Clinical Application of a Multiplex Droplet Digital PCR in the Rapid Diagnosis of Children with Suspected Bloodstream Infections
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Sample Collection
2.2. Blood Culture and Pathogen Identification
2.3. Plasma DNA Extraction and ddPCR Testing
2.4. Statistical Analysis
3. Results
3.1. Clinical Characteristics of Recruited Patients
3.2. Performance of the Blood Culture Testing
3.3. Pathogens and AMR Genes Detected by ddPCR
3.4. Comparison between ddPCR and Blood Culture
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Rudd, K.E.; Johnson, S.C.; Agesa, K.M.; Shackelford, K.A.; Tsoi, D.; Kievlan, D.R.; Colombara, D.V.; Ikuta, K.S.; Kissoon, N.; Finfer, S.; et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: Analysis for the Global Burden of Disease Study. Lancet 2020, 395, 200–211. [Google Scholar] [CrossRef] [PubMed]
- Kostlin-Gille, N.; Hartel, C.; Haug, C.; Gopel, W.; Zemlin, M.; Muller, A.; Poets, C.F.; Herting, E.; Gille, C. Epidemiology of Early and Late Onset Neonatal Sepsis in Very Low Birthweight Infants: Data From the German Neonatal Network. Pediatr. Infect. Dis. J. 2021, 40, 255–259. [Google Scholar] [CrossRef] [PubMed]
- Zingg, W.; Hopkins, S.; Gayet-Ageron, A.; Holmes, A.; Sharland, M.; Suetens, C.; ECDC PPS Study Group. Health-care-associated infections in neonates, children, and adolescents: An analysis of paediatric data from the European Centre for Disease Prevention and Control point-prevalence survey. Lancet Infect. Dis. 2017, 17, 381–389. [Google Scholar] [CrossRef]
- Auriti, C.; De Rose, D.U.; Santisi, A.; Martini, L.; Ronchetti, M.P.; Rava, L.; Antenucci, V.; Bernaschi, P.; Serafini, L.; Catarzi, S.; et al. Incidence and risk factors of bacterial sepsis and invasive fungal infection in neonates and infants requiring major surgery: An Italian multicentre prospective study. J. Hosp. Infect. 2022, 130, 122–130. [Google Scholar] [CrossRef]
- Mukkada, S.; Melgar, M.; Bullington, C.; Chang, A.; Homsi, M.R.; Gonzalez, M.L.; Antillon, F.; Su, Y.; Tang, L.; Caniza, M.A. High morbidity and mortality associated with primary bloodstream infections among pediatric patients with cancer at a Guatemalan tertiary referral hospital. Front. Public Health 2022, 10, 1007769. [Google Scholar] [CrossRef]
- Mashau, R.C.; Meiring, S.T.; Dramowski, A.; Magobo, R.E.; Quan, V.C.; Perovic, O.; von Gottberg, A.; Cohen, C.; Velaphi, S.; van Schalkwyk, E.; et al. Culture-confirmed neonatal bloodstream infections and meningitis in South Africa, 2014–2019: A cross-sectional study. Lancet Glob. Health 2022, 10, e1170–e1178. [Google Scholar] [CrossRef]
- Liu, J.; Fang, Z.; Yu, Y.; Ding, Y.; Liu, Z.; Zhang, C.; He, H.; Geng, H.; Chen, W.; Zhao, G.; et al. Pathogens distribution and antimicrobial resistance in bloodstream infections in twenty-five neonatal intensive care units in China, 2017–2019. Antimicrob. Resist. Infect. Control 2021, 10, 121. [Google Scholar] [CrossRef]
- Zou, H.; Jia, X.; He, X.; Su, Y.; Zhou, L.; Shen, Y.; Sheng, C.; Liao, A.; Li, C.; Li, Q. Emerging Threat of Multidrug Resistant Pathogens From Neonatal Sepsis. Front. Cell. Infect. Microbiol. 2021, 11, 694093. [Google Scholar] [CrossRef]
- Goldstein, B.; Giroir, B.; Randolph, A.; International Consensus Conference on Pediatric, S. International pediatric sepsis consensus conference: Definitions for sepsis and organ dysfunction in pediatrics. Pediatr. Crit. Care Med. 2005, 6, 2–8. [Google Scholar] [CrossRef]
