Discovery of Terpenes as Novel HCV NS5B Polymerase Inhibitors via Molecular Docking
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ligands and Receptor
2.2. Docking
2.3. In Silico Drug-Likeness and ADMET Prediction
- no more than 5 H bond donors (OH, NH, and SH);
- no more than 10 H bond acceptors (N, O, and S atoms);
- molecular weight below 500 Da;
- octanol-water partition coefficient (log P) below 5.
2.4. Molecular Dynamics Simulations
3. Results and Discussion
3.1. Docking
3.2. In Silico Drug-Likeness and ADMET Prediction
3.3. Analysis of the Initial Docking Poses Obtained in the Virtual Screening of the Terpene Collection
3.4. Binding Mode Stability Using Molecular Dynamics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Irekeola, A.A.; Ear, E.N.S.; Mohd Amin, N.A.Z.; Mustaffa, N.; Shueb, R.H. Antivirals against HCV Infection: The Story Thus Far. J. Infect. Dev. Ctries. 2022, 16, 231–243. [Google Scholar] [CrossRef] [PubMed]
- Salari, N.; Kazeminia, M.; Hemati, N.; Ammari-Allahyari, M.; Mohammadi, M.; Shohaimi, S. Global Prevalence of Hepatitis C in General Population: A Systematic Review and Meta-Analysis. Travel Med. Infect. Dis. 2022, 46, 102255. [Google Scholar] [CrossRef] [PubMed]
- Hepatitis, C. Available online: https://www.who.int/news-room/fact-sheets/detail/hepatitis-c (accessed on 13 October 2022).
- El-Kassas, M.; Awad, A. Metabolic Aspects of Hepatitis C Virus. World J. Gastroenterol. 2022, 28, 2429–2436. [Google Scholar] [CrossRef]
- Karpiński, T.M. The Microbiota and Pancreatic Cancer. Gastroenterol. Clin. N. Am. 2019, 48, 447–464. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Zhang, J.; Zhou, E.; Ren, C.; Wang, J.; Wang, Y. Small Molecule NS5B RdRp Non-Nucleoside Inhibitors for the Treatment of HCV Infection: A Medicinal Chemistry Perspective. Eur. J. Med. Chem. 2022, 240, 114595. [Google Scholar] [CrossRef]
- Zając, M.; Muszalska, I.; Sobczak, A.; Dadej, A.; Tomczak, S.; Jelińska, A. Hepatitis C—New Drugs and Treatment Prospects. Eur. J. Med. Chem. 2019, 165, 225–249. [Google Scholar] [CrossRef]
- Dash, D.K.; Tyagi, C.K.; Sahu, A.K.; Tripathi, V.; Dash, D.K.; Tyagi, C.K.; Sahu, A.K.; Tripathi, V. Revisiting the Medicinal Value of Terpenes and Terpenoids; IntechOpen: London, UK, 2022; ISBN 978-1-80355-553-9. [Google Scholar]
- Cox-Georgian, D.; Ramadoss, N.; Dona, C.; Basu, C. Therapeutic and Medicinal Uses of Terpenes. Med. Plants 2019, 333–359. [Google Scholar] [CrossRef]
- Al-Salihi, S.A.A.; Alberti, F. Naturally Occurring Terpenes: A Promising Class of Organic Molecules to Address Influenza Pandemics. Nat. Prod. Bioprospect. 2021, 11, 405–419. [Google Scholar] [CrossRef]
- Chatow, L.; Nudel, A.; Nesher, I.; Hayo Hemo, D.; Rozenberg, P.; Voropaev, H.; Winkler, I.; Levy, R.; Kerem, Z.; Yaniv, Z.; et al. In Vitro Evaluation of the Activity of Terpenes and Cannabidiol against Human Coronavirus E229. Life 2021, 11, 290. [Google Scholar] [CrossRef]
