Diversity of the Bacterial and Viral Communities in the Tropical Horse Tick, Dermacentor nitens, in Colombia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Nucleic Acid Extraction
2.2. NGS Library Preparations and Data Processing
2.3. Phylogenetic Analyses of Viral, Rickettsia spp., and Francisella spp. Contigs
2.4. Ethical Approval
3. Results
3.1. Bacterial Diversity Investigated Using V3–V4 Regions of the 16S rRNA Sequences
3.2. Metatranscriptome Containing Viral and Francisella spp. RNA
3.3. Phylogenetic Analyses of Viral and Francisella spp Contigs
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Disclaimer
Copyright Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bonnet, S.I.; Binetruy, F.; Hernández-Jarguín, A.M.; Duron, O. The Tick Microbiome: Why Non-pathogenic Microorganisms Matter in Tick Biology and Pathogen Transmission. Front. Cell. Infect. Microbiol. 2017, 7, 236. Available online: https://www.frontiersin.org/article/10.3389/fcimb.2017.00236 (accessed on 8 April 2022). [CrossRef] [PubMed]
- Madison-Antenucci, S.; Kramer, L.D.; Gebhardt, L.L.; Kauffman, E. Emerging Tick-Borne Diseases. Clin. Microbiol. Rev. 2020, 33, e00083-18. [Google Scholar] [CrossRef] [PubMed]
- Prasad, N.; Murdoch, D.R.; Reyburn, H.; Crump, J.A. Etiology of Severe Febrile Illness in Low- and Middle-Income Countries: A Systematic Review. PLoS ONE 2015, 10, e0127962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cabezas-Cruz, A.; Vayssier-Taussat, M.; Greub, G. Tick-borne pathogen detection: What’s new? Microbes Infect. 2018, 20, 441–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouchard, C.; Dibernardo, A.; Koffi, J.; Wood, H.; Leighton, P.; Lindsay, L. N Increased risk of tick-borne diseases with climate and environmental changes. Can. Commun. Dis. Rep. 2019, 45, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Dantas-Torres, F.; Chomel, B.B.; Otranto, D. Ticks and tick-borne diseases: A One Health perspective. Trends Parasitol. 2012, 28, 437–446. [Google Scholar] [CrossRef]
- Gall, C.A.; Reif, K.E.; Scoles, G.A.; Mason, K.L.; Mousel, M.; Noh, S.M.; Brayton, K.A. The bacterial microbiome of Dermacentor andersoni ticks influences pathogen susceptibility. ISME J. 2016, 10, 1846–1855. [Google Scholar] [CrossRef] [Green Version]
- Narasimhan, S.; Swei, A.; Abouneameh, S.; Pal, U.; Pedra, J.H.F.; Fikrig, E. Grappling with the tick microbiome. Trends Parasitol. 2021, 37, 722–733. [Google Scholar] [CrossRef]
- Park, J.M.; Oliva Chávez, A.S.; Shaw, D.K. Ticks: More Than Just a Pathogen Delivery Service. Front. Cell. Infect. Microbiol. 2021, 11, 808. Available online: https://www.frontiersin.org/article/10.3389/fcimb.2021.739419 (accessed on 25 April 2022). [CrossRef]
- Wu-Chuang, A.; Obregon, D.; Mateos-Hernández, L.; Cabezas-Cruz, A. Anti-tick microbiota vaccines: How can this actually work? Biologia 2022, 77, 1555–1562. [Google Scholar] [CrossRef]
- Cabezas-Cruz, A.; Pollet, T.; Estrada-Peña, A.; Allain, E.; Bonnet, S.I.; Moutailler, S. Handling the Microbial Complexity Associated to Ticks. In Ticks and Tick-Borne Pathogens; Abubakar, M., Perera, P.K., Eds.; IntechOpen: London, UK, 2019; Available online: https://www.intechopen.com/books/ticks-and-tick-borne-pathogens/handling-the-microbial-complexity-associated-to-ticks (accessed on 23 April 2022).