- Goh, C.; Burnham, K.L.; Ansari, M.A.; de Cesare, M.; Golubchik, T.; Hutton, P.; Overend, L.E.; Davenport, E.E.; Hinds, C.J.; Bowden, R.; et al. Epstein-Barr virus reactivation in sepsis due to community-acquired pneumonia is associated with increased morbidity and an immunosuppressed host transcriptomic endotype. Sci. Rep. 2020, 10, 9838. [Google Scholar] [CrossRef] [PubMed]
- Weiss, S.L.; Fitzgerald, J.C.; Balamuth, F.; Alpern, E.R.; Lavelle, J.; Chilutti, M.; Grundmeier, R.; Nadkarni, V.M.; Thomas, N.J. Delayed antimicrobial therapy increases mortality and organ dysfunction duration in pediatric sepsis. Crit. Care Med. 2014, 42, 2409–2417. [Google Scholar] [CrossRef]
- Sands, K.; Carvalho, M.J.; Portal, E.; Thomson, K.; Dyer, C.; Akpulu, C.; Andrews, R.; Ferreira, A.; Gillespie, D.; Hender, T.; et al. Characterization of antimicrobial-resistant Gram-negative bacteria that cause neonatal sepsis in seven low- and middle-income countries. Nat. Microbiol. 2021, 6, 512–523. [Google Scholar] [CrossRef]
- Carlesse, F.; Cappellano, P.; Quiles, M.G.; Menezes, L.C.; Petrilli, A.S.; Pignatari, A.C. Clinical relevance of molecular identification of microorganisms and detection of antimicrobial resistance genes in bloodstream infections of paediatric cancer patients. BMC Infect. Dis. 2016, 16, 462. [Google Scholar] [CrossRef] [PubMed]
- Huber, S.; Weinberger, J.; Pilecky, M.; Lorenz, I.; Schildberger, A.; Weber, V.; Fuchs, S.; Posch, W.; Knabl, L.; Wurzner, R.; et al. A high leukocyte count and administration of hydrocortisone hamper PCR-based diagnostics for bloodstream infections. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 1441–1449. [Google Scholar] [CrossRef]
- Lucignano, B.; Cento, V.; Agosta, M.; Ambrogi, F.; Albitar-Nehme, S.; Mancinelli, L.; Mattana, G.; Onori, M.; Galaverna, F.; Di Chiara, L.; et al. Effective Rapid Diagnosis of Bacterial and Fungal Bloodstream Infections by T2 Magnetic Resonance Technology in the Pediatric Population. J. Clin. Microbiol. 2022, 60, e0029222. [Google Scholar] [CrossRef] [PubMed]
- Goggin, K.P.; Gonzalez-Pena, V.; Inaba, Y.; Allison, K.J.; Hong, D.K.; Ahmed, A.A.; Hollemon, D.; Natarajan, S.; Mahmud, O.; Kuenzinger, W.; et al. Evaluation of Plasma Microbial Cell-Free DNA Sequencing to Predict Bloodstream Infection in Pediatric Patients With Relapsed or Refractory Cancer. JAMA Oncol. 2020, 6, 552–556. [Google Scholar] [CrossRef]
- Merino, I.; de la Fuente, A.; Dominguez-Gil, M.; Eiros, J.M.; Tedim, A.P.; Bermejo-Martin, J.F. Digital PCR applications for the diagnosis and management of infection in critical care medicine. Crit. Care 2022, 26, 63. [Google Scholar] [CrossRef]
- Miller, J.M.; Binnicker, M.J.; Campbell, S.; Carroll, K.C.; Chapin, K.C.; Gilligan, P.H.; Gonzalez, M.D.; Jerris, R.C.; Kehl, S.C.; Patel, R.; et al. A Guide to Utilization of the Microbiology Laboratory for Diagnosis of Infectious Diseases: 2018 Update by the Infectious Diseases Society of America and the American Society for Microbiology. Clin. Infect. Dis. 2018, 67, 813–816. [Google Scholar] [CrossRef]
- O’Hagan, S.; Nelson, P.; Speirs, L.; Moriarty, P.; Mallett, P. How to interpret a paediatric blood culture. Arch. Dis. Child. Educ. Pract. Ed. 2021, 106, 244–250. [Google Scholar] [CrossRef]