- Astani, A.; Schnitzler, P. Antiviral Activity of Monoterpenes Beta-Pinene and Limonene against Herpes Simplex Virus in Vitro. Iran. J. Microbiol. 2014, 6, 149–155. [Google Scholar]
- Woźniak, Ł.; Skąpska, S.; Marszałek, K. Ursolic Acid--A Pentacyclic Triterpenoid with a Wide Spectrum of Pharmacological Activities. Molecules 2015, 20, 20614–20641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, L.; Li, S.; Liao, Q.; Zhang, Y.; Sun, R.; Zhu, X.; Zhang, Q.; Wang, J.; Wu, X.; Fang, X.; et al. Oleanolic Acid and Ursolic Acid: Novel Hepatitis C Virus Antivirals That Inhibit NS5B Activity. Antivir. Res. 2013, 98, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Jones, G.; Willett, P.; Glen, R.C.; Leach, A.R.; Taylor, R. Development and Validation of a Genetic Algorithm for Flexible Docking. J. Mol. Biol. 1997, 267, 727–748. [Google Scholar] [CrossRef] [Green Version]
- Mohammad, T.; Mathur, Y.; Hassan, M.I. InstaDock: A Single-Click Graphical User Interface for Molecular Docking-Based Virtual High-Throughput Screening. Brief. Bioinform. 2021, 22, bbaa279. [Google Scholar] [CrossRef]
- Hang, J.Q.; Yang, Y.; Harris, S.F.; Leveque, V.; Whittington, H.J.; Rajyaguru, S.; Ao-Ieong, G.; McCown, M.F.; Wong, A.; Giannetti, A.M.; et al. Slow Binding Inhibition and Mechanism of Resistance of Non-Nucleoside Polymerase Inhibitors of Hepatitis C Virus. J. Biol. Chem. 2009, 284, 15517–15529. [Google Scholar] [CrossRef] [Green Version]
- Xiao, W.; Wang, D.; Shen, Z.; Li, S.; Li, H. Multi-Body Interactions in Molecular Docking Program Devised with Key Water Molecules in Protein Binding Sites. Molecules 2018, 23, 2321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [Green Version]
- Pokhrel, S.; Bouback, T.A.; Samad, A.; Nur, S.M.; Alam, R.; Abdullah-Al-Mamun, M.; Nain, Z.; Imon, R.R.; Talukder, M.E.K.; Tareq, M.M.I.; et al. Spike Protein Recognizer Receptor ACE2 Targeted Identification of Potential Natural Antiviral Drug Candidates against SARS-CoV. Int. J. Biol. Macromol. 2021, 191, 1114–1125. [Google Scholar] [CrossRef]
- Appleby, T.C.; Perry, J.K.; Murakami, E.; Barauskas, O.; Feng, J.; Cho, A.; Fox, D.; Wetmore, D.R.; McGrath, M.E.; Ray, A.S.; et al. Viral Replication. Structural Basis for RNA Replication by the Hepatitis C Virus Polymerase. Science 2015, 347, 771–775. [Google Scholar] [CrossRef]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Adv. Drug. Deliv. Rev. 2001, 46, 3–26. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [Green Version]
- Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. PkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J. Med. Chem. 2015, 58, 4066–4072. [Google Scholar] [CrossRef] [PubMed]
- Krieger, E.; Vriend, G. YASARA View—Molecular Graphics for All Devices—from Smartphones to Workstations. Bioinformatics 2014, 30, 2981–2982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krieger, E.; Vriend, G. New Ways to Boost Molecular Dynamics Simulations. J. Comput. Chem. 2015, 36, 996–1007. [Google Scholar] [CrossRef] [PubMed]
