Comparison of Three Serologic Tests for the Detection of Anti-Coxiella burnetii Antibodies in Patients with Q Fever
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Indirect Diagnostic Tests
2.2.1. Commercial Indirect Immunofluorescence Assay (Commercial IFA)
2.2.2. In-House Indirect Immunofluorescence Assay (In-House IFA)
2.2.3. Enzyme-Linked Immunosorbent Assay (ELISA)
2.3. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sahu, R.; Rawool, D.B.; Vinod, V.K.; Malik, S.V.S.; Barbuddhe, S.B. Current approaches for the detection of Coxiella burnetii infection in humans and animals. J. Microbiol. Methods. 2020, 179, 106087. [Google Scholar] [CrossRef] [PubMed]
- Beare, P.A.; Jeffrey, B.M.; Long, C.M.; Martens, C.M.; Heinzen, R.A. Genetic mechanisms of Coxiella burnetii lipopolysaccharide phase variation. PLoS Pathog. 2018, 14, e1006922. [Google Scholar] [CrossRef] [Green Version]
- França, D.A.; Mioni, M.S.R.; Fornazari, F.; Duré, A.Í.L.; Silva, M.V.F.; Possebon, F.S.; Richini-Pereira, V.B.; Langoni, H.; Megid, J. Seropositivity for Coxiella burnetii in suspected patients with dengue in São Paulo state, Brazil. PLoS Negl. Trop Dis. 2022, 16, e0010392. [Google Scholar] [CrossRef] [PubMed]
- Anderson, A.; Bijlmer, H.; Fournier, P.E.; Graves, S.; Hartzell, J.; Kersh, G.J.; Limonard, G.; Marrie, T.J.; Massung, R.F.; McQuiston, J.H.; et al. Diagnosis and management of Q fever-United States, 2013: Recommendations from CDC and the Q Fever Working Group. MMWR Recomm. Rep. 2013, 62, 1–30, Erratum in MMWR Recomm. Rep. 2013, 62, 730. [Google Scholar] [PubMed]
- Sidiq, Z.; Hanif, M.; Dwivedi, K.K.; Chopra, K.K. Benefits and limitations of serological assays in COVID-19 infection. Indian J. Tuberc. 2020, 67, S163–S166. [Google Scholar] [CrossRef]
- Toman, R.; Heinzen, R.A.; Samuel, J.E.; Mege, J.L. Coxiella burnetii: Recent Advances and New Perspectives in Research of the Q Fever Bacterium, 1st ed.; Springer: Cham, Switzerland, 2012. [Google Scholar]
- Ullah, Q.; Jamil, T.; Saqib, M.; Iqbal, M.; Neubauer, H. Q Fever—A Neglected Zoonosis. Microorganisms 2022, 10, 1530. [Google Scholar] [CrossRef] [PubMed]
- França, D.A.; Mioni, M.S.R.; Fernandes, J.; Lemos, E.R.S.; Duré, A.I.L.; Silva, M.V.F.; Langoni, H.; Megid, J. Overview of Q fever in Brazil: An underestimated zoonosis. Rev. Inst. Med. Trop. Sao Paulo 2023, 65, e39. [Google Scholar]
- Rousset, E.; Durand, B.; Berri, M.; Dufour, P.; Prigent, M.; Russo, P.; Delcroix, T.; Touratier, A.; Rodolakis, A.; Aubert, M. Comparative diagnostic potential of three serological tests for abortive Q fever in goat herds. Vet. Microbiol. 2007, 124, 286–297. [Google Scholar] [CrossRef] [Green Version]
- Emery, M.P.; Ostlund, E.N.; Ait Ichou, M.; Ballin, J.D.; McFarling, D.; McGonigle, L. Coxiella burnetii serology assays in goat abortion storm. J. Vet. Diagn. Investig. 2014, 26, 141–145. [Google Scholar] [CrossRef] [Green Version]
