Heartbreaking Decisions: The Dogma and Uncertainties of Antimicrobial Therapy in Infective Endocarditis
Abstract
:1. Introduction
2. Beta-Lactam Selection in Methicillin-Susceptible Staphylococcus aureus IE
2.1. Beta-Lactam/Beta-Lactamase Inhibitor Combinations (BL/BLIs)
2.2. Ceftriaxone/Cefotaxime
2.3. Cefazolin vs. ASPs
2.4. Beta-Lactam Selection for IE Conclusions
3. Rifamycins for Staphylococcal IE
3.1. Rifampin Pharmacology Relevant to IE
3.2. Clinical Data with Rifampin
3.3. Rifampin for IE Conclusions
4. Aminoglycoside Combination Therapy for Gram-Positive IE
Aminoglycoside Combination for IE Conclusions
5. Daptomycin and Ceftaroline Combination Therapy for Gram-Positive IE
Daptomycin and Ceftaroline Combination for IE Conclusions
6. Oral Antimicrobials for IE
6.1. Current Guidelines
6.2. Efficacy of Oral Antibiotics as Stepdown Therapy for IE: Gram-Positive Organisms
6.3. Oral Antibiotics in Injection Drug Use (IDU)
6.4. Dual Therapy for Non-HAEK Gram-Negative IE
6.5. Future Studies
6.6. Oral Antimicrobials in IE Conclusions
7. Long-Acting Lipoglycopeptide Antibiotics for IE
7.1. Dalbavancin Evidence
7.2. Oritavancin Evidence
7.3. LALA in IE Conclusions
8. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Correction Statement
References
- Bin Abdulhak, A.A.; Baddour, L.M.; Erwin, P.J.; Hoen, B.; Chu, V.H.; Mensah, G.A.; Tleyjeh, I.M. Global and regional burden of infective endocarditis, 1990–2010: A systematic review of the literature. Glob. Heart 2014, 9, 131–143. [Google Scholar] [CrossRef] [Green Version]
- Pant, S.; Patel, N.J.; Deshmukh, A.; Golwala, H.; Patel, N.; Badheka, A.; Hirsch, G.A.; Mehta, J.L. Trends in infective endocarditis incidence, microbiology, and valve replacement in the United States from 2000 to 2011. J. Am. Coll. Cardiol. 2015, 65, 2070–2076. [Google Scholar] [CrossRef] [Green Version]
- Shah, A.S.V.; McAllister, D.A.; Gallacher, P.; Astengo, F.; Rodríguez Pérez, J.A.; Hall, J.; Lee, K.K.; Bing, R.; Anand, A.; Nathwani, D.; et al. Incidence, Microbiology, and Outcomes in Patients Hospitalized with Infective Endocarditis. Circulation 2020, 141, 2067–2077. [Google Scholar] [CrossRef] [PubMed]
- Rezar, R.; Lichtenauer, M.; Haar, M.; Hödl, G.; Kern, J.M.; Zhou, Z.; Wuppinger, T.; Kraus, J.; Strohmer, B.; Hoppe, U.C.; et al. Infective endocarditis—A review of current therapy and future challenges. Hell. J. Cardiol. 2021, 62, 190–200. [Google Scholar] [CrossRef]
- Mah, T.F.; O’Toole, G.A. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 2001, 9, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Elgharably, H.; Hussain, S.T.; Shrestha, N.K.; Blackstone, E.H.; Pettersson, G.B. Current Hypotheses in Cardiac Surgery: Biofilm in Infective Endocarditis. Semin. Thorac. Cardiovasc. Surg. 2016, 28, 56–59. [Google Scholar] [CrossRef]
- Stewart, P.S. Antimicrobial tolerance in biofilms. Microbiol. Spectr. 2015, 3, MB-0010-2014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaplan, J.B.; Izano, E.A.; Gopal, P.; Karwacki, M.T.; Kim, S.; Bose, J.L.; Bayles, K.W.; Horswill, A.R. Low levels of β-lactam antibiotics induce extracellular DNA release and biofilm formation in Staphylococcus aureus. mBio 2012, 3, e00198-12. [Google Scholar] [CrossRef] [Green Version]
- Hannan, S.; Ready, D.; Jasni, A.S.; Rogers, M.; Pratten, J.; Roberts, A.P. Transfer of antibiotic resistance by transformation with eDNA within oral biofilms. FEMS Immunol. Med. Microbiol. 2010, 59, 345–349. [Google Scholar] [CrossRef]
- Fu, J.; Zhang, Y.; Lin, S.; Zhang, W.; Shu, G.; Lin, J.; Li, H.; Xu, F.; Tang, H.; Peng, G.; et al. Strategies for Interfering with Bacterial Early Stage Biofilms. Front. Microbiol. 2021, 12, 675843. [Google Scholar] [CrossRef]
- Baddour, L.M.; Wilson, W.R.; Bayer, A.S.; Fowler, V.G., Jr.; Tleyjeh, I.M.; Rybak, M.J.; Barsic, B.; Lockhart, P.B.; Gewitz, M.H.; Levison, M.E.; et al. Infective endocarditis in adults: Diagnosis, antimicrobial therapy, and management of complications. Circulation 2015, 132, 1435–1486. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Bayer, A.; Cosgrove, S.E.; Daum, R.S.; Fridkin, S.K.; Gorwitz, R.J.; Kaplan, S.L.; Karchmer, A.W.; Levine, D.P.; Murray, B.E.; et al. Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin. Inf. Dis. 2011, 53, e18–e55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, A.S.; de Lencastre, H.; Garau, J.; Kluytmans, J.; Malhotra-Kumar, S.; Peschel, A.; Harbarth, S. Methicillin-resistant Staphylococcus aureus. Nat. Rev. Dis. Prim. 2018, 4, 18033. [Google Scholar] [CrossRef] [Green Version]
- Diekema, D.J.; Pfaller, M.A.; Shortridge, D.; Zervos, M.; Jones, R.N. Twenty-year trends in antimicrobial susceptibilities among Staphylococcus aureus from the SENTRY antimicrobial surveillance program. Open Forum Infect. Dis. 2019, 6 (Suppl. 1), S47–S53. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Kim, K.H.; Kim, H.B.; Kim, N.J.; Kim, E.C.; Oh, M.D.; Choe, K.W. Outcomes of vancomycin treatment in patients with methicillin-susceptible Staphylococcus aureus bacteremia. Antimicrob. Agents Chemother. 2008, 52, 192–197. [Google Scholar] [CrossRef] [Green Version]
- McDanel, J.S.; Perencevich, E.N.; Diekema, D.J.; Herwaldt, L.A.; Smith, T.C.; Chrischilles, E.A.; Dawson, J.D.; Jiang, L.; Goto, M.; Schweizer, M.L. Comparative effectiveness of beta-lactams versus vancomycin for treatment of methicillin-susceptible Staphylococcus aureus bloodstream infections among 122 hospitals. Clin. Inf. Dis. 2015, 61, 361–367. [Google Scholar] [CrossRef] [Green Version]
- Stryjewski, M.E.; Szczech, L.A.; Benjamin, D.K., Jr.; Inrig, J.K.; Kanafani, Z.A.; Engemann, J.J.; Chu, V.H.; Joyce, M.J.; Reller, L.B.; Corey, G.R.; et al. Use of vancomycin or first-generation cephalosporins for the treatment of hemodialysis-dependent patients with methicillin-susceptible Staphylococcus aureus bacteremia. Clin. Inf. Dis. 2007, 44, 190–196. [Google Scholar] [CrossRef] [Green Version]
- Beganovic, M.; Cusumano, J.A.; Lopes, V.; LaPlante, K.L.; Caffrey, A.R. Comparative effectiveness of exclusive exposure to nafcillin or oxacillin, cefazolin, piperacillin/tazobactam, and fluoroquinolones among a national cohort of veterans with methicillin-susceptible Staphylococcus aureus bloodstream infection. Open Forum Infect. Dis. 2019, 6, ofz270. [Google Scholar] [CrossRef]
- Paul, M.; Zemer-Wassercug, N.; Talker, O.; Lishtzinsky, Y.; Lev, B.; Samra, Z.; Leibovici, L.; Bishara, J. Are all beta-lactams similarly effective in the treatment of MSSA bacteremia. Clin. Microbiol. Infect. 2011, 17, 1581–1586. [Google Scholar] [CrossRef] [Green Version]
- Yetmar, Z.A.; Khodadadi, R.B.; Go, J.R.; Chesdachai, S.; Abu Saleh, O.M. Outcomes of ceftriaxone versus antistaphylococcal penicillins or cefazolin for definitive therapy of methicillin-susceptible Staphylococcus aureus bacteremia. Open Forum Inf. Dis. 2022, 9 (Suppl. 2), 423–430. [Google Scholar] [CrossRef]
- Carr, D.R.; Stiefel, U.; Bonomo, R.A.; Burant, C.J.; Sims, S. Treatment of methicillin-susceptible Staphylococcus aureus bacteremia in a tertiary care VA medical center. Open Forum Inf. Dis. 2018, 5, ofy089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohamed, A.; Bennett, N.; Ploetz, J.; Aragon, L.; Kennedy, K.; Boyd, S. Ceftriaxone versus cefazolin for the treatment of methicillin-susceptible Staphylococcus aureus bacteremia. Int. J. Antimicrob. Agents 2022, 60, 106632. [Google Scholar] [CrossRef] [PubMed]
