Impact of the Food-Related Stress Conditions on the Expression of Enterotoxin Genes among Staphylococcus aureus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains
2.2. Gene Prediction and ANI Analysis
2.3. Stress Determination
2.3.1. Osmotic Stress Treatment
2.3.2. Acidic and Alkaline Stress Treatment
2.4. Survival Analysis
2.4.1. Flow Cytometer Adjustment
2.4.2. Plate Count Method
2.5. RNA Extraction and Reverse Transcription
2.6. Real-Time PCR Analysis of Gene Expression
2.7. Statistical Analysis
3. Results
3.1. Characterization of S. aureus Strains
3.2. Survival Analysis
3.3. Expression of Enterotoxins Gene
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Homsombat, T.; Boonyayatra, S.; Awaiwanont, N.; Pichpol, D. Effect of temperature on the expression of classical enterotoxin genes among staphylococci associated with bovine mastitis. Pathogens 2021, 10, 975. [Google Scholar] [CrossRef]
- European Food Safety Authority; European Centre for Disease Prevention and Control. The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2019–2020. EFSA J. 2022, 20. [Google Scholar] [CrossRef]
- European Food Safety Authority; European Centre for Disease Prevention and Control. The European Union One Health 2021 Zoonoses Report. EFSA J. 2022, 20. [Google Scholar] [CrossRef]
- Szczuka, E.; Porada, K.; Wesołowska, M.; Łęska, B. Occurrence and Characteristics of Staphylococcus aureus isolated from dairy products. Molecules 2022, 27, 4649. [Google Scholar] [CrossRef]
- Johler, S.; Giannini, P.; Jermini, M.; Hummerjohann, J.; Baumgartner, A.; Stephan, R. Further evidence for staphylococcal food poisoning outbreaks caused by egc-Encoded enterotoxins. Toxins 2015, 7, 997–1004. [Google Scholar] [CrossRef]
- Hennekinne, J.A.; De Buyser, M.L.; Dragacci, S. Staphylococcus aureus and its food poisoning toxins: Characterization and outbreak investigation. FEMS Microbiol. Rev. 2012, 36, 815–836. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Zhu, A.; Tang, J.; Tang, C.; Chen, J.; Liu, J.; Zhao, Y.; Zhu, A. Identification and measurement of staphylococcal enterotoxin-like protein I (SEll) secretion from Staphylococcus aureus clinical isolate. J. Appl. Microbiol. 2016, 121, 539–546. [Google Scholar] [CrossRef] [PubMed]
- Abdeen, E.E.; Mousa, W.S.; Abdel Salam, S.Y.; Al-Maary, K.S.; Mubarak, A.S.; Moussa, I.M.; Hemeg, H.A.; Almuzaini, A.M.; Alajaji, A.I.; Alsubki, R.A.; et al. Antibiogram and phylogenetic diversity of enterotoxigenic Staphylococcus aureus strains from milk products and public health implications. Saudi J. Biol. Sci. 2020, 27, 1968–1974. [Google Scholar] [CrossRef]
- Benkerroum, N. Staphylococcal enterotoxins and enterotoxin-like toxins with special reference to dairy products: An overview. Crit. Rev. Food Sci. Nutr. 2018, 58, 1943–1970. [Google Scholar] [CrossRef]
- Pinchuk, I.V.; Beswick, E.J.; Reyes, V.E. Staphylococcal Enterotoxins. Toxins 2010, 2, 2177–2197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balaban, N.; Rasooly, A. Staphylococcal enterotoxins. Int. J. Food Microbiol. 2000, 61, 1–10. [Google Scholar] [CrossRef]
- Omoe, K.; Hu, D.L.; Ono, H.K.; Shimizu, S.; Takahashi-Omoe, H.; Nakane, A.; Uchiyama, T.; Shinagawa, K.; Imanishi, K. Emetic potentials of newly identified staphylococcal enterotoxin-like toxins. Infect. Immun. 2013, 81, 3627–3631. [Google Scholar] [CrossRef] [Green Version]