- Horigan, M.W.; Bell, M.M.; Pollard, T.R.; Sayers, A.R.; Pritchard, G.C. Q fever diagnosis in domestic ruminants: Comparison between complement fixation and commercial enzyme-linked immunosorbent assays. J. Vet. Diagn. Investig. 2011, 23, 924–931. [Google Scholar] [CrossRef] [Green Version]
- Caraguel, C.; Bassett, S.; González-Barrio, D.; Elsworth, P.; Chaber, A.L. Comparison of three serological tests for the detection of Coxiella burnetii specific antibodies in European wild rabbits. BMC Vet. Res. 2020, 16, 315. [Google Scholar] [CrossRef]
- Yadav, J.P.; Malik, S.V.S.; Dhaka, P.; Kumar, M.; Sirsant, B.; Gourkhede, D.; Barbuddhe, S.B.; Rawool, D.B. Comparison of two new in-house Latex Agglutination Tests (LATs), based on the DnaK and Com1 synthetic peptides of Coxiella burnetii, with a commercial indirect-ELISA, for sero-screening of coxiellosis in bovines. J. Microbiol. Methods. 2020, 170, 105859. [Google Scholar] [CrossRef]
- Mioni, M.S.R.; Sidi-Boumedine, K.; Morales Dalanezi, F.; Fernandes Joaquim, S.; Denadai, R.; Reis Teixeira, W.S.; Bahia Labruna, M.; Megid, J. New Genotypes of Coxiella burnetii Circulating in Brazil and Argentina. Pathogens 2019, 9, 30. [Google Scholar] [CrossRef] [Green Version]
- Horta, M.C.; Labruna, M.B.; Sangioni, L.A.; Vianna, M.C.; Gennari, S.M.; Galvão, M.A.; Mafra, C.L.; Vidotto, O.; Schumaker, T.T.; Walker, D.H. Prevalence of antibodies to spotted fever group rickettsiae in humans and domestic animals in a Brazilian spotted fever-endemic area in the state of São Paulo, Brazil: Serologic evidence for infection by Rickettsia rickettsii and another spotted fever group Rickettsia. Am. J. Trop. Med. Hyg. 2004, 71, 93–97. [Google Scholar]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [Green Version]
- Dean, A.G.; Sullivan, K.M.; Soe, M.M. Open Source Epidemiologic Statistics for Public Health. 2013. Available online: https://www.openepi.com/SampleSize/SSPropor.htm (accessed on 20 May 2022).
- Jäger, C.; Willems, H.; Thiele, D.; Baljer, G. Molecular characterization of Coxiella burnetii isolates. Epidemiol. Infect. 1998, 120, 157–164. [Google Scholar] [CrossRef]
- Beare, P.A.; Samuel, J.E.; Howe, D.; Virtaneva, K.; Porcella, S.F.; Heinzen, R.A. Genetic diversity of the Q fever agent, Coxiella burnetii, assessed by microarray-based whole-genome comparisons. J. Bacteriol. 2006, 188, 2309–2324. [Google Scholar] [CrossRef] [Green Version]
- Finidori, J.P.; Raoult, D.; Bornstein, N.; Fleurette, J. Study of cross-reaction between Coxiella burnetii and Legionella pneumophila using indirect immunofluorescence assay and immunoblotting. Acta Virol. 1992, 36, 459–465. [Google Scholar]
- La Scola, B.; Raoult, D. Serological cross-reactions between Bartonella quintana, Bartonella henselae, and Coxiella burnetii. J. Clin. Microbiol. 1996, 34, 2270–2274. [Google Scholar] [CrossRef] [Green Version]
Gold Standard | Total | |||
---|---|---|---|---|
(+) | (−) | |||
Technique to be tested | (+) | a | b | a+b |
(−) | c | d | c+d | |
Total | a+c | b+d | a+b+c+d |
Commercial IFA | Total | |||
---|---|---|---|---|
(+) | (−) | |||