- Hamad, Y.; Connor, L.; Bailey, T.C.; George, I.A. Outcomes of outpatient parenteral antimicrobial therapy with ceftriaxone for methicillin-susceptible Staphylococcus aureus bloodstream infections—A single center observation study. Open Forum Inf. Dis. 2020, 7, ofaa341. [Google Scholar] [CrossRef] [PubMed]
- Asleh Alsowaida, Y.; Benitez, G.; Bin Saleh, K.; Almangour, T.A.; Shehadeh, F.; Mylonakis, E. Effectiveness and safety of ceftriaxone compared to standard of care for treatment of bloodstream infections due to methicillin-susceptible Staphylococcus aureus: A systematic review and meta-analysis. Antibiotics 2022, 11, 375. [Google Scholar] [CrossRef]
- Heffernan, A.J.; Sime, F.B.; Lim, S.M.S.; Adiraju, S.; Wallis, S.C.; Lipman, J.; Grant, G.D.; Roberts, J.A. Pharmacodynamics of ceftriaxone for the treatment of methicillin-susceptible Staphylococcus aureus: Is it a viable treatment option? Int. J. Antimicrob. Agents 2022, 59, 106537. [Google Scholar] [CrossRef]
- Nannini, E.C.; Singh, K.V.; Murray, B.E. Relapse of type A beta-lactamase-producing Staphylococcus aureus native valve endocarditis during cefazolin therapy: Revisiting the issue. Clin. Inf. Dis. 2003, 37, 1194–1198. [Google Scholar] [CrossRef]
- Dingle, T.C.; Gamage, D.; Gomez-Villegas, S.; Hanson, B.M.; Reyes, J.; Abbott, A.; Burnham, C.D.; Dien Bard, J.; Fritz, S.; Miller, W.R.; et al. Prevalence and characterization of the cefazolin inoculum effect in North American methicillin-susceptible Staphylococcus aureus isolates. J. Clin. Microbiol. 2022, 60, 1–8. [Google Scholar] [CrossRef]
- Lee, S.; Kwon, K.T.; Kim, H.I.; Chang, H.H.; Lee, J.M.; Choe, P.G.; Park, W.B.; Kim, N.J.; Oh, M.D.; Song, D.Y.; et al. Clinical implications of cefazolin inoculum effect and beta-lactamase type on methicillin-susceptible Staphylococcus aureus bacteremia. Microb. Drug Resist. 2014, 20, 568–574. [Google Scholar] [CrossRef]
- Miller, W.R.; Seas, C.; Carvajal, L.P.; Diaz, L.; Echeverri, A.M.; Ferro, C.; Rios, R.; Porras, P.; Luna, C.; Gotuzzo, E.; et al. The cefazolin inoculum effect is associated with increased mortality in methicillin-susceptible Staphylococcus aureus bacteremia. Open Forum Infect. Dis. 2018, 5, ofy123. [Google Scholar] [CrossRef] [Green Version]
- McDanel, J.S.; Roghmann, M.C.; Perencevich, E.N.; Ohl, M.E.; Goto, M.; Livorsi, D.J.; Jones, M.; Albertson, J.P.; Nair, R.; O’Shea, A.M.J.; et al. Comparative effectiveness of cefazolin versus nafcillin or oxacillin for treatment of methicillin-susceptible Staphylococcus aureus infections complicated by bacteremia: A nationwide cohort study. Clin. Inf. Dis. 2017, 65, 100–106. [Google Scholar] [CrossRef] [Green Version]
- Shi, C.; Xiao, Y.; Zhang, Q.; Li, Q.; Wang, F.; Wu, J.; Lin, N. Efficacy and safety of cefazolin versus antistaphylococcal penicillins for the treatment of methicillin-susceptible Staphylococcus aureus bacteremia: A systematic review and meta-analysis. BMC Infect. Dis. 2018, 18, 508. [Google Scholar] [CrossRef] [Green Version]
- Allen, J.M.; Bakare, L.; Casapao, A.M.; Klinker, K.; Childs-Kean, L.M.; Pomputius, A.F. Cefazolin versus antistaphylococcal penicillins for the treatment of patients with methicillin-susceptible Staphylococcus aureus infection: A meta-analysis with trial sequential analysis. Infect. Dis. Ther. 2019, 8, 671–686. [Google Scholar] [CrossRef] [Green Version]
- Bidel, M.R.; Patel, N.; O’Donnell, J.N. Optimal treatment of MSSA bacteremias: A meta-analysis of cefazolin versus antistaphylococcal penicillins. J. Antimicrob. Chemother. 2018, 73, 2643–2651. [Google Scholar] [CrossRef]
- Lecomte, R.; Bourreau, A.; Deschanvres, C.; Issa, N.; Le Turnier, P.; Gaborit, B.; Chauveau, M.; Leroy, A.G.; Le Tourneau, T.; Caillon, J.; et al. Comparative outcomes of cefazolin versus antistaphylococcal penicillins in methicillin-susceptible Staphylococcus aureus infective endocarditis. A post hoc analysis of a prospective multicenter French cohort study. Clin. Microbiol. Infect. 2021, 27, 1015–1021. [Google Scholar] [CrossRef] [PubMed]
- Viehman, J.A.; Oleksiuk, L.M.; Sheridan, K.R.; Byers, K.E.; He, P.; Falcione, B.A.; Shields, R.K. Adverse events lead to drug discontinuation more commonly among patients who receive nafcillin than among those who receive oxacillin. Antimicrob. Agents Chemother. 2016, 60, 3090–3095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Timbrook, T.T.; McKay, L.; Sutton, J.D.; Spivak, E.S. Disproportionality analysis of safety with nafcillin and oxacillin with the FDA adverse event reporting system (FAERS). Antimicrob. Agents Chemother. 2020, 64, e01818-19. [Google Scholar] [CrossRef] [PubMed]
- Novak, A.R.; Krsak, M.; Kiser, T.H.; Neumann, R.T.; Cava Prado, L.; Molina, K.C.; Mueller, S.W. Pharmacokinetic evaluation of cefazolin in the cerebrospinal fluid of critically ill patients. Open Forum Inf. Dis. 2022, 9, ofab649. [Google Scholar] [CrossRef]
- Grégoire, M.; Gaborit, B.; Deschanvres, C.; Lecomte, R.; Deslandes, G.; Dailly, É.; Ambrosi, X.; Bellouard, R.; Asseray, N.; Lakhal, K.; et al. High-dosage cefazolin achieves sufficient cerebrospinal diffusion to treat an extraventricular drainage-related Staphylococcus aureus ventriculitis. Antimicrob. Agents Chemother. 2019, 63, e01844-18. [Google Scholar] [CrossRef] [Green Version]
- Antosz, K.; Battle, S.; Chang, J.; Scheetz, M.H.; Al-Hasan, M.; Bookstaver, P.B. Cefazolin in the treatment of central nervous system infections: A narrative review and recommendation. Pharmacotherapy 2023, 43, 85–95. [Google Scholar] [CrossRef]
- Wehrli, W.; Knüsel, F.; Schmid, K.; Staehelin, M. Interaction of rifamycin with bacterial RNA polymerase. Proc. Natl. Acad. Sci. USA 1968, 61, 667–673. [Google Scholar] [CrossRef] [Green Version]
- Bundtzen, R.W.; Gerber, A.U.; Cohn, D.L.; Craig, W.A. Postantibiotic suppression of bacterial growth. Rev. Infect. Dis. 1981, 3, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Cappelletty, D.M. Evaluation of an intracellular pharmacokinetic in vitro infection model as a tool to assess tuberculosis therapy. Int. J. Antimicrob. Agents 2007, 29, 212–216. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.J.; Chen, C.C.; Cheng, K.C.; Wu, K.Y.; Lin, Y.C.; Zhang, C.C.; Weng, T.C.; Yu, W.L.; Chiu, Y.H.; Toh, H.S.; et al. In vitro efficacies and resistance profiles of rifampin-based combination regimens for biofilm-embedded methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2013, 57, 5717–5720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perlroth, J.; Kuo, M.; Tan, J.; Bayer, A.S.; Miller, L.G. Adjunctive use of rifampin for the treatment of Staphylococcus aureus infections: A systematic review of the literature. Arch. Intern. Med. 2008, 168, 805–819. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, N.P.; Skovdal, S.M.; Meyer, R.L.; Dagnæs-Hansen, F.; Fuursted, K.; Petersen, E. Rifampicin-containing combinations are superior to combinations of vancomycin, linezolid and daptomycin against Staphylococcus aureus biofilm infection in vivo and in vitro. Pathog. Dis. 2016, 74, ftw019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niska, J.A.; Shahbazian, J.H.; Ramos, R.I.; Francis, K.P.; Bernthal, N.M.; Miller, L.S. Vancomycin-rifampin combination therapy has enhanced efficacy against an experimental Staphylococcus aureus prosthetic joint infection. Antimicrob. Agents Chemother. 2013, 57, 5080–5086. [Google Scholar] [CrossRef] [Green Version]