- Baumgartner, A.; Niederhauser, I.; Johler, S. Virulence and resistance gene profiles of staphylococcus aureus strains isolated from ready-to-eat foods. J. Food Prot. 2014, 77, 1232–1236. [Google Scholar] [CrossRef] [PubMed]
- Sihto, H.M.; Tasara, T.; Stephan, R.; Johler, S. Growth behavior and temporal enterotoxin D expression of Staphylococcus aureus strains under glucose and lactic acid stress. Food Control 2016, 62, 69–73. [Google Scholar] [CrossRef] [Green Version]
- Gajewska, J.; Chajęcka-Wierzchowska, W.; Zadernowska, A. Occurrence and Characteristics of Staphylococcus aureus Strains along the Production Chain of Raw Milk Cheeses in Poland. Molecules 2022, 27, 6569. [Google Scholar] [CrossRef]
- Lee, I.; Chalita, M.; Ha, S.M.; Na, S.I.; Yoon, S.H.; Chun, J. ContEst16S: An algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int. J. Syst. Evol. Microbiol. 2017, 67, 2053–2057. [Google Scholar] [CrossRef] [PubMed]
- Goris, J.; Konstantinidis, K.T.; Klappenbach, J.A.; Coenye, T.; Vandamme, P.; Tiedje, J.M. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int. J. Syst. Evol. Microbiol. 2007, 57, 81–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sihto, H.M.; Tasara, T.; Stephan, R.; Johler, S. Temporal expression of the staphylococcal enterotoxin D gene under NaCl stress conditions. FEMS Microbiol. Lett. 2015, 362, fnv024. [Google Scholar] [CrossRef]
- Zakrzewski, A.J.; Chajęcka-Wierzchowska, W.; Zadernowska, A. Ceviche-Natural Preservative: Possibility of Microbiota Survival and Effect on L. monocytogenes. Foods 2022, 11, 860. [Google Scholar] [CrossRef] [PubMed]
- Pfaffi Michael, W. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 2001, 29, 2069–2082. [Google Scholar]
- Leke, A.; Goudjil, S.; Mullie, C.; Grognet, S.; Biendo, M. PCR detection of staphylococcal enterotoxin genes and exfoliative toxin genes in methicillin-resistant and methicillin-susceptible Staphylococcus aureus strains from raw human breast milk. Clin. Nutr. Exp. 2017, 14, 26–35. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Ahn, J. Differential gene expression in planktonic and biofilm cells of multiple antibiotic-resistant Salmonella Typhimurium and Staphylococcus aureus. FEMS Microbiol. Lett. 2011, 325, 180–188. [Google Scholar] [CrossRef] [Green Version]
- Mørk, T.; Kvitle, B.; Mathisen, T.; Jørgensen, H.J. Bacteriological and molecular investigations of Staphylococcus aureus in dairy goats. Vet. Microbiol. 2010, 141, 134–141. [Google Scholar] [CrossRef]
- Şanlıbaba, P. Prevalence, antibiotic resistance, and enterotoxin production of Staphylococcus aureus isolated from retail raw beef, sheep, and lamb meat in Turkey. Int. J. Food Microbiol. 2022, 361, 109461. [Google Scholar] [CrossRef]
- Schelin, J.; Susilo, Y.B.; Johler, S. Expression of staphylococcal enterotoxins under stress encountered during food production and preservation. Toxins 2017, 9, 401. [Google Scholar] [CrossRef] [Green Version]
- Schwendimann, L.; Merda, D.; Berger, T.; Denayer, S.; Feraudet-Tarisse, C.; Kläui, A.J.; Messio, S.; Mistou, M.Y.; Nia, Y.; Hennekinne, J.A.; et al. Staphylococcal Enterotoxin Gene Cluster: Prediction of Enterotoxin (SEG and SEI) Production and of the Source of Food Poisoning on the Basis of vSaβ Typing. Appl. Environ. Microbiol. 2021, 87, e02662-20. [Google Scholar] [CrossRef] [PubMed]