- Maier, J.A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K.E.; Simmerling, C. Ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from Ff99SB. J. Chem. Theory Comput. 2015, 11, 3696–3713. [Google Scholar] [CrossRef] [Green Version]
- Essmann, U.; Perera, L.; Berkowitz, M.L.; Darden, T.; Lee, H.; Pedersen, L.G. A Smooth Particle Mesh Ewald Method. J. Chem. Phys. 1995, 103, 8577–8593. [Google Scholar] [CrossRef] [Green Version]
- Berendsen, H.J.C.; Postma, J.P.M.; van Gunsteren, W.F.; DiNola, A.; Haak, J.R. Molecular Dynamics with Coupling to an External Bath. J. Chem. Phys. 1984, 81, 3684–3690. [Google Scholar] [CrossRef] [Green Version]
- Jakalian, A.; Bush, B.L.; Jack, D.B.; Bayly, C.I. Fast, Efficient Generation of High-Quality Atomic Charges. AM1-BCC Model: I. Method. J. Comput. Chem. 2000, 21, 132–146. [Google Scholar] [CrossRef]
- Jakalian, A.; Jack, D.B.; Bayly, C.I. Fast, Efficient Generation of High-Quality Atomic Charges. AM1-BCC Model: II. Parameterization and Validation. J. Comput. Chem. 2002, 23, 1623–1641. [Google Scholar] [CrossRef]
- Dyson, J.K.; Hutchinson, J.; Harrison, L.; Rotimi, O.; Tiniakos, D.; Foster, G.R.; Aldersley, M.A.; McPherson, S. Liver Toxicity Associated with Sofosbuvir, an NS5A Inhibitor and Ribavirin Use. J. Hepatol. 2016, 64, 234–238. [Google Scholar] [CrossRef] [Green Version]
- Yousefsani, B.S.; Nabavi, N.; Pourahmad, J. Contrasting Role of Dose Increase in Modulating Sofosbuvir-Induced Hepatocyte Toxicity. Drug. Res. 2020, 70, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Wahid, B. Hepatotoxicity and Virological Breakthrough of HCV Following Treatment with Sofosbuvir, Daclatasvir, and Ribavirin in Patients Previously Treated for Tuberculosis. J. Med. Virol. 2019, 91, 2195–2197. [Google Scholar] [CrossRef]
- Bukal, N.; Furic-Cunko, V.; Juric, I.; Katalinic, L.; Dedo, A.; Basic-Jukic, N. Severe Hepatotoxicity of Ritonavir, Ombitasvir, Paritaprevir, and Dasabuvir in a Kidney Transplant Recipient. Saudi J. Kidney Dis. Transplant. 2019, 30, 1184–1186. [Google Scholar] [CrossRef]
- Ejeh, S.; Uzairu, A.; Shallangwa, G.A.; Abechi, S.E.; Ibrahim, M.T. In Silico Design and Pharmacokinetics Investigation of Some Novel Hepatitis C Virus NS5B Inhibitors: Pharmacoinformatics Approach. Bull. Natl. Res. Cent. 2022, 46, 109. [Google Scholar] [CrossRef]
- Rehman, S.; Ijaz, B.; Fatima, N.; Muhammad, S.A.; Riazuddin, S. Therapeutic Potential of Taraxacum Officinale against HCV NS5B Polymerase: In-Vitro and In Silico Study. Biomed. Pharmacother. 2016, 83, 881–891. [Google Scholar] [CrossRef] [PubMed]
PubChem CID | Compound Name | Chemical Structure | Molecular Weight [g/mol] |
---|---|---|---|
45375808 | Sofosbuvir | C22H29FN3O9P | 529.5 |
56640146 | Dasabuvir | C26H27N3O5S | 493.6 |
5281368 | Gniditrin | C37H42O10 | 646.7 |