- Riedel, D.J.; Weekes, E.; Forrest, G.N. Addition of rifampin to standard therapy for treatment of native valve infective endocarditis caused by Staphylococcus aureus. Antimicrob. Agents Chemother. 2008, 52, 2463–2467. [Google Scholar] [CrossRef] [Green Version]
- Cosgrove, S.E.; Fowler, V.G., Jr. Optimizing therapy for methicillin-resistant Staphylococcus aureus bacteremia. Semin. Respir. Crit. Care Med. 2007, 28, 624–631. [Google Scholar] [CrossRef]
- Mwangi, M.M.; Wu, S.W.; Zhou, Y.; Sieradzki, K.; de Lencastre, H.; Richardson, P.; Bruce, D.; Rubin, E.; Myers, E.; Siggia, E.D.; et al. Tracking the in vivo evolution of multidrug resistance in Staphylococcus aureus by whole-genome sequencing. Proc. Natl. Acad. Sci. USA 2007, 104, 9451–9456. [Google Scholar] [CrossRef] [Green Version]
- Chambers, H.F.; Deleo, F.R. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat. Rev. Microbiol. 2009, 7, 629–641. [Google Scholar] [CrossRef]
- Liu, W.L.; Hung, Y.L.; Lin, S.H.; Lee, P.I.; Hsueh, P.R. Fatal bacteraemia and infective endocarditis due to meticillin-resistant Staphylococcus aureus (MRSA) with rapid emergence of rifampicin resistance during vancomycin/rifampicin combination treatment. Int. J. Antimicrob. Agents 2010, 35, 615–616. [Google Scholar] [CrossRef]
- Van der Auwera, P.; Klastersky, J. In vitro study of the combination of rifampin with oxacillin against Staphylococcus aureus. Rev. Infect. Dis. 1983, 5 (Suppl. 3), S509–S514. [Google Scholar] [CrossRef] [PubMed]
- Zinner, S.H.; Lagast, H.; Klastersky, J. Antistaphylococcal activity of rifampin with other antibiotics. J. Infect. Dis. 1981, 144, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Hackbarth, C.J.; Chambers, H.F.; Sande, M.A. Serum bactericidal activity of rifampin in combination with other antimicrobial agents against Staphylococcus aureus. Antimicrob. Agents Chemother. 1986, 29, 611–613. [Google Scholar] [CrossRef] [Green Version]
- Shelburne, S.A.; Musher, D.M.; Hulten, K.; Ceasar, H.; Lu, M.Y.; Bhaila, I.; Hamill, R.J. In vitro killing of community-associated methicillin-resistant Staphylococcus aureus with drug combinations. Antimicrob. Agents Chemother. 2004, 48, 4016–4019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gebhart, B.C.; Barker, B.C.; Markewitz, B.A. Decreased serum linezolid levels in a critically ill patient receiving concomitant linezolid and rifampin. Pharmacotherapy 2007, 27, 476–479. [Google Scholar] [CrossRef]
- Levine, D.P.; Fromm, B.S.; Reddy, B.R. Slow response to vancomycin or vancomycin plus rifampin in methicillin-resistant Staphylococcus aureus endocarditis. Ann. Intern. Med. 1991, 115, 674–680. [Google Scholar] [CrossRef]
- Tshefu, K.; Zimmerli, W.; Waldvogel, F.A. Short-term administration of rifampin in the prevention or eradication of infection due to foreign bodies. Rev. Infect. Dis. 1983, 5 (Suppl. 3), S474–S480. [Google Scholar] [CrossRef]
- Lucet, J.C.; Herrmann, M.; Rohner, P.; Auckenthaler, R.; Waldvogel, F.A.; Lew, D.P. Treatment of experimental foreign body infection caused by methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 1990, 34, 2312–2317. [Google Scholar] [CrossRef] [Green Version]
- Rieg, S.; Joost, I.; Weiß, V.; Peyerl-Hoffmann, G.; Schneider, C.; Hellmich, M.; Seifert, H.; Kern, W.V.; Kaasch, A. Combination antimicrobial therapy in patients with Staphylococcus aureus bacteraemia-a post hoc analysis in 964 prospectively evaluated patients. Clin. Microbiol. Infect. 2017, 23, 406.e1–406.e8. [Google Scholar] [CrossRef] [Green Version]
- Ryder, J.H.; Tong, S.Y.C.; Gallagher, J.C.; McDonald, E.G.; Thevarajan, I.; Lee, T.C.; Cortés-Penfield, N.W. Deconstructing the Dogma: Systematic Literature Review and Meta-analysis of Adjunctive Gentamicin and Rifampin in Staphylococcal Prosthetic Valve Endocarditis. Open Forum Infect. Dis. 2022, 9, ofac583. [Google Scholar] [CrossRef] [PubMed]
- Doub, J.B.; Heil, E.L.; Ntem-Mensah, A.; Neeley, R.; Ching, P.R. Rifabutin use in Staphylococcus biofilm infections: A case series. Antibiotics 2020, 9, 326. [Google Scholar] [CrossRef] [PubMed]
- Karau, M.J.; Schmidt-Malan, S.M.; Albano, M.; Mandrekar, J.N.; Rivera, C.G.; Osmon, D.R.; Oravec, C.P.; Berry, D.J.; Abdel, M.P.; Patel, R. Novel Use of Rifabutin and Rifapentine to Treat Methicillin-Resistant Staphylococcus aureus in a Rat Model of Foreign Body Osteomyelitis. J. Infect. Dis. 2020, 222, 1498–1504. [Google Scholar] [CrossRef]
- Ventola, C.L. The antibiotic resistance crisis: Part 1: Causes and threats. Pharm. Ther. 2015, 40, 277–283. [Google Scholar]
- Tamma, P.D.; Avdic, E.; Li, D.X.; Dzintars, K.; Cosgrove, S.E. Association of Adverse Events with Antibiotic Use in Hospitalized Patients. JAMA Intern. Med. 2017, 177, 1308–1315. [Google Scholar] [CrossRef] [Green Version]
- Hunter, T.H. Speculations on the mechanism of cure of bacterial endocarditis. J. Am. Med. Assoc. 1950, 144, 524–527. [Google Scholar] [CrossRef] [PubMed]
- Sexton, D.J.; Tenenbaum, M.J.; Wilson, W.R.; Steckelberg, J.M.; Tice, A.D.; Gilbert, D.; Dismukes, W.; Drew, R.H.; Durack, D.T. Ceftriaxone once daily for four weeks compared with ceftriaxone plus gentamicin once daily for two weeks for treatment of endocarditis due to penicillin-susceptible streptococci. Endocarditis Treatment Consortium Group. Clin. Infect. Dis. 1998, 27, 1470–1474. [Google Scholar] [CrossRef] [Green Version]
- Drinković, D.; Morris, A.J.; Pottumarthy, S.; MacCulloch, D.; West, T. Bacteriological outcome of combination versus single-agent treatment for staphylococcal endocarditis. J. Antimicrob. Chemother. 2003, 52, 820–825. [Google Scholar] [CrossRef]
- Fernández-Hidalgo, N.; Almirante, B.; Gavaldà, J.; Gurgui, M.; Peña, C.; de Alarcón, A.; Ruiz, J.; Vilacosta, I.; Montejo, M.; Vallejo, N.; et al. Ampicillin plus ceftriaxone is as effective as ampicillin plus gentamicin for treating enterococcus faecalis infective endocarditis. Clin. Infect. Dis. 2013, 56, 1261–1268. [Google Scholar] [CrossRef] [Green Version]
- Cosgrove, S.E.; Vigliani, G.A.; Fowler, V.G., Jr.; Abrutyn, E.; Corey, G.R.; Levine, D.P.; Rupp, M.E.; Chambers, H.F.; Karchmer, A.W.; Boucher, H.W. Initial low-dose gentamicin for Staphylococcus aureus bacteremia and endocarditis is nephrotoxic. Clin. Infect. Dis. 2009, 48, 713–721. [Google Scholar] [CrossRef] [Green Version]
- Cunha, B.A.; Gran, A. Successful treatment of methicillin-resistant Staphylococcus aureus (MRSA) aortic prosthetic valve endocarditis with prolonged high-dose daptomycin plus ceftaroline therapy. Int. J. Antimicrob. Agents 2015, 46, 225–226. [Google Scholar] [CrossRef] [PubMed]
- Baxi, S.M.; Chan, D.; Jain, V. Daptomycin non-susceptible, vancomycin-intermediate Staphylococcus aureus endocarditis treated with ceftaroline and daptomycin: Case report and brief review of the literature. Infection 2015, 43, 751–754. [Google Scholar] [CrossRef] [PubMed]
- Sakoulas, G.; Nonejuie, P.; Nizet, V.; Pogliano, J.; Crum-Cianflone, N.; Haddad, F. Treatment of high-level gentamicin-resistant Enterococcus faecalis endocarditis with daptomycin plus ceftaroline. Antimicrob. Agents Chemother. 2013, 57, 4042–4045. [Google Scholar] [CrossRef] [Green Version]