- Díaz-Sánchez, S.; Estrada-Peña, A.; Cabezas-Cruz, A.; de la Fuente, J. Evolutionary Insights into the Tick Hologenome. Trends Parasitol. 2019, 35, 725–737. [Google Scholar] [CrossRef]
- Duron, O.; Morel, O.; Noël, V.; Buysse, M.; Binetruy, F.; Lancelot, R.; Loire, E.; Ménard, C.; Bouchez, O.; Vavre, F.; et al. Tick-Bacteria Mutualism Depends on B Vitamin Synthesis Pathways. Curr. Biol. 2018, 28, 1896–1902.e5. [Google Scholar] [CrossRef] [Green Version]
- Narasimhan, S.; Fikrig, E. Tick microbiome: The force within. Trends Parasitol. 2015, 31, 315–323. [Google Scholar] [CrossRef] [Green Version]
- Sumrandee, C.; Hirunkanokpun, S.; Grubhoffer, L.; Baimai, V.; Trinachartvanit, W.; Ahantarig, A. Phylogenetic relationships of Francisella-like endosymbionts detected in two species of Amblyomma from snakes in Thailand. Ticks Tick-Borne Dis. 2014, 5, 29–32. [Google Scholar] [CrossRef]
- Klindworth, A.; Pruesse, E.; Schweer, T.; Peplies, J.; Quast, C.; Horn, M.; Glöckner, F.O. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013, 41, e1. [Google Scholar] [CrossRef]
- Gurfield, N.; Grewal, S.; Cua, L.S.; Torres, P.J.; Kelley, S.T. Endosymbiont interference and microbial diversity of the Pacific coast tick, Dermacentor occidentalis, in San Diego County, California. PeerJ 2017, 5, e3202. [Google Scholar] [CrossRef] [Green Version]
- Xiang, L.; Poźniak, B.; Cheng, T.-Y. Bacteriological analysis of saliva from partially or fully engorged female adult Rhipicephalus microplus by next-generation sequencing. Antonie Van Leeuwenhoek 2017, 110, 105–113. [Google Scholar] [CrossRef]
- Bonnet, S.I.; Pollet, T. Update on the intricate tango between tick microbiomes and tick-borne pathogens. Parasite Immunol. 2021, 43, e12813. [Google Scholar] [CrossRef]
- Wu-Chuang, A.; Hodžić, A.; Mateos-Hernández, L.; Estrada-Peña, A.; Obregon, D.; Cabezas-Cruz, A. Current debates and advances in tick microbiome research. Curr. Res. Parasitol. Vector-Borne Dis. 2021, 1, 100036. [Google Scholar] [CrossRef]
- Pettersson, J.H.-O.; Shi, M.; Bohlin, J.; Eldholm, V.; Brynildsrud, O.B.; Paulsen, K.M.; Andreassen, Å.; Holmes, E.C. Characterizing the virome of Ixodes ricinus ticks from northern Europe. Sci. Rep. 2017, 7, 10870. [Google Scholar] [CrossRef] [Green Version]
- Tokarz, R.; Williams, S.H.; Sameroff, S.; Sanchez Leon, M.; Jain, K.; Lipkin, W.I. Virome Analysis of Amblyomma americanum, Dermacentor variabilis, and Ixodes scapularis Ticks Reveals Novel Highly Divergent Vertebrate and Invertebrate Viruses. J. Virol. 2014, 88, 11480–11492. [Google Scholar] [CrossRef] [Green Version]
- Li, C.-X.; Shi, M.; Tian, J.-H.; Lin, X.-D.; Kang, Y.-J.; Chen, L.-J.; Qin, X.-C.; Xu, J.; Holmes, E.C.; Zhang, Y.-Z. Unprecedented genomic diversity of RNA viruses in arthropods reveals the ancestry of negative-sense RNA viruses. eLife 2015, 4, e05378. [Google Scholar] [CrossRef] [PubMed]
- Brinkmann, A.; Dinçer, E.; Polat, C.; Hekimoğlu, O.; Hacıoğlu, S.; Földes, K.; Özkul, A.; Öktem, İ.M.A.; Nitsche, A.; Ergünay, K. A metagenomic survey identifies Tamdy orthonairovirus as well as divergent phlebo-, rhabdo-, chu- and flavi-like viruses in Anatolia, Turkey. Ticks Tick-Borne Dis. 2018, 9, 1173–1183. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Hu, Z.; Deng, F.; Shen, S. Tick-Borne Viruses. Virol. Sin. 2018, 33, 21–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tokarz, R.; Sameroff, S.; Tagliafierro, T.; Jain, K.; Williams, S.H.; Cucura, D.M.; Rochlin, I.; Monzon, J.; Carpi, G.; Tufts, D.; et al. Identification of Novel Viruses in Amblyomma americanum, Dermacentor variabilis, and Ixodes scapularis Ticks. mSphere 2018, 3, e00614-17. [Google Scholar] [CrossRef] [Green Version]