- Johler, S.; Weder, D.; Bridy, C.; Huguenin, M.C.; Robert, L.; Hummerjohann, J.; Stephan, R. Outbreak of staphylococcal food poisoning among children and staff at a Swiss boarding school due to soft cheese made from raw milk. J. Dairy Sci. 2015, 98, 2944–2948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, K.L.; Khor, W.C.; Ong, K.H.; Timothy, L.; Aung, K.T. Occurrence and Patterns of Enterotoxin Genes, spa Types and Antimicrobial Resistance Patterns in Staphylococcus aureus in Food and Food Contact Surfaces in Singapore. Microorganisms 2023, 11, 1785. [Google Scholar] [CrossRef]
- Pader, V.; James, E.H.; Painter, K.L.; Wigneshweraraj, S.; Edwards, A.M. The agr quorum-sensing system regulates fibronectin binding but not hemolysis in the absence of a functional electron transport chain. Infect. Immun. 2014, 82, 4337–4347. [Google Scholar] [CrossRef] [Green Version]
- Le, K.Y.; Otto, M. Quorum-sensing regulation in staphylococci-an overview. Front. Microbiol. 2015, 6, 1174. [Google Scholar] [CrossRef] [Green Version]
- Carfora, V.; Caprioli, A.; Marri, N.; Sagrafoli, D.; Boselli, C.; Giacinti, G.; Giangolini, G.; Sorbara, L.; Dottarelli, S.; Battisti, A.; et al. Enterotoxin genes, enterotoxin production, and methicillin resistance in Staphylococcus aureus isolated from milk and dairy products in Central Italy. Int. Dairy J. 2015, 42, 12–15. [Google Scholar] [CrossRef] [Green Version]
- Bronner, S.; Monteil, H.; Prévost, G. Regulation of virulence determinants in Staphylococcus aureus: Complexity and applications. FEMS Microbiol. Rev. 2004, 28, 183–200. [Google Scholar] [CrossRef] [Green Version]
- Etter, D.; Ukowitz, C.; Eicher, C.; Tasara, T.; Johler, S. Mild NaCl Stress Influences Staphylococcal Enterotoxin C Transcription in a Time-Dependent Manner and Reduces Protein Expression. Front. Microbiol. 2022, 13, 820067. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.H.; Cho, T.J.; Rhee, M.S. Sodium Chloride Does Not Ensure Microbiological Safety of Foods: Cases and Solutions. Adv. Appl. Microbiol. 2017, 101, 1–47. [Google Scholar] [PubMed]
- Feng, Y.; Ming, T.; Zhou, J.; Lu, C.; Wang, R.; Su, X. The Response and Survival Mechanisms of Staphylococcus aureus under High Salinity Stress in Salted Foods. Foods 2022, 11, 1503. [Google Scholar] [CrossRef] [PubMed]
- Lopes, G.V.; Bastos, C.P.; da Silva, W.P. The effect of sodium chloride and temperature on the levels of transcriptional expression of staphylococcal enterotoxin genes in Staphylococcus aureus isolates from broiler carcasses. Brazilian J. Microbiol. 2021, 52, 2343–2350. [Google Scholar] [CrossRef]
- Genigeorgis, C.; Foda, M.S.; Mantis, A.; Sadler, W.W. Effect of sodium chloride and pH on enterotoxin C production. Appl. Microbiol. 1971, 21, 862–866. [Google Scholar] [CrossRef] [PubMed]
- Wallin-Carlquist, N.; Cao, R.; Márta, D.; Da Silva, A.S.A.; Schelin, J.; Rådström, P. Acetic acid increases the phage-encoded enterotoxin A expression in Staphylococcus aureus. BMC Microbiol. 2010, 10, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Susilo, Y.B.; Sihto, H.M.; Rådström, P.; Stephan, R.; Johler, S.; Schelin, J. Reduced enterotoxin D formation on boiled ham in staphylococcus aureus Δagr mutant. Toxins 2017, 9, 263. [Google Scholar] [CrossRef]