- Kirn, T.J.; Weinstein, M.P. Update on blood cultures: How to obtain, process, report, and interpret. Clin. Microbiol. Infect. 2013, 19, 513–520. [Google Scholar] [CrossRef]
- Wu, J.; Tang, B.; Qiu, Y.; Tan, R.; Liu, J.; Xia, J.; Zhang, J.; Huang, J.; Qu, J.; Sun, J.; et al. Clinical validation of a multiplex droplet digital PCR for diagnosing suspected bloodstream infections in ICU practice: A promising diagnostic tool. Crit. Care 2022, 26, 243. [Google Scholar] [CrossRef] [PubMed]
- Dien Bard, J.; McElvania TeKippe, E. Diagnosis of Bloodstream Infections in Children. J. Clin. Microbiol. 2016, 54, 1418–1424. [Google Scholar] [CrossRef]
- Isaacman, D.J.; Karasic, R.B.; Reynolds, E.A.; Kost, S.I. Effect of number of blood cultures and volume of blood on detection of bacteremia in children. J. Pediatr. 1996, 128, 190–195. [Google Scholar] [CrossRef]
- Baron, E.J.; Miller, J.M.; Weinstein, M.P.; Richter, S.S.; Gilligan, P.H.; Thomson, R.B., Jr.; Bourbeau, P.; Carroll, K.C.; Kehl, S.C.; Dunne, W.M.; et al. A guide to utilization of the microbiology laboratory for diagnosis of infectious diseases: 2013 recommendations by the Infectious Diseases Society of America (IDSA) and the American Society for Microbiology (ASM) (a). Clin. Infect. Dis. 2013, 57, e22–e121. [Google Scholar] [CrossRef]
- Huber, S.; Hetzer, B.; Crazzolara, R.; Orth-Holler, D. The correct blood volume for paediatric blood cultures: A conundrum? Clin. Microbiol. Infect. 2020, 26, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Connell, T.G.; Rele, M.; Cowley, D.; Buttery, J.P.; Curtis, N. How reliable is a negative blood culture result? Volume of blood submitted for culture in routine practice in a children’s hospital. Pediatrics 2007, 119, 891–896. [Google Scholar] [CrossRef]
- Yaacobi, N.; Bar-Meir, M.; Shchors, I.; Bromiker, R. A prospective controlled trial of the optimal volume for neonatal blood cultures. Pediatr. Infect. Dis. J. 2015, 34, 351–354. [Google Scholar] [CrossRef]
- Sarkar, S.; Bhagat, I.; DeCristofaro, J.D.; Wiswell, T.E.; Spitzer, A.R. A study of the role of multiple site blood cultures in the evaluation of neonatal sepsis. J. Perinatol. 2006, 26, 18–22. [Google Scholar] [CrossRef] [PubMed]
- Harewood, F.C.; Curtis, N.; Daley, A.J.; Bryant, P.A.; Gwee, A.; Connell, T.G. Adequate or Inadequate? The Volume of Blood Submitted for Blood Culture at a Tertiary Children’s Hospital. Clin. Pediatr. 2018, 57, 1310–1317. [Google Scholar] [CrossRef]
- Kellogg, J.A.; Manzella, J.P.; Bankert, D.A. Frequency of low-level bacteremia in children from birth to fifteen years of age. J. Clin. Microbiol. 2000, 38, 2181–2185. [Google Scholar] [CrossRef] [PubMed]
- Gaur, A.; Giannini, M.A.; Flynn, P.M.; Boudreaux, J.W.; Mestemacher, M.A.; Shenep, J.L.; Hayden, R.T. Optimizing blood culture practices in pediatric immunocompromised patients: Evaluation of media types and blood culture volume. Pediatr. Infect. Dis. J. 2003, 22, 545–552. [Google Scholar] [CrossRef] [PubMed]
- Gonsalves, W.I.; Cornish, N.; Moore, M.; Chen, A.; Varman, M. Effects of volume and site of blood draw on blood culture results. J. Clin. Microbiol. 2009, 47, 3482–3485. [Google Scholar] [CrossRef]