- Sameroff, S.; Tokarz, R.; Charles, R.A.; Jain, K.; Oleynik, A.; Che, X.; Georges, K.; Carrington, C.V.; Lipkin, W.I.; Oura, C. Viral Diversity of Tick Species Parasitizing Cattle and Dogs in Trinidad and Tobago. Sci. Rep. 2019, 9, 10421. [Google Scholar] [CrossRef] [Green Version]
- Gómez, G.F.; Isaza, J.P.; Segura, J.A.; Alzate, J.F.; Gutiérrez, L.A. Metatranscriptomic virome assessment of Rhipicephalus microplus from Colombia. Ticks Tick-Borne Dis. 2020, 11, 101426. [Google Scholar] [CrossRef]
- Orozco Orozco, M.; Gómez, G.F.; Alzate, J.F.; Isaza, J.P.; Gutiérrez, L.A. Virome analysis of three Ixodidae ticks species from Colombia: A potential strategy for discovering and surveying tick-borne viruses. Infect. Genet. Evol. 2021, 96, 105103. [Google Scholar] [CrossRef]
- Xu, L.; Guo, M.; Hu, B.; Zhou, H.; Yang, W.; Hui, L.; Huang, R.; Zhan, J.; Shi, W.; Wu, Y. Tick virome diversity in Hubei Province, China, and the influence of host ecology. Virus Evol. 2021, 7, veab089. [Google Scholar] [CrossRef]
- Schwint, O.N.; Knowles, D.P.; Ueti, M.W.; Kappmeyer, L.S.; Scoles, G.A. Transmission of Babesia caballi by Dermacentor nitens (Acari: Ixodidae) Is Restricted to One Generation in the Absence of Alimentary Reinfection on a Susceptible Equine Host. J. Med. Entomol. 2008, 45, 1152–1155. [Google Scholar] [CrossRef] [Green Version]
- da Silva Rodrigues, V.; Garcia, M.V.; Cruz, B.C.; Maciel, W.G.; Zimmermann, N.P.; Koller, W.W.; Barros, J.C.; Andreotti, R. Life cycle and parasitic competence of Dermacentor nitens Neumann, 1897 (Acari: Ixodidae) on different animal species. Ticks Tick-Borne Dis. 2017, 8, 379–384. [Google Scholar] [CrossRef] [Green Version]
- Labruna, M.B.; Kasai, N.; Ferreira, F.; Faccini, J.L.H.; Gennari, S.M. Seasonal dynamics of ticks (Acari: Ixodidae) on horses in the state of São Paulo, Brazil. Vet. Parasitol. 2002, 105, 65–77. [Google Scholar] [CrossRef]
- Borges, L.M.F.; Oliveira, P.R.; Ribeiro, M.F.B. Seasonal dynamics of Anocentor nitens on horses in Brazil. Vet. Parasitol. 2000, 89, 165–171. [Google Scholar] [CrossRef]
- Borges, L.M.F.; da Silva, C.R.F. Ixodídeos parasitos de bovinos e equinos da microrregiáo de goiânia, goiás. Rev. Patol. Trop./J. Trop. Pathol. 1994, 23, 69–74. Available online: https://revistas.ufg.br/iptsp/article/view/20035 (accessed on 4 August 2022).
- Martins, T.F.; Teixeira, R.H.F.; Labruna, M.B. Ocorrência de carrapatos em animais silvestres recebidos e atendidos pelo Parque Zoológico Municipal Quinzinho de Barros, Sorocaba, São Paulo, Brasil. Braz. J. Vet. Res. Anim. Sci. 2015, 52, 319–324. [Google Scholar] [CrossRef] [Green Version]
- Nelson, S.L.; Durden, L.A.; Reuter, J.D. Rhipicephalus microplus and Dermacentor nitens (Acari: Ixodidae) Coparasitize White-Tailed Deer on St. John, U.S. Virgin Islands. J. Med. Entomol. 2017, 54, 1440–1443. [Google Scholar] [CrossRef]
- Guglielmone, A.A.; Robbins, R.G.; Apanaskevich, D.A.; Petney, T.N.; Estrada-Peña, A.; Horak, I.G. The Hard Ticks of the World; Springer: Dordrecht, The Netherlands, 2014; Available online: http://link.springer.com/10.1007/978-94-007-7497-1 (accessed on 29 July 2022).
