Szczebara, F.; Husson, M.O. Identification, characterization, and immunogenicity of the lactoferrin-binding protein from Helicobacter pylori. Infect. Immun. 1997, 65, 514–518. [Google Scholar] [CrossRef] [Green Version]
- Husson, M.O.; Legrand, D.; Spik, G.; Leclerc, H. Iron acquisition by Helicobacter pylori: Importance of human lactoferrin. Infect. Immun. 1993, 61, 2694–2697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baj, J.; Forma, A.; Sitarz, M.; Portincasa, P.; Garruti, G.; Krasowska, D.; Maciejewski, R. Helicobacter pylori Virulence Factors-Mechanisms of Bacterial Pathogenicity in the Gastric Microenvironment. Cells 2020, 10, 27. [Google Scholar] [CrossRef] [PubMed]
- Hathroubi, S.; Servetas, S.L.; Windham, I.; Merrell, D.S.; Ottemann, K.M. Helicobacter pylori Biofilm Formation and Its Potential Role in Pathogenesis. Microbiol. Mol. Biol. Rev. 2018, 82, e00001-18. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Liu, J.; Gong, Y.; Yuan, Y. Association of CagA EPIYA-D or EPIYA-C phosphorylation sites with peptic ulcer and gastric cancer risks: A meta-analysis. Medicine 2017, 96, e6620. [Google Scholar] [CrossRef]
- Rieder, G.; Merchant, J.L.; Haas, R. Helicobacter pylori cag-type IV secretion system facilitates corpus colonization to induce precancerous conditions in Mongolian gerbils. Gastroenterology 2005, 128, 1229–1242. [Google Scholar] [CrossRef] [PubMed]
- Neilands, J.B. Iron absorption and transport in microorganisms. Annu. Rev. Nutr. 1981, 1, 27–46. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.K.; Parsek, M.R.; Greenberg, E.P.; Welsh, M.J. A component of innate immunity prevents bacterial biofilm development. Nature 2002, 417, 552–555. [Google Scholar] [CrossRef] [PubMed]
- Aisen, P.; Leibman, A. Lactoferrin and transferrin: A comparative study. Biochim. Biophys. Acta 1972, 257, 314–323. [Google Scholar] [CrossRef] [PubMed]
- Miehlke, S.; Reddy, R.; Osato, M.S.; Ward, P.P.; Conneely, O.M.; Graham, D.Y. Direct activity of recombinant human lactoferrin against Helicobacter pylori. J. Clin. Microbiol. 1996, 34, 2593–2594. [Google Scholar] [CrossRef] [Green Version]
- Dial, E.J.; Hall, L.R.; Serna, H.; Romero, J.J.; Fox, J.G.; Lichtenberger, L.M. Antibiotic properties of bovine lactoferrin on Helicobacter pylori. Dig. Dis. Sci. 1998, 43, 2750–2756. [Google Scholar] [CrossRef]
- Wada, T.; Aiba, Y.; Shimizu, K.; Takagi, A.; Miwa, T.; Koga, Y. The therapeutic effect of bovine lactoferrin in the host infected with Helicobacter pylori. Scand J. Gastroenterol. 1999, 34, 238–243. [Google Scholar] [CrossRef] [PubMed]
- Dial, E.J.; Romero, J.J.; Headon, D.R.; Lichtenberger, L.M. Recombinant human lactoferrin is effective in the treatment of Helicobacter felis-infected mice. J. Pharm. Pharmacol. 2000, 52, 1541–1546. [Google Scholar] [CrossRef] [PubMed]
- Huynh, H.Q.; Campbell, M.A.; Couper, R.T.; Tran, C.D.; Lawrence, A.; Butler, R.N. Lactoferrin and desferrioxamine are ineffective in the treatment of Helicobacter pylori infection and may enhance H. pylori growth and gastric inflammation in mice. Lett. Appl. Microbiol. 2009, 48, 517–522. [Google Scholar] [CrossRef]
- Sakamoto, I.; Igarashi, M.; Kimura, K.; Takagi, A.; Miwa, T.; Koga, Y. Suppressive effect of Lactobacillus gasseri OLL 2716 (LG21) on Helicobacter pylori infection in humans. J. Antimicrob. Chemother. 2001, 47, 709–710. [Google Scholar] [CrossRef] [Green Version]
- Di Mario, F.; Aragona, G.; Bo, N.D.; Ingegnoli, A.; Cavestro, G.M.; Moussa, A.M.; Iori, V.; Leandro, G.; Pilotto, A.; Franze, A. Use of lactoferrin for Helicobacter pylori eradication. Preliminary results. J. Clin. Gastroenterol. 2003, 36, 396–398. [Google Scholar] [CrossRef]
- Di Mario, F.; Aragona, G.; Dal Bo, N.; Cavestro, G.M.; Cavallaro, L.; Iori, V.; Comparato, G.; Leandro, G.; Pilotto, A.; Franze, A. Use of bovine lactoferrin for Helicobacter pylori eradication. Dig. Liver Dis. 2003, 35, 706–710. [Google Scholar] [CrossRef] [PubMed]