- Hornak, J.P.; Anjum, S.; Reynoso, D. Adjunctive ceftaroline in combination with daptomycin or vancomycin for complicated methicillin-resistant Staphylococcus aureus bacteremia after monotherapy failure. Ther. Adv. Infect. Dis. 2019, 6, 2049936119886504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, C.; Chen, I.; Lin, L. Comparing the Outcomes of Ceftaroline plus Vancomycin or Daptomycin Combination Therapy versus Vancomycin or Daptomycin Monotherapy in Adults with Methicillin-Resistant Staphylococcus aureus Bacteremia—A Meta-Analysis. Antibiotics 2022, 11, 1104. [Google Scholar] [CrossRef]
- McCreary, E.K.; Kullar, R.; Geriak, M.; Zasowski, E.J.; Rizvi, K.; Schulz, L.T.; Ouellette, K.; Vasina, L.; Haddad, F.; Rybak, M.J.; et al. Multicenter Cohort of Patients with Methicillin-Resistant Staphylococcus aureus Bacteremia Receiving Daptomycin Plus Ceftaroline Compared with Other MRSA Treatments. Open Forum Infect. Dis. 2019, 7, ofz538. [Google Scholar] [CrossRef] [Green Version]
- Nichols, C.N.; Wardlow, L.C.; Coe, K.E.; Sobhanie, M.M.E. Clinical Outcomes with Definitive Treatment of Methicillin-Resistant Staphylococcus aureus Bacteremia with Retained Daptomycin and Ceftaroline Combination Therapy vs. De-escalation to Monotherapy with Vancomycin, Daptomycin, or Ceftaroline. Open Forum Infect. Dis. 2021, 8, ofab327. [Google Scholar] [CrossRef]
- Sakoulas, G.; Rose, W.; Nonejuie, P.; Olson, J.; Pogliano, J.; Humphries, R.; Nizet, V. Ceftaroline restores daptomycin activity against daptomycin-nonsusceptible vancomycin-resistant Enterococcus faecium. Antimicrob. Agents Chemother. 2014, 58, 1494–1500. [Google Scholar] [CrossRef] [Green Version]
- Rose, W.E.; Schulz, L.T.; Andes, D.; Striker, R.; Berti, A.D.; Hutson, P.R.; Shukla, S.K. Addition of ceftaroline to daptomycin after emergence of daptomycin-nonsusceptible Staphylococcus aureus during therapy improves antibacterial activity. Antimicrob. Agents Chemother. 2012, 56, 5296–5302. [Google Scholar] [CrossRef] [Green Version]
- Sundaragiri, P.R.; Vallabhajosyula, S.; Haddad, T.M.; Esterbrooks, D.J. Tricuspid and mitral endocarditis due to methicillin-resistant Staphylococcus aureus exhibiting vancomycin-creep phenomenon. BMJ Case Rep. 2015, 2015, bcr2015211974. [Google Scholar] [CrossRef] [Green Version]
- Blumenthal, K.G.; Kuhlen, J.L., Jr.; Weil, A.A.; Varughese, C.A.; Kubiak, D.W.; Banerji, A.; Shenoy, E.S. Adverse Drug Reactions Associated with Ceftaroline Use: A 2-Center Retrospective Cohort. J. Allergy Clin. Immunol. Pract. 2016, 4, 740–746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casapao, A.M.; Davis, S.L.; Barr, V.O.; Klinker, K.P.; Goff, D.A.; Barber, K.E.; Kaye, K.S.; Mynatt, R.P.; Molloy, L.M.; Pogue, J.M.; et al. Large retrospective evaluation of the effectiveness and safety of ceftaroline fosamil therapy. Antimicrob. Agents Chemother. 2014, 58, 2541–2546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobayashi, T.; Ando, T.; Streit, J.; Sekar, P. Current Evidence on Oral Antibiotics for Infective Endocarditis: A Narrative Review. Cardiol. Ther. 2019, 8, 167–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, E.; Gould, F.K. Oral antibiotics for infective endocarditis: A clinical review. J. Antimicrob. Chemother. 2020, 75, 2021–2027. [Google Scholar] [CrossRef] [PubMed]
- Spellberg, B.; Chambers, H.F.; Musher, D.M.; Walsh, T.L.; Bayer, A.S. Evaluation of a Paradigm Shift From Intravenous Antibiotics to Oral Step-Down Therapy for the Treatment of Infective Endocarditis: A Narrative Review. JAMA Intern. Med. 2020, 180, 769–777. [Google Scholar] [CrossRef] [PubMed]
- Dworkin, R.J.; Lee, B.L.; Sande, M.A.; Chambers, H.F. Treatment of right-sided Staphylococcus aureus endocarditis in intravenous drug users with ciprofloxacin and rifampicin. Lancet 1989, 2, 1071–1073. [Google Scholar] [CrossRef] [PubMed]
- Heldman, A.W.; Hartert, T.V.; Ray, S.C.; Daoud, E.G.; Kowalski, T.E.; Pompili, V.J.; Sisson, S.D.; Tidmore, W.C.; vom Eigen, K.A.; Goodman, S.N.; et al. Oral antibiotic treatment of right-sided staphylococcal endocarditis in injection drug users: Prospective randomized comparison with parenteral therapy. Am. J. Med. 1996, 101, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Habib, G.; Lancellotti, P.; Antunes, M.J.; Bongiorni, M.G.; Casalta, J.P.; Del Zotti, F.; Dulgheru, R.; El Khoury, G.; Erba, P.A.; Iung, B.; et al. 2015 ESC Guidelines for the management of infective endocarditis: The Task Force for the Management of Infective Endocarditis of the European Society of Cardiology (ESC). Endorsed by: European Association for Cardio-Thoracic Surgery (EACTS), the European Association of Nuclear Medicine (EANM). Eur. Heart J. 2015, 36, 3075–3128. [Google Scholar] [CrossRef]
- Demonchy, E.; Dellamonica, P.; Roger, P.M.; Bernard, E.; Cua, E.; Pulcini, C. Audit of antibiotic therapy used in 66 cases of endocarditis. Med. Mal. Infect. 2011, 41, 602–607. [Google Scholar] [CrossRef]
- Mzabi, A.; Kernéis, S.; Richaud, C.; Podglajen, I.; Fernandez-Gerlinger, M.P.; Mainardi, J.L. Switch to oral antibiotics in the treatment of infective endocarditis is not associated with increased risk of mortality in non-severely ill patients. Clin. Microbiol. Infect. 2016, 22, 607–612. [Google Scholar] [CrossRef] [Green Version]
- Stamboulian, D.; Bonvehi, P.; Arevalo, C.; Bologna, R.; Cassetti, I.; Scilingo, V.; Efron, E. Antibiotic management of outpatients with endocarditis due to penicillin-susceptible streptococci. Rev. Infect. Dis. 1991, 13 (Suppl. 2), S160–S163. [Google Scholar] [CrossRef] [PubMed]
- Wald-Dickler, N.; Holtom, P.D.; Phillips, M.C.; Centor, R.M.; Lee, R.A.; Baden, R.; Spellberg, B. Oral Is the New IV. Challenging Decades of Blood and Bone Infection Dogma: A Systematic Review. Am. J. Med. 2022, 135, 369–379.e1. [Google Scholar] [CrossRef] [PubMed]
- Tissot-Dupont, H.; Gouriet, F.; Oliver, L.; Jamme, M.; Casalta, J.P.; Jimeno, M.T.; Arregle, F.; Lavoute, C.; Hubert, S.; Philip, M.; et al. High-dose trimethoprim-sulfamethoxazole and clindamycin for Staphylococcus aureus endocarditis. Int. J. Antimicrob. Agents 2019, 54, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Iversen, K.; Ihlemann, N.; Gill, S.U.; Madsen, T.; Elming, H.; Jensen, K.T.; Bruun, N.E.; Høfsten, D.E.; Fursted, K.; Christensen, J.J.; et al. Partial Oral versus Intravenous Antibiotic Treatment of Endocarditis. N. Engl. J. Med. 2019, 380, 415–424. [Google Scholar] [CrossRef] [PubMed]
- Pries-Heje, M.M.; Wiingaard, C.; Ihlemann, N.; Gill, S.U.; Bruun, N.E.; Elming, H.; Povlsen, J.A.; Madsen, T.; Jensen, K.T.; Fursted, K.; et al. Five-Year Outcomes of the Partial Oral Treatment of Endocarditis (POET) Trial. N. Engl. J. Med. 2022, 386, 601–602. [Google Scholar] [CrossRef]
- Freling, S.; Wald-Dickler, N.; Banerjee, J.; Canamar, C.P.; Tangpraphaphorn, S.; Bruce, D.; Davar, K.; Dominguez, F.; Norwitz, D.; Krishnamurthi, G.; et al. Real-world Application of Oral Therapy for Infective Endocarditis: A Multicenter Retrospective, Cohort Study. Clin. Infect. Dis. 2023, ciad119. [Google Scholar] [CrossRef]
- Wurcel, A.G.; Anderson, J.E.; Chui, K.K.; Skinner, S.; Knox, T.A.; Snydman, D.R.; Stopka, T.J. Increasing Infectious Endocarditis Admissions Among Young People Who Inject Drugs. Open Forum Infect. Dis. 2016, 3, ofw157. [Google Scholar] [CrossRef] [Green Version]