- Santodomingo, A.; Sierra-Orozco, K.; Cotes-Perdomo, A.; Castro, L.R. Molecular detection of Rickettsia spp., Anaplasma platys and Theileria equi in ticks collected from horses in Tayrona National Park, Colombia. Exp. Appl. Acarol. 2019, 77, 411–423. [Google Scholar] [CrossRef]
- Cotes-Perdomo, A.P.; Oviedo, Á.; Castro, L.R. Molecular detection of pathogens in ticks associated with domestic animals from the Colombian Caribbean region. Exp. Appl. Acarol. 2020, 82, 137–150. [Google Scholar] [CrossRef]
- Barros-Battesti, D.M.; Arzua, M.; Bechara, G.H. Carrapatos de Importância Médico-Veterinária da Região Neotropical: Um Guia Ilustrado Para Identificação de Espécies; ICTTD-3; Instituto Butantan: São Paulo, Brazil, 2006. Available online: https://repositorio.butantan.gov.br/handle/butantan/3153 (accessed on 4 August 2022).
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J.; et al. Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef] [Green Version]
- Kozich, J.J.; Westcott, S.L.; Baxter, N.T.; Highlander, S.K.; Schloss, P.D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 2013, 79, 5112–5120. [Google Scholar] [CrossRef] [Green Version]
- Maldonado-Ruiz, L.P.; Neupane, S.; Park, Y.; Zurek, L. The bacterial community of the lone star tick (Amblyomma americanum). Parasites Vectors 2021, 14, 49. [Google Scholar] [CrossRef] [PubMed]
- Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 2003, 14, 927–930. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef] [PubMed]
- RStudio Team. RStudio: Integrated Development for R; RStudio, PBC: Boston, MA, USA, 2020; Available online: http://www.rstudio.com/ (accessed on 20 April 2021).
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef]
- Götz, S.; García-Gómez, J.M.; Terol, J.; Williams, T.D.; Nagaraj, S.H.; Nueda, M.J.; Robles, M.; Talón, M.; Dopazo, J.; Conesa, A. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 2008, 36, 3420–3435. [Google Scholar] [CrossRef]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.; et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef] [Green Version]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Suchard, M.A.; Lemey, P.; Baele, G.; Ayres, D.L.; Drummond, A.J.; Rambaut, A. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 2018, 4, vey016. [Google Scholar] [CrossRef] [Green Version]
- Felsenstein, J. Confidence Limits on Phylogenies: An Approach Using the Bootstrap. Evolution 1985, 39, 783–791. [Google Scholar] [CrossRef]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar] [CrossRef]
- Tamura, K.; Nei, M.; Kumar, S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc. Natl. Acad. Sci. USA 2004, 101, 11030–11035. [Google Scholar] [CrossRef]
- Tamura, K.; Nei, M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 1993, 10, 512–526. [Google Scholar] [CrossRef] [Green Version]
- Gerhart, J.G.; Moses, A.S.; Raghavan, R. A Francisella-like endosymbiont in the Gulf Coast tick evolved from a mammalian pathogen. Sci. Rep. 2016, 6, 33670. [Google Scholar] [CrossRef] [Green Version]
- Gerhart, J.G.; Auguste Dutcher, H.; Brenner, A.E.; Moses, A.S.; Grubhoffer, L.; Raghavan, R. Multiple Acquisitions of Pathogen-Derived Francisella Endosymbionts in Soft Ticks. Genome Biol. Evol. 2018, 10, 607–615. [Google Scholar] [CrossRef] [Green Version]
- Jongejan, F.; Uilenberg, G. The global importance of ticks. Parasitology 2004, 129, S3–S14. [Google Scholar] [CrossRef]
- Duron, O.; Binetruy, F.; Noël, V.; Cremaschi, J.; McCoy, K.D.; Arnathau, C.; Plantard, O.; Goolsby, J.; Pérez de León, A.A.; Heylen, D.J.A.; et al. Evolutionary changes in symbiont community structure in ticks. Mol. Ecol. 2017, 26, 2905–2921. [Google Scholar] [CrossRef] [Green Version]
- CDC. Tickborne Diseases of the United States; CDC: Atlanta, GA, USA, 2022. Available online: https://www.cdc.gov/ticks/tickbornediseases/index.html (accessed on 27 October 2022).
