Patterns, Cost, and Immunological Response of MDR vs. Non MDR-Bacteremia: A Prospective Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Study Population and Inclusion/Exclusion Criteria
2.3. Data Collection and Clinical Outcomes
2.4. Antimicrobial Resistance Pattern Definitions
2.5. Blood Sampling and Immunological Analysis
2.6. Statistical Methodology
3. Results
3.1. Cohort Characteristics
3.2. Disease Severity Is Associated with Presence of MDR Pathogens
3.3. Disease Severity Is Associated with Underlying Inflammatory Response
3.4. Inflammatory Response Varies between MDR and Non-MDR Bacteremias
3.5. Clinical Outcomes Are Worse in MDR Bacteremia
3.6. MDR Bacteremia Is an Independent Predictor of Mortality
3.7. Healthcare-Related Costs Are Higher in MDR Bacteremia
3.8. MDR Bacteremia Presents an Independent Predictor of Increased Healthcare-Related Cost
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Prestinaci, F.; Pezzotti, P.; Pantosti, A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog. Glob. Health 2015, 109, 309–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EclinicalMedicine. Antimicrobial resistance: A top ten global public health threat. eClinicalMedicine 2021, 41, 101221. [Google Scholar] [CrossRef]
- Cosgrove, S.E. The Relationship between Antimicrobial Resistance and Patient Outcomes: Mortality, Length of Hospital Stay, and Health Care Costs. Clin. Infect. Dis. 2006, 42, S82–S89. [Google Scholar] [CrossRef] [Green Version]
- Jahan, N.; Patton, T.; O’Keeffe, M. The Influence of Antibiotic Resistance on Innate Immune Responses to Staphylococcus aureus Infection. Antibiotics 2022, 11, 542. [Google Scholar] [CrossRef]
- Parker, D.; Ahn, D.; Cohen, T.; Prince, A. Innate Immune Signaling Activated by MDR Bacteria in the Airway. Physiol. Rev. 2015, 96, 19–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russell, L.; Pène, F.; Martin-Loeches, I. Multidrug-resistant bacteria in the grey shades of immunosuppression. Intensive Care Med. 2023, 49, 216–218. [Google Scholar] [CrossRef] [PubMed]
- Kreitmann, L.; Vasseur, M.; Jermoumi, S.; Perche, J.; Richard, J.-C.; Wallet, F.; Chabani, M.; Nourry, E.; Garçon, P.; Zerbib, Y.; et al. Relationship between immunosuppression and intensive care unit-acquired colonization and infection related to multidrug-resistant bacteria: A prospective multicenter cohort study. Intensive Care Med. 2023, 49, 154–165. [Google Scholar] [CrossRef]
- Handel, A.; Margolis, E.; Levin, B.R. Exploring the role of the immune response in preventing antibiotic resistance. J. Theor. Biol. 2009, 256, 655–662. [Google Scholar] [CrossRef] [Green Version]
- French, G.L. Clinical impact and relevance of antibiotic resistance. Adv. Drug Deliv. Rev. 2005, 57, 1514–1527. [Google Scholar] [CrossRef]
- Roca, I.; Akova, M.; Baquero, F.; Carlet, J.; Cavaleri, M.; Coenen, S.; Cohen, J.; Findlay, D.; Gyssens, I.; Heure, O.E.; et al. The global threat of antimicrobial resistance: Science for intervention. New Microbes New Infect. 2015, 6, 22–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Majumder, M.A.A.; Rahman, S.; Cohall, D.; Bharatha, A.; Singh, K.; Haque, M.; Gittens-St Hilaire, M. Antimicrobial Stewardship: Fighting Antimicrobial Resistance and Protecting Global Public Health. Infect. Drug Resist. 2020, 13, 4713–4738. [Google Scholar] [CrossRef] [PubMed]
- Rice, L.B. Antimicrobial Stewardship and Antimicrobial Resistance. Med. Clin. N. Am. 2018, 102, 805–818. [Google Scholar] [CrossRef]