- Parker, R.H.; Fossieck, B.E., Jr. Intravenous followed by oral antimicrobial therapy for staphylococcal endocarditis. Ann. Intern. Med. 1980, 93, 832–834. [Google Scholar] [CrossRef]
- Morpeth, S.; Murdoch, D.; Cabell, C.H.; Karchmer, A.W.; Pappas, P.; Levine, D.; Nacinovich, F.; Tattevin, P.; Fernández-Hidalgo, N.; Dickerman, S.; et al. Non-HACEK gram-negative bacillus endocarditis. Ann. Intern. Med. 2007, 147, 829–835. [Google Scholar] [CrossRef]
- Falcone, M.; Tiseo, G.; Durante-Mangoni, E.; Ravasio, V.; Barbaro, F.; Ursi, M.P.; Pasticci, M.B.; Bassetti, M.; Grossi, P.; Venditti, M.; et al. Risk Factors and Outcomes of Endocarditis Due to Non-HACEK Gram-Negative Bacilli: Data from the Prospective Multicenter Italian Endocarditis Study Cohort. Antimicrob. Agents Chemother. 2018, 62, e02208-17. [Google Scholar] [CrossRef] [Green Version]
- Lorenz, A.; Sobhanie, M.M.E.; Orzel, L.; Coe, K.; Wardlow, L. Clinical outcomes of combination versus monotherapy for gram negative non-HACEK infective endocarditis. Diagn. Microbiol. Infect. Dis. 2021, 101, 115504. [Google Scholar] [CrossRef] [PubMed]
- Lemaignen, A.; Bernard, L.; Tattevin, P.; Bru, J.P.; Duval, X.; Hoen, B.; Brunet-Houdard, S.; Mainardi, J.L.; Caille, A.; RODEO (Relais Oral Dans le traitement des Endocardites à staphylocoques ou streptOcoques) and AEPEI (Association pour l’Etude et la Prévention de l’Endocardite Infectieuse) Study Groups. Oral switch versus standard intravenous antibiotic therapy in left-sided endocarditis due to susceptible staphylococci, streptococci or enterococci (RODEO): A protocol for two open-label randomised controlled trials. BMJ Open 2020, 10, e033540. [Google Scholar] [CrossRef]
- Partial Oral Antimicrobial Versus Intravenous Antimicrobial Therapy to Treat Infective Endocarditis in People Who Inject Drugs. Available online: https://clinicaltrials.gov/ct2/show/NCT04544306?cond=endocarditis&draw=2&rank=7 (accessed on 12 March 2023).
- Baldoni, D.; Furustrand Tafin, U.; Aeppli, S.; Angevaare, E.; Oliva, A.; Haschke, M.; Zimmerli, W.; Trampuz, A. Activity of dalbavancin, alone and in combination with rifampicin, against meticillin-resistant Staphylococcus aureus in a foreign-body infection model. Int. J. Antimicrob. Agents 2013, 42, 220–225. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.A.; Feeney, E.R.; Kubiak, D.W.; Corey, G.R. Prolonged use of oritavancin for vancomycin-resistant Enterococcus faecium prosthetic valve endocarditis. Open Forum Infect. Dis. 2015, 2, ofv156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belley, A.; Seguin, D.L.; Arhin, F.; Moeck, G. Comparative in vitro activities of oritavancin, dalbavancin, and vancomycin against methicillin-resistant Staphylococcus aureus in a nondividing state. Antimicrob. Agents Chemother. 2016, 60, 4342–4345. [Google Scholar] [CrossRef] [Green Version]
- Tobudic, S.; Forstner, C.; Burgmann, H.; Lagler, H.; Ramharter, M.; Steininger, C.; Vossen, M.G.; Winkler, S.; Thalhammer, F. Dalbavancin as primary and sequential treatment for gram-positive infective endocarditis: 2-year experience at the General Hospital of Vienna. Clin. Infect. Dis. 2018, 67, 795–798. [Google Scholar] [CrossRef]
- Hidalgo-Tenorio, C.; Vinuesa, D.; Plata, A.; Martin Dávila, P.; Iftimie, S.; Sequera, S.; Loeches, B.; Lopez-Cortés, L.E.; Fariñas, M.C.; Fernández-Roldan, C.; et al. DALBACEN cohort: Dalbavancin as consolidation therapy in patients with endocarditis and/or bloodstream infection produced by gram-positive cocci. Ann. Clin. Microbiol. Antimicrob. 2019, 18, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dinh, A.; Duran, C.; Pavese, P.; Khatchatourian, L.; Monnin, B.; Bleibtreu, A.; Denis, E.; Etienne, C.; Rouanes, N.; Mahieu, R.; et al. French national cohort of first use of dalbavancin: A high proportion of off-label use. Int. J. Antimicrob. Agents 2019, 54, 668–672. [Google Scholar] [CrossRef]
- Wunsch, S.; Krause, R.; Valentin, T.; Prattes, J.; Janata, O.; Lenger, A.; Bellmann-Weiler, R.; Weiss, G.; Zollner-Schwetz, I. Multicenter clinical experience of real life Dalbavancin use in gram-positive infections. Int. J. Infect. Dis. 2019, 81, 210–214. [Google Scholar] [CrossRef] [Green Version]
- Cojutti, P.G.; Rinaldi, M.; Gatti, M.; Tedeschi, S.; Viale, P.; Pea, F. Usefulness of therapeutic drug monitoring in estimating the duration of dalbavancin optimal target attainment in staphylococcal osteoarticular infections: A proof-of-concept. Int. J. Antimicrob. Agents 2021, 58, 106445. [Google Scholar] [CrossRef]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 33rd ed.; CLSI Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2023. [Google Scholar]
- Werth, B.J.; Ashford, N.K.; Penewit, K.; Waalkes, A.; Holmes, E.A.; Ross, D.H.; Shen, T.; Hines, K.M.; Salipante, S.J.; Xu, L. Dalbavancin exposure in vitro selects for dalbavancin-non-susceptible and vancomycin-intermediate strains of methicillin-resistant Staphylococcus aureus. Clin. Microbiol. Infect. 2021, 27, 910.e1–910.e8. [Google Scholar] [CrossRef] [PubMed]
- Werth, B.J.; Jain, R.; Hahn, A.; Cummings, L.; Weaver, T.; Waalkes, A.; Sengupta, D.; Salipante, S.J.; Rakita, R.M.; Butler-Wu, S.M. Emergence of dalbavancin non-susceptible, vancomycin-intermediate Staphylococcus aureus (VISA) after treatment of MRSA central line-associated bloodstream infection with a dalbavancin-and vancomycin-containing regimen. Clin. Microbiol. Infect. 2018, 24, 429.e1–429.e5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, R.; Polenakovik, H.; Barreras Beltran, I.A.; Waalkes, A.; Salipante, S.J.; Xu, L.; Werth, B.J. Emergency of dalbavancin, vancomycin, and daptomycin nonsusceptible Staphylococcus aureus in a patient treated with dalbavancin: Case report and isolate characterization. Clin. Infect. Dis. 2022, 75, 1641–1644. [Google Scholar] [CrossRef]
- Ahiskali, A.; Rhodes, H. Oritavancin for the treatment of complicated gram-positive infection in persons who inject drugs. BMC Pharmacol. Toxicol. 2020, 21, 73. [Google Scholar] [CrossRef] [PubMed]
- Stewart, C.L.; Turner, M.S.; Frens, J.J.; Snider, C.B.; Smith, J.R. Real-world experience with oritavancin therapy in invasive gram-positive infections. Infect. Dis. Ther. 2017, 6, 277–289. [Google Scholar] [CrossRef] [Green Version]
Citation | Study Design and Methods | Notable Outcomes | Conclusion |
---|---|---|---|
Open Forum Infect Dis. 2019, 6(7), ofz270. [18] | Retrospective cohort study of patients with MSSA bacteremia treated exclusively with nafcillin, oxacillin, cefazolin, piperacillin/tazobactam or fluoroquinolones | Similar 30-day mortality between ASPs and cefazolin (HR 0.67, 95% CI 0.11–4.00) Lower 30-day mortality for ASPs/cefazolin compared to piperacillin/tazobactam when propensity matched (HR 0.10, 95% CI 0.01–0.78) | Piperacillin/tazobactam should not be used preferentially in patients with MSSA bacteremia |
Clin Microbiol Infect. 2011, 17(10), 1581–6. [19] | Retrospective cohort study of 30-day and 90-day mortality in patients with MSSA bacteremia managed with beta-lactam therapy | 30-day mortality significantly higher in patients receiving ceftriaxone (OR 2.24, 95% CI 1.23–4.08) or BL/BLI (OR 2.68, 95% 1.23–5.85) No difference in 90-day mortality between cloxacillin vs. cefazolin treated patients (HR 0.91, 95% CI 0.47–1.77) | BL/BLI and ceftriaxone should not be used as preferential therapies in patients with MSSA bacteremia |