- Van Treuren, W.; Ponnusamy, L.; Brinkerhoff, R.J.; Gonzalez, A.; Parobek, C.M.; Juliano, J.J.; Andreadis, T.G.; Falco, R.C.; Ziegler, L.B.; Hathaway, N.; et al. Variation in the Microbiota of Ixodes Ticks with Regard to Geography, Species, and Sex. Appl. Environ. Microbiol. 2015, 81, 6200–6209. [Google Scholar] [CrossRef] [Green Version]
- Kumar, D.; Downs, L.P.; Adegoke, A.; Machtinger, E.; Oggenfuss, K.; Ostfeld, R.S.; Embers, M.; Karim, S. An Exploratory Study on the Microbiome of Northern and Southern Populations of Ixodes scapularis Ticks Predicts Changes and Unique Bacterial Interactions. Pathogens 2022, 11, 130. [Google Scholar] [CrossRef]
- Moreno, C.X.; Moy, F.; Daniels, T.J.; Godfrey, H.P.; Cabello, F.C. Molecular analysis of microbial communities identified in different developmental stages of Ixodes scapularis ticks from Westchester and Dutchess Counties, New York. Environ. Microbiol. 2006, 8, 761–772. [Google Scholar] [CrossRef] [PubMed]
- Clay, K.; Klyachko, O.; Grindle, N.; Civitello, D.; Oleske, D.; Fuqua, C. Microbial communities and interactions in the lone star tick, Amblyomma americanum. Mol. Ecol. 2008, 17, 4371–4381. [Google Scholar] [CrossRef] [PubMed]
- Clow, K.M.; Weese, J.S.; Rousseau, J.; Jardine, C.M. Microbiota of field-collected Ixodes scapularis and Dermacentor variabilis from eastern and southern Ontario, Canada. Ticks Tick-Borne Dis. 2018, 9, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Ahantarig, A.; Trinachartvanit, W.; Baimai, V.; Grubhoffer, L. Hard ticks and their bacterial endosymbionts (or would be pathogens). Folia Microbiol. 2013, 58, 419–428. [Google Scholar] [CrossRef]
- Yeni, D.K.; Büyük, F.; Ashraf, A.; Shah, M.S.u.D. Tularemia: A re-emerging tick-borne infectious disease. Folia Microbiol. 2021, 66, 1–14. [Google Scholar] [CrossRef]
- Travanty, N.V.; Ponnusamy, L.; Kakumanu, M.L.; Nicholson, W.L.; Apperson, C.S. Diversity and structure of the bacterial microbiome of the American dog tick, Dermacentor variabilis, is dominated by the endosymbiont Francisella. Symbiosis 2019, 79, 239–250. [Google Scholar] [CrossRef]
- Zhang, Y.-K.; Yu, Z.-J.; Wang, D.; Bronislava, V.; Branislav, P.; Liu, J.-Z. The bacterial microbiome of field-collected Dermacentor marginatus and Dermacentor reticulatus from Slovakia. Parasites Vectors 2019, 12, 325. [Google Scholar] [CrossRef]
- Duan, D.-Y.; Liu, G.-H.; Cheng, T.-Y. Microbiome analysis of the saliva and midgut from partially or fully engorged female adult Dermacentor silvarum ticks in China. Exp. Appl. Acarol. 2020, 80, 543–558. [Google Scholar] [CrossRef]
- Sperling, J.; MacDonald, Z.; Normandeau, J.; Merrill, E.; Sperling, F.; Magor, K. Within-population diversity of bacterial microbiomes in winter ticks (Dermacentor albipictus). Ticks Tick-Borne Dis. 2020, 11, 101535. [Google Scholar] [CrossRef]
- Segura, J.A.; Isaza, J.P.; Botero, L.E.; Alzate, J.F.; Gutiérrez, L.A. Assessment of bacterial diversity of Rhipicephalus microplus ticks from two livestock agroecosystems in Antioquia, Colombia. PLoS ONE 2020, 15, e0234005. [Google Scholar] [CrossRef]
- Instituto Geográfico Agustín Codazzi. Límites Generales Del Departamento de Antioquia. 2022. Available online: https://www.antioquiadatos.gov.co/index.php/1-2-4-limites-generales-del-departamento-de-antioquia#:~:text=Antioquia%20limita%20al%20norte%20con,gran%20parte%20de%20su%20recorrido (accessed on 30 August 2022).