- Hanberger, H.; Antonelli, M.; Holmbom, M.; Lipman, J.; Pickkers, P.; Leone, M.; Rello, J.; Sakr, Y.; Walther, S.M.; Vanhems, P.; et al. Infections, antibiotic treatment and mortality in patients admitted to ICUs in countries considered to have high levels of antibiotic resistance compared to those with low levels. BMC Infect. Dis. 2014, 14, 513. [Google Scholar] [CrossRef] [Green Version]
- Paramythiotou, E.; Routsi, C. Association between infections caused by multidrug-resistant gram-negative bacteria and mortality in critically ill patients. World J. Crit. Care Med. 2016, 5, 111–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blot, S.; Vandewoude, K.; De Bacquer, D.; Colardyn, F. Nosocomial bacteremia caused by antibiotic-resistant gram-negative bacteria in critically ill patients: Clinical outcome and length of hospitalization. Clin. Infect. Dis. 2002, 34, 1600–1606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kontula, K.S.K.; Skogberg, K.; Ollgren, J.; Jarvinen, A.; Lyytikainen, O. The outcome and timing of death of 17,767 nosocomial bloodstream infections in acute care hospitals in Finland during 1999–2014. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 945–952. [Google Scholar] [CrossRef] [Green Version]
- Serra-Burriel, M.; Keys, M.; Campillo-Artero, C.; Agodi, A.; Barchitta, M.; Gikas, A.; Palos, C.; Lopez-Casasnovas, G. Impact of multi-drug resistant bacteria on economic and clinical outcomes of healthcare-associated infections in adults: Systematic review and meta-analysis. PLoS ONE 2020, 15, e0227139. [Google Scholar] [CrossRef]
- Horvath, A.; Dobay, O.; Sahin-Toth, J.; Juhasz, E.; Pongracz, J.; Ivan, M.; Fazakas, E.; Kristof, K. Characterisation of antibiotic resistance, virulence, clonality and mortality in MRSA and MSSA bloodstream infections at a tertiary-level hospital in Hungary: A 6-year retrospective study. Ann. Clin. Microbiol. Antimicrob. 2020, 19, 17. [Google Scholar] [CrossRef]
- Recker, M.; Laabei, M.; Toleman, M.S.; Reuter, S.; Saunderson, R.B.; Blane, B.; Torok, M.E.; Ouadi, K.; Stevens, E.; Yokoyama, M.; et al. Clonal differences in Staphylococcus aureus bacteraemia-associated mortality. Nat. Microbiol. 2017, 2, 1381–1388. [Google Scholar] [CrossRef]
- Wu, H.P.; Chen, C.K.; Chung, K.; Tseng, J.C.; Hua, C.C.; Liu, Y.C.; Chuang, D.Y.; Yang, C.H. Serial cytokine levels in patients with severe sepsis. Inflamm. Res. 2009, 58, 385–393. [Google Scholar] [CrossRef]
- Bozza, F.A.; Salluh, J.I.; Japiassu, A.M.; Soares, M.; Assis, E.F.; Gomes, R.N.; Bozza, M.T.; Castro-Faria-Neto, H.C.; Bozza, P.T. Cytokine profiles as markers of disease severity in sepsis: A multiplex analysis. Crit. Care 2007, 11, R49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oberholzer, A.; Souza, S.M.; Tschoeke, S.K.; Oberholzer, C.; Abouhamze, A.; Pribble, J.P.; Moldawer, L.L. Plasma cytokine measurements augment prognostic scores as indicators of outcome in patients with severe sepsis. Shock 2005, 23, 488–493. [Google Scholar] [PubMed]
- Lymperopoulou, K.; Velissaris, D.; Kotsaki, A.; Antypa, E.; Georgiadou, S.; Tsaganos, T.; Koulenti, D.; Paggalou, E.; Damoraki, G.; Karagiannidis, N.; et al. Angiopoietin-2 associations with the underlying infection and sepsis severity. Cytokine 2015, 73, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Giamarellos-Bourboulis, E.J.; Koussoulas, V.; Panagou, C.; Adamis, T.; Baziaka, F.; Skiadas, I.; Perrea, D.; Dionyssiou-Asteriou, A.; Giamarellou, H. Experimental sepsis using Pseudomonas aeruginosa: The significance of multi-drug resistance. Int. J. Antimicrob. Agents 2004, 24, 357–361. [Google Scholar] [CrossRef]
- Karamouzos, V.; Giamarellos-Bourboulis, E.J.; Velissaris, D.; Gkavogianni, T.; Gogos, C. Cytokine production and outcome in MDR versus non-MDR gram-negative bacteraemia and sepsis. Infect. Dis. 2021, 53, 764–771. [Google Scholar] [CrossRef]