Open Forum Infect Dis. 2022, 9(Suppl 2), ofac492.029. [20] | Retrospective cohort study of clinical outcomes of MSSA bacteremia managed with ceftriaxone vs. cefazolin or ASP | Higher rate of 30-day and 90-day treatment failure in patients treated with ceftriaxone as compared to those treated with cefazolin or ASPs (3.8% and 8.6% vs. 8.1% and 27%) | Cefazolin or ASPs should be used preferentially over ceftriaxone for MSSA bacteremia |
Open Forum Infect Dis. 2018, 18(5), ofy089. [21] | Retrospective cohort study of patients with MSSA bacteremia managed definitively with ≥14 days of either cefazolin or ceftriaxone | Higher rate of therapy extension, incomplete therapy, unplanned oral suppression, relapse, or hospital admission or surgery within 90 days observed in patients receiving ceftriaxone as compared to cefazolin (54.5% vs. 28.9%, p = 0.29) | Cefazolin should be used preferentially over ceftriaxone in the treatment of MSSA bacteremia |
Int J Antimicrob Agents. 2022, 60(3), 106632. [22] | Retrospective cohort study comparing safety and efficacy of cefazolin and ceftriaxone in MSSA bacteremia | Similar rates of clinical cure at 28 days or hospital discharge between cefazolin and ceftriaxone treated patients (90.1% vs. 86.2%, p = 0.359). | Ceftriaxone may represent a viable alternative to cefazolin in the management of MSSA bacteremia |
Open Forum Infect Dis. 2020, 13(7), ofaa341. [23] | Retrospective cohort study evaluating patients with MSSA bacteremia receiving ≥7 days of cefazolin or oxacillin vs. ceftriaxone as OPAT | No differences in microbiologic failure, 90-day mortality, or readmission between cefazolin or oxacillin vs. ceftriaxone for MSSA bacteremia (19% vs. 21%, p = 0.7) | Ceftriaxone may represent an alternative to cefazolin or ASPs for patients with MSSA bacteremia being managed in the outpatient setting |
Antibiotics. 2022, 11(3), 375. [24] | Systematic review and meta-analysis evaluating outcomes of MSSA BSIs treated with ceftriaxone as compared to SOC | No difference noted between ceftriaxone and SOC with regards to clinical cure (OR 0.65, 95% CI 0.29–1.45) or microbiological cure (OR 1.48, 95% CI 0.29–7.51) | Ceftriaxone represents an appropriate alternative to standard of care for patients receiving therapy for MSSA BSI |
Microb Drug Resist. 2014, 20(6), 568–74. [28] | Retrospective cohort study evaluating outcomes of patients with MSSA bacteremia managed with cefazolin stratified by presence of CzIE | CzIE was associated with higher rates of persistent bacteremia (9% vs. 0%, p = 0.04) but was not associated with a statistically significant increase in treatment failure (48% CzIE vs. 25% no CzIE, p = 0.13) Site of infection, but not CzIE was associated with treatment failure on multivariable analysis | CzIE may contribute to bacteremia persistence, but was not found to impact clinical outcomes |
Open Forum Infect Dis. 2018, 5(6), ofy123. [29] | Prospective study evaluating the impact of CzIE on 30-day mortality in patients with MSSA bacteremia treated with cefazolin | CzIE was found to be associated with increases in 30-day mortality in both univariate (p = 0.034) and multivariable analysis (p = 0.03) | Cefazolin should be used with caution as first line therapy in patients with MSSA bacteremia shown to be positive for CzIE |
Clin Infect Dis. 2017, 65(1), 100–106. [30] | Retrospective cohort study evaluating clinical outcomes of patients with MSSA bacteremia managed definitively with cefazolin vs. ASPs | Patients receiving cefazolin demonstrated lower rates of 30-day (HR 0.63, 95% CI 0.51–0.78) and 90-day (HR 0.77, 95% CI 0.66–0.90) mortality compared to ASPs. | Cefazolin may be more effective than ASPs in the management of MSSA bacteremia |
BMC Infect Dis. 2018, 18, 508. [31] | Systematic review and meta-analysis of safety and efficacy of cefazolin vs. ASPs in the management of MSSA bacteremia | Cefazolin was associated with lower rates of mortality (OR 0.69, 95% CI 0.58–0.82), clinical failure (OR 0.56, 95% CI 0.37–0.85) as compared to ASPs with no difference in recurrence (OR 1.12, 95% CI 0.94–1.34) Cefazolin was associated with a lower rate of discontinuation due to ADE compared to ASPs (OR 0.24, 95% CI 0.12–0.48) | Cefazolin should be favored over ASPs when making definitive antimicrobial selections for patients with MSSA bacteremia |
Infect Dis Ther. 2019, 8(4), 671–686. [32] | Meta-analysis with trial sequential analysis evaluating differences in outcomes between patients with MSSA bacteremia managed with cefazolin vs. those managed with ASPs | Cefazolin, as compared to ASPs, was associated with lower all-cause mortality (p < 0.01), clinical failure (p < 0.01), and antibiotic discontinuation due to ADEs (p < 0.01) Cefazolin associated with a higher rate of infection recurrence (OR 1.41, p = 0.03) | Cefazolin is a reasonable first line beta-lactam for use in the management of patients with MSSA bacteremia |
J Antimicrobial Chemother. 2018, 73(10), 2643–2651. [33] | Systematic review and meta-analysis evaluating differences in clinical outcomes between patients managed with cefazolin and those managed with ASPs | Cefazolin associated with lower rates of 90-day mortality (OR 0.63, 95% CI 0.41–0.99) and discontinuation due to ADE (OR 0.25, 95% CI 0.11–0.56) Cefazolin and ASPs demonstrated similar rates of clinical failure (OR 0.85, 95% CI 0.41–1.76) | Cefazolin, in addition to ASPs, may represent an important first-line agent in the management of MSSA bacteremia |
Clin Microbiol Infect. 2021, 27(7), 1015–1021. [34] | Retrospective cohort study evaluating outcomes of patients with MSSA IE managed definitively with either cefazolin or ASPs | No difference in 90-day mortality observed between cefazolin or ASPs (24.5% vs. 28.7%, p = 0.561) Premature antimicrobial discontinuation due to ADE was more commonly seen in patients receiving ASPs compared to those receiving cefazolin (0% vs. 8.2%, p = 0.042) | Cefazolin is an appropriate alternative to ASPs as a definitive agent in the management of MSSA IE |
Antimicrob Agents Chemother. 2016, 60(5), 3090–3095. [35] | Retrospective cohort study comparing tolerability differences between oxacillin and nafcillin | Oxacillin was associated with significantly less hypokalemia (17% vs. 51%, p < 0.01) and less premature discontinuation due to ADEs (2% vs. 18%, p < 0.01) than nafcillin | Oxacillin is better tolerated than nafcillin |
Citation | Study Design and Methods | Notable Outcomes | Conclusion |
---|---|---|---|
Rev Infect Dis 1983; 5(Suppl 3):S543–8. [52] | Retrospective cohort study assessing the role of rifampin in patients treated with vancomycin or a beta-lactam for MRSE PVE | 13/15 (87%) of patients receiving rifampin and VAN were considered cured and an increase in serum bactericidal activity was observed. 7/15 of these patients also received an AG 3/8 (38%) of patients receiving rifampin and beta-lactam were cured (87% vs. 28%, p = 0.025). 1/8 of these patients also received AG Two rifampin-resistant strains were isolated from surgical cultures | Cure rates obtained with rifampin plus vancomycin (with or without an aminoglycoside) were encouraging for further study Beta-lactam (with or without rifampin) should not be used to treat MRSE PVE |