- Gonçalves, D.D.; Carreira, T.; Nunes, M.; Benitez, A.; Lopes-Mori, F.M.R.; Vidotto, O.; de Freitas, J.C.; Vieira, M.L. First record of Borrelia burgdorferi B31 strain in Dermacentor nitens ticks in the northern region of Parana (Brazil). Braz. J. Microbiol. 2013, 44, 883–887. [Google Scholar] [CrossRef] [Green Version]
- Ibal, J.C.; Pham, H.Q.; Park, C.E.; Shin, J.-H. Information about variations in multiple copies of bacterial 16S rRNA genes may aid in species identification. PLoS ONE 2019, 14, e0212090. [Google Scholar] [CrossRef] [Green Version]
- Scoles, G.A. Phylogenetic Analysis of the Francisella-like Endosymbionts of Dermacentor Ticks. J. Med. Entomol. 2004, 41, 277–286. [Google Scholar] [CrossRef] [Green Version]
- Kumar, D.; Sharma, S.R.; Adegoke, A.; Kennedy, A.; Tuten, H.C.; Li, A.Y.; Karim, S. Recently Evolved Francisella-Like Endosymbiont Outcompetes an Ancient and Evolutionarily Associated Coxiella-Like Endosymbiont in the Lone Star Tick (Amblyomma americanum) Linked to the Alpha-Gal Syndrome. Front. Cell. Infect. Microbiol. 2022, 12, 425. Available online: https://www.frontiersin.org/article/10.3389/fcimb.2022.787209 (accessed on 23 April 2022). [CrossRef]
Library (Paired Reads) | Region | Raw reads | Mapped Reads | Contigs |
---|---|---|---|---|
DNA_Pool_1 | Bolivar | 48852 | 46109 | 706 |
DNA_Pool_2 | Bolivar | 41430 | 39512 | 508 |
DNA_Pool_3 | Bolivar | 37846 | 36438 | 503 |
DNA_Pool_4 | Antioquia | 45141 | 42948 | 842 |
DNA_Pool_5 | Antioquia | 39380 | 37847 | 1044 |
DNA_Pool_6 | Antioquia | 43778 | 41116 | 886 |
DNA_Pool_7 | Cordoba | 47878 | 45604 | 665 |
DNA_Pool_8 | Cordoba | 41244 | 38268 | 583 |
DNA_Pool_9 | Cordoba | 47270 | 44651 | 949 |
Total | 392819 | 372493 | 6686 |
Sequence ID | Gene Name | Open Reading Frame (bp) |
---|---|---|
Contig_FLE_D.nitens_1, length = 9969 bp, Coverage = 1628 | ||
TRINITY_DN179725_c0_g1_Gene1 | 3-Oxoacyl-ACP synthase CDS | 972 |
TRINITY_DN179725_c0_g1_Gene2 | Phosphate acyltransferase CDS | 1047 |
TRINITY_DN179725_c0_g1_Gene3 | rpmF CDS | 183 |
TRINITY_DN179725_c0_g1_Gene4 | Hypothetical protein CDS | 504 |
TRINITY_DN179725_c0_g1_Gene5 | Transketolase CDS | 1992 |
TRINITY_DN179725_c0_g1_Gene6 | Glyceraldehyde-3-phospate dehydrogenase CDS | 1002 |
TRINITY_DN179725_c0_g1_Gene7 | Phosphoglycerate kinase CDS | 1179 |
TRINITY_DN179725_c0_g1_Gene8 | Pyruvate kinase CDS | 1437 |
TRINITY_DN179725_c0_g1_Gene9 | Fructose-1,6-bisphosphate aldolase CDS | 1065 |
Contig_FLE_D.nitens_2, length = 5250 bp, Coverage = 696 | ||
TRINITY_DN15830_c0_g2_Gene1 | Nucleotide exchange factor GrpE CDS | 588 |
TRINITY_DN15830_c0_g2_Gene2 | Molecular chaperone DnaK CDS | 1929 |
TRINITY_DN15830_c0_g2_Gene3 | Molecular chaperone DnaJ CDS | 1122 |
TRINITY_DN15830_c0_g2_Gene4 | LysR family transcriptional regulator CDS | 906 |
TRINITY_DN15830_c0_g2_Gene5 | Hypothetical protein CDS | 705 |
Contig_FLE_D.nitens_3, length = 8089 bp, Coverage = 675 | ||
TRINITY_DN25174_c0_g1_Gene1 | Hypothetical protein CDS | 1444 |
TRINITY_DN25174_c0_g1_Gene2 | Hypothetical protein CDS | 620 |