196583 | Mulberrofuran G | C34H26O8 | 562.6 |
122376979 | Cochlearine A | C31H29NO6 | 511.6 |
44369392 | Ingenol Dibenzoate | C34H36O7 | 556.6 |
5281382 | Mezerein | C38H38O10 | 654.7 |
11199792 | Pawhuskin B | C24H26O4 | 378.5 |
5287705 | ALRT 1550 | C23H32O2 | 340.5 |
21589718 | Hydrangenoside E | C29H40O12 | 580.6 |
53963605 | DTXSID70708006 | C23H32O2 | 340.5 |
46831971 | Expansol B | C29H36O5 | 464.6 |
10143276 | Isogemichalcone C | C30H28O9 | 532.5 |
72950872 | DTXSID501019279 | C29H31NO | 409.6 |
122177658 | Peniciaculin B | C30H44O6 | 500.7 |
10320495 | 3-Cinnamyl-4-Oxoretinoic Acid | C29H34O3 | 430.6 |
11394888 | Pawhuskin C | C24H28O4 | 380.5 |
5281391 | Phorbol Caprate | C35H52O8 | 600.8 |
24766094 | Perrottetinene | C24H28O2 | 348.5 |
5471965 | Presqualene Alcohol | C30H50O | 426.7 |
6449829 | AC-5-1 | C25H30O5 | 410.5 |
10027720 | Mispyric acid | C30H46O4 | 470.7 |
Compound Name | VINA Score | GOLD PLP.Fitness | GOLD RMSD | INSTA Dock “Binding Free Energy” (kcal/mol) | Ligand Efficiency (kcal/mol/non-H Atom) |
---|---|---|---|---|---|
Sofosbuvir | 9.8 | 58.9498 | 2.1–9.4 | −8.1 | 0.162 |
Dasabuvir | 9.4 | 62.5419 | 1.5–11 | −9.0 | 0.1957 |
Gniditrin | 8.5 | 92.6287 | 1.5–9.4 | −9.2 | 0.1415 |
Mulberrofuran G | 12.0 | 91.4167 | 1.5–9.1 | −9.6 | 0.1778 |
Cochlearine A | 9.6 | 88.2803 | 1.5–3.7 | −9.8 | 0.1885 |
Ingenol Dibenzoate | 10.0 | 87.2843 | 1.5–8.9 | −10.1 | 0.1836 |
Mezerein | 8.5 | 86.8922 | 1.2–9.1 | −9.9 | 0.1547 |
Pawhuskin B | 8.9 | 90.9802 | 1.5–4.8 | −8.9 | 0.2171 |
ALRT 1550 | 8.1 | 90.9274 | 1.5–7.5 | −7.5 | 0.2027 |
Hydrangenoside E | 8.6 | 89.5570 | 1.5–4.5 | −8.2 | 0.1302 |
DTXSID70708006 | 8.1 | 89.1282 | 1.5–8.4 | −7.5 | 0.2027 |
Expansol B | 8.7 | 89.0118 | 1.5–5 | −8.8 | 0.1692 |
Isogemichalcone C | 11.0 | 88.5244 | 1.5–6.8 | −7.8 | 0.13 |
DTXSID501019279 | 9.1 | 87.8244 | 1.6–9.1 | −8.9 | 0.2119 |
Peniciaculin B | 8.0 | 87.5688 | 2.4–11.9 | −7.5 | 0.1271 |
3-Cinnamyl-4-Oxoretinoic Acid | 10.0 | 87.0663 | 1.5–3.7 | −8.4 | 0.1826 |
Pawhuskin C | 8.9 | 86.4053 | 1.5–4.3 | −8.9 | 0.2171 |
Phorbol Caprate | 6.8 | 86.0402 | 1.5–10.5 | −7.7 | 0.1185 |
Perrottetinene | 9.5 | 85.9861 | 1.5–8.9 | −8.3 | 0.2371 |
Presqualene Alcohol | 6.4 | 85.5873 | 1.5–11.6 | −7.1 | 0.1392 |
AC-5–1 | 8.9 | 85.3062 | 1.4–5 | −7.5 | 0.1562 |
Mispyric acid | 9.1 | 84.8975 | 1.7–12.8 | −7.9 | 0.1463 |
Compound Name | #H Bond Acceptors | #H Bond Donors | Lipophilicity (Log P) | Water Solubility | Gastrointestinal Absorption | Lipinski #Violations | Bioavailability Score |
---|---|---|---|---|---|---|---|
Sofosbuvir | 11 | 3 | 1.44 | Soluble | Low | 2 | 0.17 |
Dasabuvir | 5 | 2 | 3.80 | Moderately soluble | Low | 0 | 0.55 |
3-Cinnamyl-4-Oxoretinoic_Acid | 3 | 1 | 5.84 | Poorly soluble | Low | 1 | 0.55 |
Cochlearine A | 7 | 3 | 4.69 | Poorly soluble | Low | 1 | 0.56 |
DTXSID501019279 | 2 | 0 | 5.89 | Poorly soluble | Low | 1 | 0.55 |