- El Feghaly, R.E.; Chatterjee, J.; Dowdy, K.; Stempak, L.M.; Morgan, S.; Needham, W.; Prystupa, K.; Kennedy, M. A Quality Improvement Initiative: Reducing Blood Culture Contamination in a Children’s Hospital. Pediatrics 2018, 142, e20180244. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.P.; Stenstrom, R.; Paquette, K.; Stabler, S.N.; Akhter, M.; Davidson, A.C.; Gavric, M.; Lawandi, A.; Jinah, R.; Saeed, Z.; et al. Blood Culture Results Before and After Antimicrobial Administration in Patients With Severe Manifestations of Sepsis: A Diagnostic Study. Ann. Intern. Med. 2019, 171, 547–554. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, M.H.; Clancy, C.J.; Pasculle, A.W.; Pappas, P.G.; Alangaden, G.; Pankey, G.A.; Schmitt, B.H.; Rasool, A.; Weinstein, M.P.; Widen, R.; et al. Performance of the T2Bacteria Panel for Diagnosing Bloodstream Infections: A Diagnostic Accuracy Study. Ann. Intern. Med. 2019, 170, 845–852. [Google Scholar] [CrossRef] [PubMed]
- Gill, D.R.; Pringle, I.A.; Hyde, S.C. Progress and prospects: The design and production of plasmid vectors. Gene Ther. 2009, 16, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Khier, S.; Lohan, L. Kinetics of circulating cell-free DNA for biomedical applications: Critical appraisal of the literature. Future Sci. OA 2018, 4, FSO295. [Google Scholar] [CrossRef]
- Jing, C.; Chen, H.; Liang, Y.; Zhong, Y.; Wang, Q.; Li, L.; Sun, S.; Guo, Y.; Wang, R.; Jiang, Z.; et al. Clinical Evaluation of an Improved Metagenomic Next-Generation Sequencing Test for the Diagnosis of Bloodstream Infections. Clin. Chem. 2021, 67, 1133–1143. [Google Scholar] [CrossRef]
- Hu, B.; Tao, Y.; Shao, Z.; Zheng, Y.; Zhang, R.; Yang, X.; Liu, J.; Li, X.; Sun, R. A Comparison of Blood Pathogen Detection Among Droplet Digital PCR, Metagenomic Next-Generation Sequencing, and Blood Culture in Critically Ill Patients With Suspected Bloodstream Infections. Front. Microbiol. 2021, 12, 641202. [Google Scholar] [CrossRef]
- Rossoff, J.; Chaudhury, S.; Soneji, M.; Patel, S.J.; Kwon, S.; Armstrong, A.; Muller, W.J. Noninvasive Diagnosis of Infection Using Plasma Next-Generation Sequencing: A Single-Center Experience. Open Forum Infect. Dis. 2019, 6, ofz327. [Google Scholar] [CrossRef] [PubMed]
- Hogan, C.A.; Yang, S.; Garner, O.B.; Green, D.A.; Gomez, C.A.; Dien Bard, J.; Pinsky, B.A.; Banaei, N. Clinical Impact of Metagenomic Next-Generation Sequencing of Plasma Cell-Free DNA for the Diagnosis of Infectious Diseases: A Multicenter Retrospective Cohort Study. Clin. Infect. Dis. 2021, 72, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Peri, A.M.; Harris, P.N.A.; Paterson, D.L. Culture-independent detection systems for bloodstream infection. Clin. Microbiol. Infect. 2022, 28, 195–201. [Google Scholar] [CrossRef]
- Davila, S.; Halstead, E.S.; Hall, M.W.; Doctor, A.; Telford, R.; Holubkov, R.; Carcillo, J.A.; Storch, G.A.; Eunice Kennedy Shriver Collaborative Pediatric Critical Care Research Network, I. Viral DNAemia and Immune Suppression in Pediatric Sepsis. Pediatr Crit. Care Med. 2018, 19, e14–e22. [Google Scholar] [CrossRef]
- Walton, A.H.; Muenzer, J.T.; Rasche, D.; Boomer, J.S.; Sato, B.; Brownstein, B.H.; Pachot, A.; Brooks, T.L.; Deych, E.; Shannon, W.D.; et al. Reactivation of multiple viruses in patients with sepsis. PLoS ONE 2014, 9, e98819. [Google Scholar] [CrossRef] [PubMed]
- Ong, D.S.Y.; Bonten, M.J.M.; Spitoni, C.; Verduyn Lunel, F.M.; Frencken, J.F.; Horn, J.; Schultz, M.J.; van der Poll, T.; Klein Klouwenberg, P.M.C.; Cremer, O.L.; et al. Epidemiology of Multiple Herpes Viremia in Previously Immunocompetent Patients With Septic Shock. Clin. Infect Dis. 2017, 64, 1204–1210. [Google Scholar] [CrossRef] [PubMed]