- Di Mario, F.; Aragona, G.; Dal Bo, N.; Cavallaro, L.; Marcon, V.; Olivieri, P.; Benedetti, E.; Orzes, N.; Marin, R.; Tafner, G.; et al. Bovine lactoferrin for Helicobacter pylori eradication: An open, randomized, multicentre study. Aliment. Pharmacol. Ther. 2006, 23, 1235–1240. [Google Scholar] [CrossRef] [PubMed]
- Tursi, A.; Elisei, W.; Brandimarte, G.; Giorgetti, G.M.; Modeo, M.E.; Aiello, F. Effect of lactoferrin supplementation on the effectiveness and tolerability of a 7-day quadruple therapy after failure of a first attempt to cure Helicobacter pylori infection. Med. Sci. Monit. 2007, 13, CR187–CR190. [Google Scholar] [PubMed]
- De Bortoli, N.; Leonardi, G.; Ciancia, E.; Merlo, A.; Bellini, M.; Costa, F.; Mumolo, M.G.; Ricchiuti, A.; Cristiani, F.; Santi, S.; et al. Helicobacter pylori eradication: A randomized prospective study of triple therapy versus triple therapy plus lactoferrin and probiotics. Am. J. Gastroenterol. 2007, 102, 951–956. [Google Scholar] [CrossRef]
- Zullo, A.; De Francesco, V.; Scaccianoce, G.; Hassan, C.; Panarese, A.; Piglionica, D.; Panella, C.; Morini, S.; Ierardi, E. Quadruple therapy with lactoferrin for Helicobacter pylori eradication: A randomised, multicentre study. Dig. Liver Dis. 2005, 37, 496–500. [Google Scholar] [CrossRef]
- Zullo, A.; De Francesco, V.; Scaccianoce, G.; Manes, G.; Efrati, C.; Hassan, C.; Maconi, G.; Piglionica, D.; Cannaviello, C.; Panella, C.; et al. Helicobacter pylori eradication with either quadruple regimen with lactoferrin or levofloxacin-based triple therapy: A multicentre study. Dig. Liver Dis. 2007, 39, 806–810. [Google Scholar] [CrossRef]
- Zou, J.; Dong, J.; Yu, X.F. Meta-analysis: The effect of supplementation with lactoferrin on eradication rates and adverse events during Helicobacter pylori eradication therapy. Helicobacter 2009, 14, 119–127. [Google Scholar] [CrossRef]
- Sachdeva, A.; Nagpal, J. Meta-analysis: Efficacy of bovine lactoferrin in Helicobacter pylori eradication. Aliment. Pharmacol. Ther. 2009, 29, 720–730. [Google Scholar] [CrossRef]
- Hablass, F.H.; Lashen, S.A.; Alsayed, E.A. Efficacy of Lactoferrin with Standard Triple Therapy or Sequential Therapy for Helicobacter pylori Eradication: A Randomized Controlled Trial. Turk J. Gastroenterol. 2021, 32, 742–749. [Google Scholar] [CrossRef]
Subjects | Study Design | Study Groups | Results | References |
---|---|---|---|---|
59 volunteers | Randomized controlled trial | (1) b-LF-treated group; (2) placebo-treated control group | Suppression of H. pylori colonization | Okuda et al., 2005 [31] |
150 patients | Open randomized single-center study (preliminary results) | (1) Triple therapy (rabeprazole, clarithromycin, tinidazole) + LF for 7 days; (2) triple therapy (rabeprazole, clarithromycin, tinidazole) for 7 days; (3) triple therapy (rabeprazole, clarithromycin, tinidazole) for 10 days | Significantly higher eradication rate in triple therapy + LF than other groups | Di Mario et al., 2003 [72] |
150 patients | Open randomized single-center study | (1) Triple therapy (rabeprazole, clarithromycin, tinidazole) + LF for 7 days; (2) triple therapy (rabeprazole, clarithromycin, tinidazole) for 7 days; (3) triple therapy (rabeprazole, clarithromycin, tinidazole) for 10 days | Significantly higher eradication rate in triple therapy + LF than other groups | Di Mario et al., 2003 [73] |
402 patients | Open, randomized, multicenter, prospective study | (1) Triple therapy (esomeprazole, clarithromycin, tinidazole) for 7 days; (2) b-LF for 7 days followed by triple therapy (esomeprazole, clarithromycin, tinidazole) for 7 days; (3) triple therapy (rabeprazole, clarithromycin, tinidazole) + b-LF for 7 days | The eradication rate was significantly higher in patients receiving b-LF | Di Mario et al., 2006 [74] |