Gniditrin | 10 | 3 | 3.74 | Moderately soluble | Low | 1 | 0.55 |
Ingenol Dibenzoate | 7 | 2 | 4.14 | Moderately soluble | High | 1 | 0.55 |
Isogemichalcone_C | 9 | 5 | 4.26 | Poorly soluble | Low | 1 | 0.55 |
Mezerein | 10 | 3 | 3.15 | Moderately soluble | Low | 1 | 0.55 |
Mulberrofuran G | 8 | 5 | 4.90 | Poorly soluble | Low | 1 | 0.55 |
Pawhuskin_B | 4 | 3 | 4.77 | Moderately soluble | High | 0 | 0.55 |
Molecule | AMES Toxicity | Oral Rat Acute Toxicity (LD50) [mol/kg] | Oral Rat Chronic Toxicity (LOAEL) [log mg/kg_bw/day] | Hepatotoxicity | Skin Sensitisation |
---|---|---|---|---|---|
Sofosbuvir | No | 2.618 | 2.402 | Yes | No |
Dasabuvir | Yes | 2.944 | 1.796 | Yes | No |
Pawhuskin_B | No | 2.375 | 1.02 | No | No |
DTXSID501019279 | Yes | 2.388 | 0.051 | No | No |
3-Cinnamyl-4-Oxoretinoic_Acid | No | 2.1 | 2.392 | Yes | No |
Cochlearine A | No | 2.871 | 2.015 | No | No |
Gniditrin | No | 3.277 | 2.380 | No | No |
Ingenol Dibenzoate | No | 2.383 | 2.047 | No | No |
Isogemichalcone_C | No | 2.385 | 3.565 | No | No |
Mezerein | No | 2.668 | 3.131 | No | No |
Mulberrofuran G | No | 2.549 | 3.097 | No | No |
Time Ligand Spent within 2.5 Å of Its Initial Position | Time Ligand Spent within 2.5 Å of Its Final Position | When Does It Reach a Relatively Stable Conformation within 2 Å RMSD of the Final Geometry? | Ligand RMSD in the Complex at the End of the Simulation | |
---|---|---|---|---|
DTXSID501019279 | 4% | 81% | 25 ns | 5 Å |
cochlearine A | 96% | 89% | 50 ns | 2.1 Å |
gniditrin | 17% | 23% | 115.5 ns | 5.9 Å |
ingenol dibenzoate | 11% | 53% | 72.25 ns | 7.9 Å |
mezerein | 4% | 68% | 56 ns | 5.5 Å |
mulberrofuran G | 28% | 99% | 3.5 ns | 2.6 Å |
isogemichalcone C | 7% | 81% | 31 ns | 4.6 Å |
(R)-pawhuskin | 100% | 98% | Immediately | 1.8 Å |
(S)-pawhuskin | 86% | 100% | 0.25 ns | 2.1 Å |
3-cinnamyl-4-oxoretinoicacid | 2% | 60% | 63.5 ns | 3.8 Å |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karpiński, T.M.; Ożarowski, M.; Silva, P.J.; Stasiewicz, M.; Alam, R.; Samad, A. Discovery of Terpenes as Novel HCV NS5B Polymerase Inhibitors via Molecular Docking. Pathogens 2023, 12, 842. https://doi.org/10.3390/pathogens12060842
Karpiński TM, Ożarowski M, Silva PJ, Stasiewicz M, Alam R, Samad A. Discovery of Terpenes as Novel HCV NS5B Polymerase Inhibitors via Molecular Docking. Pathogens. 2023; 12(6):842. https://doi.org/10.3390/pathogens12060842
Chicago/Turabian StyleKarpiński, Tomasz M., Marcin Ożarowski, Pedro J. Silva, Mark Stasiewicz, Rahat Alam, and Abdus Samad. 2023. "Discovery of Terpenes as Novel HCV NS5B Polymerase Inhibitors via Molecular Docking" Pathogens 12, no. 6: 842. https://doi.org/10.3390/pathogens12060842
APA StyleKarpiński, T. M., Ożarowski, M., Silva, P. J., Stasiewicz, M., Alam, R., & Samad, A. (2023). Discovery of Terpenes as Novel HCV NS5B Polymerase Inhibitors via Molecular Docking. Pathogens, 12(6), 842. https://doi.org/10.3390/pathogens12060842