TRINITY_DN25174_c0_g1_Gene3 | Hypothetical protein CDS | 1006 |
TRINITY_DN25174_c0_g1_Gene4 | Hypothetical protein CDS | 1003 |
TRINITY_DN25174_c0_g1_Gene5 | Membrane protein CDS | 478 |
TRINITY_DN25174_c0_g1_Gene6 | Hypothetical protein CDS | 934 |
TRINITY_DN25174_c0_g1_Gene7 | moxR CDS | 962 |
TRINITY_DN25174_c0_g1_Gene8 | Hypothetical protein CDS | 444 |
TRINITY_DN25174_c0_g1_Gene9 | pdcY CDS | 853 |
TRINITY_DN25174_c0_g1_Gene10 | Hypothetical protein CDS | 345 |
Contig_FLE_D.nitens_4, length = 5373 bp, Coverage = 660 | ||
TRINITY_DN3539_c0_g1_Gene1 | Carbamoyl phosphate synthase small subunit CDS | 1167 |
TRINITY_DN3539_c0_g1_Gene2 | Carbamoyl phosphate synthase large subunit CDS | 3285 |
TRINITY_DN3539_c0_g1_Gene3 | Aspartate carbamoyltransferase CDS | 921 |
Contig_FLE_D.nitens_5, length = 5215 bp, Coverage = 617 | ||
TRINITY_DN112697_c0_g1_Gene1 | Coproporphyrinogen III oxidase CDS | 1143 |
TRINITY_DN112697_c0_g1_Gene2 | Polysacccharide biosynthesis protein GtrA CDS | 378 |
TRINITY_DN112697_c0_g1_Gene3 | Peroxidase CDS | 882 |
TRINITY_DN112697_c0_g1_Gene4 | Aconitate hydratase CDS | 2812 |
Contig_FLE_D.nitens_6, length = 1350 bp, Coverage = 787 | ||
TRINITY_DN1678_c0_g1_Gene1 | Glutamate dehydrogenase CDS | 1350 |
Contig_FLE_D.nitens_7, length = 2846 bp, Coverage = 942 | ||
TRINITY_DN396500_c0_g1_Gene1 | Glycine dehydrogenase CDS | 1381 |
TRINITY_DN396500_c0_g1_Gene2 | Glycine dehydrogenase CDS | 1465 |
Contig_FLE_D.nitens_8, length = 4254 bp, Coverage = 880 | ||
TRINITY_DN1569_c0_g1_Gene1 | ATP synthase subunit alpha CDS | 1542 |
TRINITY_DN1569_c0_g1_Gene2 | ATP F0F1 synthase subunit gamma CDS | 897 |
TRINITY_DN1569_c0_g1_Gene3 | ATP synthase subunit beta CDS | 1377 |
TRINITY_DN1569_c0_g1_Gene4 | atpC CDS | 438 |
Contig_FLE_D.nitens_9, length = 7945 bp, Coverage = 1393 | ||
TRINITY_DN253568_c0_g1_Gene1 | Leucyl aminopeptidase CDS | 1440 |
TRINITY_DN253568_c0_g1_Gene2 | lptF CDS | 1087 |
TRINITY_DN253568_c0_g1_Gene3 | lptG CDS | 1063 |
TRINITY_DN253568_c0_g1_Gene4 | Insulinase family protein CDS | 1254 |
TRINITY_DN253568_c0_g1_Gene5 | Insulinase family protein CDS | 1254 |
TRINITY_DN253568_c0_g1_Gene6 | rsmD CDS | 579 |
TRINITY_DN253568_c0_g1_Gene7 | Trimeric intracellular cation channel family protein CDS | 654 |
TRINITY_DN253568_c0_g1_Gene8 | tRNA-(ms [2]io [6]A)-hydrolase CDS | 614 |
Contig_FLE_D.nitens_10, length = 3170 bp, Coverage = 221 | ||
TRINITY_DN182378_c0_g1_Gene1 | Amino acid transporter CDS | 705 |
TRINITY_DN182378_c0_g1_Gene2 | Oxidoreductase, short chain dehydrogenase/reductase family CDS | 827 |
TRINITY_DN182378_c0_g1_Gene3 | Hypothetical protein CDS | 471 |
TRINITY_DN182378_c0_g1_Gene4 | NAD(FAD)-utilizing dehydrogenase CDS | 1167 |
Contig_FLE_D.nitens_11, length = 4745 bp, Coverage = 306 | ||
TRINITY_DN15837_c0_g1_Gene1 | Hypothetical protein CDS | 653 |
TRINITY_DN15837_c0_g1_Gene2 | Hypothetical protein CDS | 417 |
TRINITY_DN15837_c0_g1_Gene3 | Alanine--tRNA ligase CDS | 2598 |
TRINITY_DN15837_c0_g1_Gene4 | Transporter CDS | 1077 |
Contig_FLE_D.nitens_12, length = 3517 bp, Coverage = 491 | ||