Ann Intern Med 1991; 98:447–55. [57] | Retrospective cohort study assessing the role of rifampin in patients treated with vancomycin or a beta-lactam for MRSE PVE | Failure rate (composite of death and recurrence in up to 3 months) occurred in 5/10 (50%) in those receiving VAN or beta-lactam alone 23/46 (50%) of patients received rifampin and 21/46 (45.7%) received AG in addition to VAN or a beta-lactam Failure occurred in 5/15 (33.3%) of patients receiving rifampin combination and in 2/8 (25%) of patients receiving rifampin and AG combination | Failure rates were lower in cohorts of patients receiving combinations that included rifampin; however, sample sizes were very small and use of beta-lactam for MRSE is no longer considered standard care |
Clin Infect Dis 2021; 72:e249–55. [61] | Observational retrospective cohort study of adults with staphylococcal PVE at 3 referral centers | Staphylococcus aureus (63.3%) and coagulase-negative staphylococci (36.7%) were included, MRSA was associated with one year mortality 101/180 (56.1%) patients were treated with rifampin (median duration of 33.0 days) and 79/180 (43.9%) patients had no rifampin One-year mortality was 38/101 (37.6%) in patients treated with rifampin and 25/79 (31.6%) in those without rifampin (p = 0.62) Relapse rates occurred in 6/101 (5.9%) with rifampin and 7/79 (8.9%) in those without (p = 0.65) Patients treated with rifampin had longer hospital length-of-stay. | One-year survival and relapse rates were not statistically different in patients treated with or without rifampin. Relapse rate was numerically lower in those treated with rifampin combination |
Citation | Study Design and Methods | Notable Outcomes | Conclusion |
---|---|---|---|
Aminoglycoside Combination | |||
Clin Infect Dis. 1998, 27(6), 1470–1474. [67] | Randomized controlled trial evaluating ceftriaxone monotherapy × 4 weeks vs. Ceftriaxone/AG × 2 weeks in streptococcal NVE | No difference in clinical cure rate (96.2% vs. 96%) | A shorter duration of therapy can be considered with the addition of gentamicin to treat streptococcal NVE |
J Antimicrob Chemother. 2003, 52(5), 820–825. [68] | Randomized controlled trial evaluating SOC monotherapy vs. SOC/gentamicin for staphylococcal IE | Increased rate of negative valve culture with combination therapy in PVE | PVE due to staphylococcal species benefit from combination therapy compared with monotherapy for culture clearance |
Clin Infect Dis. 2013, 56(9), 1261–1268. [69] | Randomized controlled trial evaluating dual beta-lactam vs. gentamicin-containing combination therapy for enterococcal IE | No difference in mortality. Increased risk of renal failure with aminoglycoside regimen | Dual beta-lactam containing regimens are equally efficacious as a gentamicin-containing regimen for enterococcal IE and have shown decreased nephrotoxicity |
Clin Infect Dis. 2009, 48(6), 713–721. [70] | Various treatment regimens evaluated | Increased rate of renal toxicity with gentamicin containing regimens (22% vs. 8%) | When used for a median of 5 days, nephrotoxicity is demonstrated in aminoglycoside-containing regimens |
Ceftaroline/Daptomycin Combination | |||
Int J Antimicrob Agents. 2015, 46(2), 225–226. [71] | Patient case of MRSA IE treatment failure to 3 regimens prior to switching to CPT/DAP | Clearance of blood cultures observed upon switch to CPT/DAP | CPT/DAP can be considered as rescue therapy for blood culture clearance in IE secondary to MRSA |
Infection. 2015, 43(6), 751–754. [72] | Patient case describing a DAP non-susceptible, VAN intermediate S. aureus IE with persistent bacteremia transitioned to CPT/DAP | Negative blood cultures and diminished vegetation size observed upon CPT/DAP initiation | CPT/DAP is a viable treatment option for persistent bacteremia despite DAP non-susceptibility |
Antimicrob Agents Chemother. 2013, 57(8), 4042–4045. [73] | Patient case of enterococcal IE treatment failure to 3 regimens prior to switching to CPT/DAP | Clearance of blood cultures observed upon switch to CPT/DAP | CPT/DAP can be considered as rescue therapy for blood culture clearance in IE secondary to E. faecalis |
Ther Adv Infect Dis. 2019, 6, 2049936119886504. [74] | Series of case reports including 10 patients (6 with IE) were switched to CPT/DAP after vancomycin failure for bacteremia treatment | Median 13 days of persistent bacteremia prior to switch and median 3 days of blood culture clearance following switch | CPT/DAP has shown a decrease in blood culture clearance following vancomycin failure in persistent bacteremia (60% of patients with IE) |
Antibiotics (Basel). 2022, 11(8), 1104. [75] | Meta-analysis including 6 trials comparing VAN or DAP monotherapy vs. CPT/DAP or CPT/VAN combination therapy | Decrease in bacteremia recurrence with CPT combination. No difference in in-hospital mortality. | Combination therapy with CPT has a beneficial effect on bacteremia recurrence, however no difference shown in mortality vs. monotherapy |
Open Forum Infect Dis. 2019, 7(1), ofz538. [76] | Matched, retrospective cohort evaluating MRSA bacteremia therapy with monotherapy or CPT combination therapy | Positive linear association found between time before switch to CPT combination and time to blood culture clearance (r = 0.84) | The earlier therapy is adjusted to include CPT in the treatment of MRSA bacteremia, the earlier time found to blood culture clearance |
Open Forum Infect Dis. 2021, 8(7), ofab327. [77] | Retrospective study evaluating patients maintained on CPT combination therapy vs. de-escalation to monotherapy without CPT | No difference found in bacteremia recurrence, mortality, or readmission between patients receiving >10 days vs. <10 days of CPT combination | De-escalation from CPT combination therapy with less than 10 days total duration had similar outcomes compared with longer durations |
Citation | Study Design and Methods | Notable Outcomes | Conclusion |
---|---|---|---|
Step-down therapy in Gram-positive IE | |||
Int J Antimicrob Agents. 2019 Aug;54(2):143–148. doi: 10.1016/j.ijantimicag.2019.06.006. Epub 2019 Jun 8. PMID: 31181351. [93] | Quasi-experimental study Control: oxacillin or vancomycin IV × 6 weeks PLUS once-daily IV gentamicin × 5 days Oral step-down: IV co-trimoxazole with IV clindamycin for 7 days, then 5 weeks of oral co-trimoxazole alone Primary outcome: mortality (global mortality, 30-day mortality, 90-day mortality) | ↓ LOS in oral step-down group (10 days different, p = 0.005) ↓ complications ↓ in-hospital mortality ↓ 30-day mortality No difference in 90-day mortality and relapses Good IDU representation: 15.3% in control group vs. 12.9% in oral step-down group | Promising utilization of oral therapy with mortality benefit and decreased length of stay |