in-house IFA | (+) | 74 | 3 | 77 |
(−) | 7 | 116 | 123 | |
Total | 81 | 119 | 200 |
Parameter | Calculation | CI 95% Inferior–Superior | Method |
---|---|---|---|
Sensitivity | 91.36% | (83.22–95.75) | Wilson’s Points |
Specificity | 97.48% | (92.85–99.14) | Wilson’s Points |
Positive Predictive Value | 96.1% | (89.16–98.67) | Wilson’s Points |
Negative Predictive Value | 94.31% | (88.72–97.22) | Wilson’s Points |
Accuracy | 95% | (91.04–97.26) | Wilson’s Points |
Likelihood Ratio of Positive Test | 36.24 | (18.81–69.82) | - |
Likelihood Ratio of Negative Test | 0.08865 | (0.06697–0.1174) | - |
Cohen’s Kappa | 0.8954 | (0.757–1.034) | - |
Commercial IFA | Total | |||
---|---|---|---|---|
(+) | (−) | |||
ELISA | (+) | 54 | 4 | 58 |
(−) | 27 | 115 | 142 | |
Total | 81 | 119 | 200 |
Parameter | Calculation | CI 95% Inferior–Superior | Method |
---|---|---|---|
Sensitivity | 66.67% | (55.85–75.97) | Wilson’s Points |
Specificity | 96.64% | (91.68–98.69) | Wilson’s Points |
Positive Predictive Value | 93.1% | (83.57–97.29) | Wilson’s Points |
Negative Predictive Value | 80.99% | (73.75–86.59) | Wilson’s Points |
Accuracy | 84.5% | (78.84–88.86) | Wilson’s Points |
Likelihood Ratio of Positive Test | 19.83 | (11.93–32.97) | - |
Likelihood Ratio of Negative Test | 0.3449 | (0.3206–0.3711) | - |
Cohen’s Kappa | 0.6631 | (0.5289–0.7973) | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
França, D.A.d.; Mioni, M.d.S.R.; Fornazari, F.; Rodrigues, N.J.L.; Polido, L.R.F.; Appolinario, C.M.; Ribeiro, B.L.D.; Duré, A.Í.d.L.; Silva, M.V.F.; Richini-Pereira, V.B.; et al. Comparison of Three Serologic Tests for the Detection of Anti-Coxiella burnetii Antibodies in Patients with Q Fever. Pathogens 2023, 12, 873. https://doi.org/10.3390/pathogens12070873
França DAd, Mioni MdSR, Fornazari F, Rodrigues NJL, Polido LRF, Appolinario CM, Ribeiro BLD, Duré AÍdL, Silva MVF, Richini-Pereira VB, et al. Comparison of Three Serologic Tests for the Detection of Anti-Coxiella burnetii Antibodies in Patients with Q Fever. Pathogens. 2023; 12(7):873. https://doi.org/10.3390/pathogens12070873
Chicago/Turabian StyleFrança, Danilo Alves de, Mateus de Souza Ribeiro Mioni, Felipe Fornazari, Nássarah Jabur Lot Rodrigues, Lucas Roberto Ferreira Polido, Camila Michele Appolinario, Bruna Letícia Devidé Ribeiro, Ana Íris de Lima Duré, Marcos Vinicius Ferreira Silva, Virgínia Bodelão Richini-Pereira, and et al. 2023. "Comparison of Three Serologic Tests for the Detection of Anti-Coxiella burnetii Antibodies in Patients with Q Fever" Pathogens 12, no. 7: 873. https://doi.org/10.3390/pathogens12070873
APA StyleFrança, D. A. d., Mioni, M. d. S. R., Fornazari, F., Rodrigues, N. J. L., Polido, L. R. F., Appolinario, C. M., Ribeiro, B. L. D., Duré, A. Í. d. L., Silva, M. V. F., Richini-Pereira, V. B., Langoni, H., & Megid, J. (2023). Comparison of Three Serologic Tests for the Detection of Anti-Coxiella burnetii Antibodies in Patients with Q Fever. Pathogens, 12(7), 873. https://doi.org/10.3390/pathogens12070873