- Naik, P.; Singh, S.; Rudraprasad, D.; Dave, V.P.; Kumar, A.; Joseph, J. Multidrug-Resistant Pseudomonas aeruginosa Triggers Differential Inflammatory Response in Patients with Endophthalmitis. Transl. Vis. Sci. Technol. 2021, 10, 26. [Google Scholar] [CrossRef]
- Gomez-Zorrilla, S.; Morandeira, F.; Castro, M.J.; Tubau, F.; Periche, E.; Canizares, R.; Dominguez, M.A.; Ariza, J.; Pena, C. Acute Inflammatory Response of Patients with Pseudomonas aeruginosa Infections: A Prospective Study. Microb. Drug Resist. 2017, 23, 523–530. [Google Scholar] [CrossRef]
- Tam, V.H.; Perez, C.; Ledesma, K.R.; Lewis, R.E. Transcriptional profiles of pulmonary innate immune responses to isogenic antibiotic-susceptible and multidrug-resistant Pseudomonas aeruginosa. Microbiol. Immunol. 2018, 62, 291–294. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Hu, C.; Wang, Z.; Kong, H.; Xie, W.; Wang, H. Serum IL-1beta and IL-18 correlate with ESR and CRP in multidrug-resistant tuberculosis patients. J. Biomed. Res. 2015, 29, 426–428. [Google Scholar] [CrossRef] [Green Version]
- Kannian, P.; Ashwini, V.; Suchithra, S.B.; Sindu, K.B. Elevated urinary IL-1beta levels in multidrug resistant Escherichia coli and Klebsiella infections. Inflamm. Res. 2020, 69, 11–13. [Google Scholar] [CrossRef]
- Zhou, Z.; Ren, J.; Liu, H.; Gu, G.; Li, J. Pandrug-resistant isolate of Klebsiella pneumoniae causes less damage than drug-susceptible isolates in a rabbit model. Clin. Investig. Med. 2011, 34, E38–E44. [Google Scholar] [CrossRef] [Green Version]
- Basingnaa, A.; Antwi-Baffour, S.; Nkansah, D.O.; Afutu, E.; Owusu, E. Plasma Levels of Cytokines (IL-10, IFN-gamma and TNF-alpha) in Multidrug Resistant Tuberculosis and Drug Responsive Tuberculosis Patients in Ghana. Diseases 2018, 7, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breen, E.C.; Rezai, A.R.; Nakajima, K.; Beall, G.N.; Mitsuyasu, R.T.; Hirano, T.; Kishimoto, T.; Martinez-Maza, O. Infection with HIV is associated with elevated IL-6 levels and production. J. Immunol. 1990, 144, 480–484. [Google Scholar] [CrossRef]
- Havlir, D.V.; Torriani, F.J.; Schrier, R.D.; Huang, J.Y.; Lederman, M.M.; Chervenak, K.A.; Boom, W.H. Serum interleukin-6 (IL-6), IL-10, tumor necrosis factor (TNF) alpha, soluble type II TNF receptor, and transforming growth factor beta levels in human immunodeficiency virus type 1-infected individuals with Mycobacterium avium complex disease. J. Clin. Microbiol. 2001, 39, 298–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Havell, E.A.; Sehgal, P.B. Tumor necrosis factor-independent IL-6 production during murine listeriosis. J. Immunol. 1991, 146, 756–761. [Google Scholar] [CrossRef] [PubMed]
- Patton, T.; Jiang, J.H.; Lundie, R.J.; Bafit, M.; Gao, W.; Peleg, A.Y.; O’Keeffe, M. Daptomycin-resistant Staphylococcus aureus clinical isolates are poorly sensed by dendritic cells. Immunol. Cell Biol. 2020, 98, 42–53. [Google Scholar] [CrossRef]
- Thurlow, L.R.; Hanke, M.L.; Fritz, T.; Angle, A.; Aldrich, A.; Williams, S.H.; Engebretsen, I.L.; Bayles, K.W.; Horswill, A.R.; Kielian, T. Staphylococcus aureus biofilms prevent macrophage phagocytosis and attenuate inflammation in vivo. J. Immunol. 2011, 186, 6585–6596. [Google Scholar] [CrossRef] [Green Version]
- Akinosoglou, K.; Davoulos, C.; deLastic, A.L.; Kolosaka, M.; Niarou, V.; Theodoraki, S.; Ziazias, D.; Kosmopoulou, F.; Koutsouri, C.P.; Gogos, C. Managing hospitalized patients with bacterial infections: The price-to-pay upon site of infection. Rural. Remote Health 2022, 22, 6347. [Google Scholar] [CrossRef]