70 patients | Prospective randomized clinical trial after failure of first standard treatment | (1) Ranitidine bismuth citrate, esomeprazole, amoxycillin, tinidazole; (2) ranitidine bismuth citrate, esomeprazole, amoxycillin, tinidazole + b-LF | The group receiving b-LF showed a higher but not statistically significant eradication rate. | Tursi et al., 2007 [75] |
206 patients | Prospective randomized study | (1) Triple therapy (esomeprazole, clarithromycin, tinidazole); (2) triple therapy (esomeprazole, clarithromycin, tinidazole) + b-LF + probiotics | The eradication rate was 92.1% in the group receiving triple therapy + b-LF + probiotics and 76% in the group receiving only the standard triple therapy | De Bortoli et al., 2007 [76] |
133 patients | Prospective, open l-label, three-center, randomized study | (1) Triple therapy (esomeprazole, clarithromycin, amoxycillin); (2) triple therapy (esomeprazole, clarithromycin, tinidazole) + bLF for 7 days | The eradication rate was 80.3% in the group receiving triple therapy + b-LF and 77.9% in the group receiving only the standard triple therapy. No significant difference between groups | Zullo et al., 2005 [77] |
144 patients | Prospective, open l-label, multicenter, randomized study | (1) Triple therapy (rabeprazole, levofloxacin, amoxycillin) for 7 days; (2) triple therapy (esomeprazole, clarithromycin, tinidazole) + b-LF for 7 days | The eradication rate was 69.1% (per protocol analysis) in the group receiving triple therapy and 76.5% in the group receiving quadruple therapy | Zullo et al., 2007 [78] |
9 randomized clinical trials (n = 1343 subjects) | Meta-analysis | (1) Triple therapy (proton-pump inhibitor + 2 antibiotics) or quadruple therapy (proton-pump inhibitor + bismuth + 2 antibiotics; or ranitidine bismuth citrate + same antibiotics); (2) b-LF-including regimens | The eradication rate was 86.57% in the group receiving standard therapy + b-LF and 74.44% in the group receiving only standard therapy | Zou et al., 2009 [79] |
5 randomized clinical trials (n = 682 subjects) | Meta-analysis | (1) Standard therapy; (2) standard therapy + b-LF | The pooled odds ratio by intention-to-treat analysis in the b-LF vs. non-b-LF group was 2.22 and 2.24 using the fixed effects model and the random effects model, respectively | Sachdeva et al., 2009 [80] |
400 patients | Randomized controlled clinical trial | (1) Proton pump inhibitor-based triple therapy for 2 weeks; (2) sequential therapy for 2 weeks; (3) proton-pump-based triple therapy + b-LF for 2 weeks; (4) sequential therapy + b-LF for 2 weeks | The success rates were 70.3%, 82.8%, 85.6%, and 94.5% in groups (1), (2), (3), and (4), respectively | Hablass et al., 2020 [81] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imoto, I.; Yasuma, T.; D’Alessandro-Gabazza, C.N.; Oka, S.; Misaki, M.; Horiki, N.; Gabazza, E.C. Antimicrobial Effects of Lactoferrin against Helicobacter pylori Infection. Pathogens 2023, 12, 599. https://doi.org/10.3390/pathogens12040599
Imoto I, Yasuma T, D’Alessandro-Gabazza CN, Oka S, Misaki M, Horiki N, Gabazza EC. Antimicrobial Effects of Lactoferrin against Helicobacter pylori Infection. Pathogens. 2023; 12(4):599. https://doi.org/10.3390/pathogens12040599
Chicago/Turabian StyleImoto, Ichiro, Taro Yasuma, Corina N. D’Alessandro-Gabazza, Satoko Oka, Moriharu Misaki, Noriyuki Horiki, and Esteban C. Gabazza. 2023. "Antimicrobial Effects of Lactoferrin against Helicobacter pylori Infection" Pathogens 12, no. 4: 599. https://doi.org/10.3390/pathogens12040599
APA StyleImoto, I., Yasuma, T., D’Alessandro-Gabazza, C. N., Oka, S., Misaki, M., Horiki, N., & Gabazza, E. C. (2023). Antimicrobial Effects of Lactoferrin against Helicobacter pylori Infection. Pathogens, 12(4), 599. https://doi.org/10.3390/pathogens12040599