- Mallet, F.; Perret, M.; Tran, T.; Meunier, B.; Guichard, A.; Tabone, O.; Mommert, M.; Brengel-Pesce, K.; Venet, F.; Pachot, A.; et al. Early herpes and TTV DNAemia in septic shock patients: A pilot study. Intensive Care Med. Exp. 2019, 7, 28. [Google Scholar] [CrossRef] [PubMed]
- Lieberman, P.M. Virology. Epstein-Barr virus turns 50. Science 2014, 343, 1323–1325. [Google Scholar] [CrossRef]
- Kimura, H.; Kawada, J.; Ito, Y. Epstein-Barr virus-associated lymphoid malignancies: The expanding spectrum of hematopoietic neoplasms. Nagoya J. Med. Sci. 2013, 75, 169–179. [Google Scholar]
- Canh, V.D.; Liu, M.; Sangsanont, J.; Katayama, H. Capsid integrity detection of pathogenic viruses in waters: Recent progress and potential future applications. Sci. Total Environ. 2022, 827, 154258. [Google Scholar] [CrossRef]
- Simner, P.J.; Miller, S.; Carroll, K.C. Understanding the Promises and Hurdles of Metagenomic Next-Generation Sequencing as a Diagnostic Tool for Infectious Diseases. Clin. Infect Dis. 2018, 66, 778–788. [Google Scholar] [CrossRef] [PubMed]
- Plunkett, A.; Tong, J. Sepsis in children. BMJ 2015, 350, h3017. [Google Scholar] [CrossRef] [PubMed]
- Thorkildsen, M.S.; Mohus, R.M.; Asvold, B.O.; Skei, N.V.; Nilsen, T.I.L.; Solligard, E.; Damas, J.K.; Gustad, L.T. Thyroid function and risk of bloodstream infections: Results from the Norwegian prospective population-based HUNT Study. Clin. Endocrinol. 2022, 96, 896–906. [Google Scholar] [CrossRef] [PubMed]
- Foks, M.; Dudek, A.; Polok, K.; Nowak-Kozka, I.; Fronczek, J.; Szczeklik, W. Thyroid hormones as potential prognostic factors in sepsis. Anaesthesiol. Intensive Ther. 2019, 51, 205–209. [Google Scholar] [CrossRef]
- Kurt, A.; Aygun, A.D.; Sengul, I.; Sen, Y.; Citak Kurt, A.N.; Ustundag, B. Serum thyroid hormones levels are significantly decreased in septic neonates with poor outcome. J. Endocrinol. Investig. 2011, 34, e92–e96. [Google Scholar] [CrossRef] [PubMed]
- Jhang, W.K.; Park, S.J. Evaluation of Sepsis-Induced Coagulopathy in Critically Ill Pediatric Patients with Septic Shock. Thromb. Haemost. 2021, 121, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Iba, T.; Levi, M.; Thachil, J.; Helms, J.; Scarlatescu, E.; Levy, J.H. Communication from the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis on sepsis-induced coagulopathy in the management of sepsis. J. Thromb. Haemost. 2023, 21, 145–153. [Google Scholar] [CrossRef]
- Okamoto, K.; Tamura, T.; Sawatsubashi, Y. Sepsis and disseminated intravascular coagulation. J. Intensive Care 2016, 4, 23. [Google Scholar] [CrossRef]
Clinical Characteristics | n = 76 |
---|---|
Age, years | 6.1 ± 3.8 |
Male, n (%) | 39 (51.3) |
Departments | |
Hematology department, n (%) | 51 (67.1) |
PICU, n (%) | 21 (27.6) |
Neonatology department, n (%) | 3 (3.9) |
Pneumology department, n (%) | 1 (1.3) |
Comorbidities | |
Hematological malignancies, n (%) | 38 (50) |
Malignant tumor, n (%) | 8 (10.5) |
Gastrointestinal dysfunction, n (%) | 10 (13.2) |
Respiratory failure, n (%) | 17 (22.4) |
ARDS, n (%) | 2 (2.6) |
Virus infection, n (%) | 6 (7.9) |
Hypothyroidism, n (%) | 5 (5.6) |
Anemia, n (%) | 12 (15.8) |
Coagulation disorders, n (%) | 13 (17.1) |