N Engl J Med. 2019, 380(5), 415–424. doi:10.1056/NEJMoa1808312. [94] N Engl J Med. 2022, 386(6), 601–602. doi:10.1056/NEJMc2114046. [95] | Randomized-controlled trial Multicenter, unblinded, non-inferiority All patients completed at least 10 days of IV antibiotics Control: continued on IV antibiotics Experimental: transitioned to oral therapy Primary outcome: treatment failure (composite of all-cause mortality, unplanned cardiac surgery, embolic events, and relapse of bacteremia with primary pathogen) | 6-month analysis: Streptococci most common pathogen Primary outcome: 12.1% in IV group vs. 9% in oral group (non-inferior) Similar all-cause mortality and safety outcomes Five-year follow-up analysis: Primary outcome: 45.2% in IV group vs. 32.8% in oral group, mainly driven by all-cause mortality | Largest randomized controlled trial for oral stepdown therapy in endocarditis with high follow-up rate Lack of MRSA IE, small number of IDU, and dosing limitations for both IV and PO regimens |
Clin Infect Dis. 2023, ciad119. doi:10.1093/cid/ciad119. [96] | Multicenter, retrospective cohort Control: IV-only Experimental: transitioned to oral therapy when meet pre-defined criteria (vs. specific number of days of IV treatment) Primary outcomes: clinical success (defined as being alive, without recurrent bacteremia, and without treatment-emergent infectious complications within 90 days) | Primary outcome at 90 days: 84.4% in IV group vs. 87% in oral group (p = 0.66) ADEs: 27.5% in IV group vs. 8.7% in oral group (p = 0.004) Good IDU representation: 18% in IV group vs. 37% in oral group Good MRSA representation: 20.4% IV group vs. 34.8% oral therapy group (p = 0.004) | Real-life utilization of published literature and national guidance to establish institutional expectations |
Dual therapy for non-HAEK gram-negative IE | |||
Microbiol Infect Dis. 2021, 101(3), 115504. doi:10.1016/j.diagmicrobio.2021.115504. [101] | Single-center, retrospective cohort CT: receipt of at least 5 days of two or more antimicrobial agents active against the isolated pathogen MT: received less than 5 days of CT Primary outcome: composite of 60-day all-cause mortality, readmission, or recurrence of bacteremia | Primary outcome: 62% MT vs. 50% CT (p = 0.36) No difference in inpatient mortality ↑ median LOS in CT: 20.5 days vs. 12 days (p = 0.003) | This study offered evidence for use of MT in non-HACEK gram-negative IE |
Citation | Study Design and Methods | Notable Outcomes | Conclusion |
---|---|---|---|
Clin Infect Dis. 2018, 67(5), 795–98. doi:10.1093/cid/ciy279. [107] | Retrospective cohort evaluating patients with gram-positive bacteremia and infective endocarditis that received ≥1 dose of DAL | N = 27 Median age = 60 years Microbiological and clinical success = 25/27, 92.6% Average duration of DAL treatment = 6 weeks (range 1–30) Minimal adverse events; 1 patient experienced nausea/vomiting and 1 patient experienced a 2.5× increase in creatinine, which resolved 2 weeks later Type of IE -Native valve = 16 >Surgery = 11 (68.8%) -Prosthetic valve = 6 >Surgery = 1 (16.7%) -Cardiac device related = 5 >Surgery = 4 (80%) Causative Organisms -Staphylococcus aureus = 9 -Streptococci = 8 -Enterococcus faecalis = 4 -Coagulase negative staphylococci = 7 -Aerococcus urinae = 1 | High rates of clinical and microbiological success in patients with native, prosthetic, and cardiac device-related infective endocarditis treated with ≥1 dose of DAL |
Ann Clin Microbiol Antimicrob. 2019, 18, 30. doi:10.1186/s12941-019-0329-6. [108] | Multicenter, observational, retrospective (14 Spanish hospitals) evaluating the effectiveness of DAL as consolidation therapy for GPC IE and the pharmacoeconomic impact Note: this study also evaluated patients without IE; all data in this table are specific to patients with IE | N = 34 Median age = 73 years Clinical cure = 100% -Cure at 12 month follow-up = 96.7% (excludes 1 patient who was lost to follow-up) DAL coverage, median = 14 days (IQR 14–21) Type of IE -Native valve = 32.4% -Prosthetic valve = 44.1% >Surgery = 66.7% -Pacemaker leads = 23.5% >Surgery = 87.5% Valve affected -Aortic valve = 50% -Mitral valve = 23.5% -Tricuspid valve = 2.5% Causative organisms -Coagulase negative staphylococci = 44.1% -MSSA = 20.6% -MRSA = 8.8% -Streptococci = 11.8% -Enterococcus faecalis = 8.8% Pharmacoeconomic impact -Reduction in hospital stay, median = 14 days (IQR 7–17); total decrease of 557 days -Cost savings based on 557 hospital days saved = 283,187.45 € ($311,888.50) | DAL is effective for consolidation therapy in clinically stabilized patients with IE. Additionally, it was a cost-effective treatment option reducing hospital stay |
Clinical Questions | Author Conclusions |
---|---|
What beta-lactam antimicrobial should be used to treat MSSA endocarditis? | Either cefazolin or an ASP should be considered first line therapy in the management of MSSA endocarditis; however, cefazolin may be preferred given clinical outcomes and tolerability data. |
When should rifampin be added to other active antimicrobials in the treatment of Staphylococcal endocarditis? | Rifampin can be added to another active staphylococcal drug for prosthetic valve endocarditis when there are no contraindicated drug interactions and optimally after blood cultures are negative. |
Should aminoglycosides be added to other active antimicrobial(s) in the treatment of Gram-positive endocarditis? | Given increased nephrotoxicity risk associated with use, aminoglycosides should not be considered as first-line therapy in the treatment of IE particularly in those with chronic kidney disease, baseline hearing impairment, and the elderly. |
Are daptomycin and ceftaroline used in combination the standard of care for Gram positive endocarditis? | This combination is not yet well established as the standard treatment for all patients. It should be considered as a second line option in the setting of treatment failure for staphylococcal or enterococcal IE, with earlier use potentially associated with increased benefit. |
Who can receive oral antimicrobials as stepdown therapy in endocarditis? | Oral antimicrobials can be given as step-down therapy in uncomplicated streptococcal and enterococcal IE. Future research in MRSA IE and IDU will have a significant impact on transitions of care. |
Can long-acting lipoglycopeptides be used to treat Gram positive endocarditis? | Long acting lipoglycopeptides can be used for Gram positive endocarditis after completion of at least two weeks of IV antibiotics. It is reasonable to administer a single weekly dose through the end of treatment. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adema, J.L.; Ahiskali, A.; Fida, M.; Mediwala Hornback, K.; Stevens, R.W.; Rivera, C.G. Heartbreaking Decisions: The Dogma and Uncertainties of Antimicrobial Therapy in Infective Endocarditis. Pathogens 2023, 12, 703. https://doi.org/10.3390/pathogens12050703
Adema JL, Ahiskali A, Fida M, Mediwala Hornback K, Stevens RW, Rivera CG. Heartbreaking Decisions: The Dogma and Uncertainties of Antimicrobial Therapy in Infective Endocarditis. Pathogens. 2023; 12(5):703. https://doi.org/10.3390/pathogens12050703
Chicago/Turabian StyleAdema, Jennifer L., Aileen Ahiskali, Madiha Fida, Krutika Mediwala Hornback, Ryan W. Stevens, and Christina G. Rivera. 2023. "Heartbreaking Decisions: The Dogma and Uncertainties of Antimicrobial Therapy in Infective Endocarditis" Pathogens 12, no. 5: 703. https://doi.org/10.3390/pathogens12050703
APA StyleAdema, J. L., Ahiskali, A., Fida, M., Mediwala Hornback, K., Stevens, R. W., & Rivera, C. G. (2023). Heartbreaking Decisions: The Dogma and Uncertainties of Antimicrobial Therapy in Infective Endocarditis. Pathogens, 12(5), 703. https://doi.org/10.3390/pathogens12050703