- Etter, D.; Büchel, R.; Patt, T.; Biggel, M.; Tasara, T.; Cernela, N.; Stevens, M.J.A.; Johler, S. Nitrite stress increases staphylococcal enterotoxin C transcription and triggers the SigB regulon. FEMS Microbiol. Lett. 2022, 369, fnac059. [Google Scholar] [CrossRef]
Gene | Primer Sequences | Size (bp) | References |
---|---|---|---|
sea | F: TTGGAAACGGTTAAAACGAA R: GAACCTTCCCATCAAAAACA | 120 | [21] |
seg | F: TTACAAAGCAAGACACTGGCTCA R: TCCAGATTCAAAYGCAGAACMAT | 73 | [22] |
sei | F: GGTAYCAATGATTTGATCTCAGAAT R: GTATTGTCCTGATAAAGTGGCC | 147 | |
selm | F: TCATATCGCAACCGCTGATGATG R: TCAGCWGTTACTGTCGAATTAT | 150 | |
seln | F: GATGAAGAGARAGTTATAGGCGT R: ATGTTACCGGTATCTTTATTGTAT | 167 | |
selo | F: GTGTAAGAAGTCAAGTGTAGAC R: CAGCAGATWTTCCATCTAACC | 163 | |
selu | F: AAAATATGGAGTTGTTGGAATGAAGTT R: TTCTCTTGGGCTTTAATGTTTGTTT | 201 | [23] |
selp | F: ATTTACAAAAAAAGTCTGAATTGCAGG R: TGGCGGTGTCTTTTGAACC | 201 | |
16S RNA | F: CCGCCTGGGGAGTACG R: AAGGGTTGCGCTCGTTGC | 240 | [24] |
Isolate Code | Source | ST Type | CC | spa Type | Enterotoxin Genes |
---|---|---|---|---|---|
35 G | cheese | ST 109 | CC1 | t693 | seg, sei, selm, seln, selo, selu |
36 G | curd | ST 7 | CC1 | t91 | selp |
39 G | swab-form | ST 109 | CC1 | t693 | seg, sei, selm, seln, selo, selu |
45 G | curd | ST 7 | - | t91 | selp |
47 G | swab | ST 5 | CC5 | t2 | sea, seg, sei, selm, seln, selo, selu |
pH = 4.5 | pH = 9.6 | NaCl | |||||||
---|---|---|---|---|---|---|---|---|---|
Isolate Code | L [%] | D [%] | CFU Reduction * [%] | L [%] | D [%] | CFU Reduction * [%] | L [%] | D [%] | CFU Reduction * [%] |
35 G | 74.17 | 25.83 | 26.8 | 95.73 | 4.27 | 5.21 | 94.56 | 5.44 | 6.25 |
36 G | 68.46 | 31.54 | 32.81 | 96.2 | 3.8 | 4.85 | 95.4 | 4.6 | 3.96 |
39 G | 67.64 | 32.36 | 31.95 | 95.82 | 4.18 | 3.95 | 92.62 | 7.38 | 8.17 |
45 G | 83.63 | 16.37 | 17.37 | 94.92 | 5.08 | 6.48 | 95.33 | 4.67 | 5.14 |
47 G | 71.3 | 28.7 | 33.3 | 95.74 | 4.26 | 5.81 | 96.03 | 3.97 | 4.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gajewska, J.; Zakrzewski, A.J.; Chajęcka-Wierzchowska, W.; Zadernowska, A. Impact of the Food-Related Stress Conditions on the Expression of Enterotoxin Genes among Staphylococcus aureus. Pathogens 2023, 12, 954. https://doi.org/10.3390/pathogens12070954
Gajewska J, Zakrzewski AJ, Chajęcka-Wierzchowska W, Zadernowska A. Impact of the Food-Related Stress Conditions on the Expression of Enterotoxin Genes among Staphylococcus aureus. Pathogens. 2023; 12(7):954. https://doi.org/10.3390/pathogens12070954
Chicago/Turabian StyleGajewska, Joanna, Arkadiusz Józef Zakrzewski, Wioleta Chajęcka-Wierzchowska, and Anna Zadernowska. 2023. "Impact of the Food-Related Stress Conditions on the Expression of Enterotoxin Genes among Staphylococcus aureus" Pathogens 12, no. 7: 954. https://doi.org/10.3390/pathogens12070954
APA StyleGajewska, J., Zakrzewski, A. J., Chajęcka-Wierzchowska, W., & Zadernowska, A. (2023). Impact of the Food-Related Stress Conditions on the Expression of Enterotoxin Genes among Staphylococcus aureus. Pathogens, 12(7), 954. https://doi.org/10.3390/pathogens12070954