DIC, n (%) | 3 (3.9) |
Laboratory examination | |
Red blood cell count, median (IQR) × 1012/L | 3.0 (2.4, 3.4) |
Hemoglobin (g/L), median (IQR) | 85 (74, 106) |
White blood count, median (IQR) × 109/L | 2.5 (0.6, 5.8) |
Neutrophil count, median (IQR) × 109/L | 0.5 (0.1, 3.2) |
Lymphocyte count, median (IQR) × 109/L | 0.9 (0.3, 1.6) |
Platelet count, median (IQR) × 109/L | 123.0 (40.0, 252.0) |
C-reactive protein (mg/L), median (IQR) | 26.0 (6.0, 81.0) |
Procalcitonin (μg/L), median (IQR) | 0.2 (0.1, 1.1) |
Fibrinogen (mg/dL), median (IQR) | 4.1 (2.5, 5.4) |
D-dimer (μg/L), median (IQR) | 1.1 (0.5, 2.2) |
Sample Number | Blood Culture | ddPCR |
---|---|---|
9 | C. tropicalis | Candida spp. A. baumannii |
11 | C. tropicalis | Candida spp. E. coli |
23 | E. faecium S. mitis/S. oralis | Enterococcus spp. Streptococcus spp. P. aeruginosa Klebsiella spp. |
54 | S. mitis/S. oralis | Streptococcus spp. |
63 | P. aeruginosa | P. aeruginosa |
BC+/ddPCR+, n | BC+/ddPCR−, n | BC−/ddPCR+, n | BC−/ddPCR−, n | |
---|---|---|---|---|
All pathogens | 6 | 0 | 44 | 1090 |
Candida spp. | 2 | 0 | 0 | - |
Enterococcus spp. | 1 | 0 | 4 | - |
Streptococcus spp. | 2 | 0 | 6 | - |
P. aeruginosa | 1 | 0 | 4 | - |
Klebsiella spp. | 0 | 0 | 11 | - |
E. coli | 0 | 0 | 10 | - |
S. aureus | 0 | 0 | 1 | - |
CoNS | 0 | 0 | 3 | - |
B. fragilis | 0 | 0 | 1 | - |
A. baumanii | 0 | 0 | 4 | - |
Sample Number | Virus |
---|---|
1 | VZV |
20 | EBV |
36 | EBV |
44 | EBV |
58 | EBV, CMV |
63 | EBV |
70 | EBV |
73 | EBV |
Sample Number | AMR Gene | Pathogens |
---|---|---|
13 | OXA-48 | None |
11 | blaKPC | E. coli |
25 | mecA | P. aeruginosa E. coli |
Sample (n = 1140) | BC+ | BC− | Sensitivity (%) | Specificity (%) | PPV (%) | NPV (%) | |
---|---|---|---|---|---|---|---|
Total | ddPCR+ | 6 | 44 | 100.0 (54.0, 100.0) | 96.1 (94.8, 97.2) | 12.0 (9.3, 15.4) | 96.1 |
ddPCR− | 0 | 1090 | |||||
G+ bacteria | ddPCR+ | 3 | 14 | 100.0 (29.2, 100.0) | 95.3 (92.3, 97.4) | 17.6 (11.4, 26.3) | 100.0 |
ddPCR− | 0 | 287 | |||||
G− bacteria | ddPCR+ | 1 | 30 | 100.0 (2.5, 100.0) | 96.0 (94.4, 97.3) | 3.2 (2.3, 4.5) | 100.0 |
ddPCR− | 0 | 729 | |||||
Fungi | ddPCR+ | 2 | 0 | 100.0 (15.8, 100.0) | 100.0 (95.1, 100.0) | 100.0 | 100.0 |
ddPCR− | 0 | 74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Wang, C.; Pan, F.; Shao, J.; Cui, Y.; Han, D.; Zhang, H. Clinical Application of a Multiplex Droplet Digital PCR in the Rapid Diagnosis of Children with Suspected Bloodstream Infections. Pathogens 2023, 12, 719. https://doi.org/10.3390/pathogens12050719
Liu W, Wang C, Pan F, Shao J, Cui Y, Han D, Zhang H. Clinical Application of a Multiplex Droplet Digital PCR in the Rapid Diagnosis of Children with Suspected Bloodstream Infections. Pathogens. 2023; 12(5):719. https://doi.org/10.3390/pathogens12050719
Chicago/Turabian StyleLiu, Wenxin, Chun Wang, Fen Pan, Jingbo Shao, Yun Cui, Dingding Han, and Hong Zhang. 2023. "Clinical Application of a Multiplex Droplet Digital PCR in the Rapid Diagnosis of Children with Suspected Bloodstream Infections" Pathogens 12, no. 5: 719. https://doi.org/10.3390/pathogens12050719
APA StyleLiu, W., Wang, C., Pan, F., Shao, J., Cui, Y., Han, D., & Zhang, H. (2023). Clinical Application of a Multiplex Droplet Digital PCR in the Rapid Diagnosis of Children with Suspected Bloodstream Infections. Pathogens, 12(5), 719. https://doi.org/10.3390/pathogens12050719