TRINITY_DN182530_c0_g1_Gene1 | Hypothetical protein CDS | 537 |
TRINITY_DN182530_c0_g1_Gene2 | rpIT CDS | 357 |
TRINITY_DN182530_c0_g1_Gene3 | 50S ribosomal protein L35 CDS | 199 |
TRINITY_DN182530_c0_g1_Gene4 | Translation initiation factor IF-3 CDS | 519 |
TRINITY_DN182530_c0_g1_Gene5 | Threonine--tRNA ligase CDS | 1905 |
Contig_FLE_D.nitens_13 length = 596 bp, Coverage = 3219 | ||
TRINITY_DN15777_c0_g1_Gene1 | Mechanosensitive ion channel protein MscS-Partial | 596 |
Total coverage | 12,515 |
Contig ID | Length | Coverage | Sequence Name | Blast Result | ||
---|---|---|---|---|---|---|
GenBank ID | e-Value | Name of Virus | ||||
Unclassified_Capsid_Protein_1 | 198 | 1 | TRINITY_DN36539_c0_g1 | QBQ65105.1 | 4.00 × 10−140 | Xinjiang Tick associated virus 2 |
Chuviridae_Glycoprotein_2 | 668 | 168 | TRINITY_DN179920_c0_g1 | YP_00917 7705.1 | 0 | Changping Tick Virus 2 |
Chuviridae_Polymerase_5 | 2156 | 355 | TRINITY_DN180002_c0_g1 | YP_009177704.1 | 0 | Changping Tick Virus 2 |
Rhabdoviridae_Nucleocapsid_3 | 524 | 4 | TRINITY_DN327528_c0_g1 | AUX13127.1 | 0 | American dog tick rhabdovirus 2 |
Rhabdoviridae_Polymerase_1 | 7061 | 218 | TRINITY_DN16706_c0_g1 | QDW81034.1 | 0 | Blanchseco virus |
TRINITY_DN399801_c0_g1 | QDW81033.1 | 0 | Blanchseco virus | |||
TRINITY_DN405583_c0_g1 | QDW81033.1 | 0 | Blanchseco virus | |||
TRINITY_DN31349_c0_g1 | QDW81033.1 | 0 | Blanchseco virus | |||
Flaviviridae_Polyprotein_6 | 5140 | 3374 | TRINITY_DN544_c0_g1 | UGM45976.1 | 0 | Flaviviridae sp. |
Total coverage | 4120 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holguin-Rocha, A.F.; Calle-Tobon, A.; Vásquez, G.M.; Astete, H.; Fisher, M.L.; Tobon-Castano, A.; Velez-Tobon, G.; Maldonado-Ruiz, L.P.; Silver, K.; Park, Y.; et al. Diversity of the Bacterial and Viral Communities in the Tropical Horse Tick, Dermacentor nitens, in Colombia. Pathogens 2023, 12, 942. https://doi.org/10.3390/pathogens12070942
Holguin-Rocha AF, Calle-Tobon A, Vásquez GM, Astete H, Fisher ML, Tobon-Castano A, Velez-Tobon G, Maldonado-Ruiz LP, Silver K, Park Y, et al. Diversity of the Bacterial and Viral Communities in the Tropical Horse Tick, Dermacentor nitens, in Colombia. Pathogens. 2023; 12(7):942. https://doi.org/10.3390/pathogens12070942
Chicago/Turabian StyleHolguin-Rocha, Andres F., Arley Calle-Tobon, Gissella M. Vásquez, Helvio Astete, Michael L. Fisher, Alberto Tobon-Castano, Gabriel Velez-Tobon, L. Paulina Maldonado-Ruiz, Kristopher Silver, Yoonseong Park, and et al. 2023. "Diversity of the Bacterial and Viral Communities in the Tropical Horse Tick, Dermacentor nitens, in Colombia" Pathogens 12, no. 7: 942. https://doi.org/10.3390/pathogens12070942
APA StyleHolguin-Rocha, A. F., Calle-Tobon, A., Vásquez, G. M., Astete, H., Fisher, M. L., Tobon-Castano, A., Velez-Tobon, G., Maldonado-Ruiz, L. P., Silver, K., Park, Y., & Londono-Renteria, B. (2023). Diversity of the Bacterial and Viral Communities in the Tropical Horse Tick, Dermacentor nitens, in Colombia. Pathogens, 12(7), 942. https://doi.org/10.3390/pathogens12070942