- Akinosoglou, K.; Koutsouri, C.P.; deLastic, A.L.; Kolosaka, M.; Davoulos, C.; Niarou, V.; Kosmopoulou, F.; Ziazias, D.; Theodoraki, S.; Gogos, C. Patterns, price and predictors of successful empiric antibiotic therapy in a real-world setting. J. Clin. Pharm. Ther. 2021, 46, 846–852. [Google Scholar] [CrossRef]
- Ventola, C.L. The antibiotic resistance crisis: Part 1: Causes and threats. P T 2015, 40, 277–283. [Google Scholar]
- Lushniak, B.D. Antibiotic resistance: A public health crisis. Public Health Rep. 2014, 129, 314–316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartlett, J.G.; Gilbert, D.N.; Spellberg, B. Seven ways to preserve the miracle of antibiotics. Clin. Infect. Dis. 2013, 56, 1445–1450. [Google Scholar] [CrossRef] [PubMed]
- Nelson, R.E.; Hatfield, K.M.; Wolford, H.; Samore, M.H.; Scott, R.D.; Reddy, S.C.; Olubajo, B.; Paul, P.; Jernigan, J.A.; Baggs, J. National Estimates of Healthcare Costs Associated with Multidrug-Resistant Bacterial Infections Among Hospitalized Patients in the United States. Clin. Infect. Dis. 2021, 72, S17–S26. [Google Scholar] [CrossRef] [PubMed]
- OECD. Stemming the Superbug Tide; OECD Health Policy Studies; OECD Publishing: Paris, France, 2018. [Google Scholar] [CrossRef]
Parameters | Non-MDR (n = 53) | MDR (n = 63) | p-Value |
---|---|---|---|
Age (years) | 72 (60–83) | 72 (59–83) | 0.78 |
Male Sex (%) | 32 (60.4) | 39 (61.9) | 0.86 |
BMI (kg/m2) | 24.9 (23.4–26) | 24.8 (23–25.7) | 0.81 |
CCI Score | 5 (3–6) | 5 (4–7) | 0.016 |
Hospital Acquired (%) | 12 (22.6) | 36 (57.1) | <0.001 |
Isolated pathogen | |||
Gram (+) (%) | 18 (34) | 21 (33.3) | 0.94 |
Gram (−) (%) | 35 (66) | 42 (66.7) | 0.94 |
Staphylococci (%) | 10 (18.9) | 15 (23.8) | 0.51 |
Enterobacterales (%) | 24 (45.3) | 19 (30.2) | 0.09 |
Pseudomonas aeruginosa (%) | 9 (17) | 8 (12.7) | 0.51 |
Clinical Severity | |||
SOFA Score | 4 (2–5) | 5 (3–7) | 0.049 |
APACHE II Score | 14 (10–17) | 17 (13–21) | 0.005 |
SAPS II Score | 33 (27–40) | 37 (29–46) | 0.14 |
Septic Shock (%) | 2 (3.8) | 11 (17.5) | 0.02 |
AKI (%) | 9 (17) | 4 (6.3) | 0.07 |
Laboratory Values | |||
WBC (×103/µL) | 13,620 (8805–15,960) | 9940 (4740–15,090) | 0.036 |
PMN (%) | 81.9 (78.1–90.2) | 82.2 (69–89.9) | 0.12 |
Lymph (%) | 7.5 (5.05–13.35) | 10.6 (4.6–15.75) | 0.22 |
Mono (%) | 5.7 (2.95–8.35) | 6.7 (3–9.2) | 0.44 |
ESR (mm/h) | 70 (49.25–102.25) | 80 (46–104.5) | 0.6 |
CRP (mg/L) | 19.05 (9.78–29.52) | 10.7 (7.44–23.3) | 0.12 |
Immunoglobulins (g/L) | 2.94 (2.5–3.4) | 2.7 (2.42–3.1) | 0.24 |
Inflammatory response | |||
IL-1β (pg/mL) | 1.45 (0.58–2.21) | 1.42 (0.8–2.25) | 0.86 |
IL-6 (pg/mL) | 56.1 (31.48–106.55) | 73.79 (27.55–223.9) | 0.19 |
IL-8 (pg/mL) | 123.5 (52.34–227.45) | 131.7 (71.43–210.35) | 0.59 |
IL-10 (pg/mL) | 3.19 (1.6–5.8) | 3.89 (1.58–7.58) | 0.44 |
IL-12p70 (pg/mL) | 2.61 (2.11–4.35) | 3.68 (2.38–4.68) | 0.052 |
TNF-a (pg/mL) | 1.52 (1.08–4.42) | 3.91 (1.41–4.96) | 0.03 |
Clinical Outcomes | |||
Treatment success (%) | 20 (37.7) | 14 (22.2) | 0.06 |
Change of Antibiotic Therapy (%) | 18 (34) | 23 (36.5) | 0.77 |
Surgery (%) | 6 (11.3) | 1 (1.6) | 0.028 |
Death (%) | 9 (17) | 25 (39.7) | 0.007 |
Length of Stay (Days) | 13 (8–24) | 19 (9–32) | 0.06 |
Hospitalization-associated Costs | |||
Antibiotic Cost (Euro) | 498.4 (201–1457) | 1571 (592–4599) | <0.001 |
Hospitalization Cost (Euro) | 2150 (1421–3710) | 3840 (1574–6698) | 0.078 |
Total Cost (Euro) | 2843.5 (1721–5165) | 4791 (2194–12,468) | 0.005 |
|
Variable | Odds Ratio | 95% Confidence Interval | p-Value | Adjusted Odds Ratio | 95% Confidence Interval | p-Value |
---|---|---|---|---|---|---|
Age | 1.019 | 0.991–1.047 | 0.182 | |||
Sex | 1.368 | 0.607–3.084 | 0.449 | |||
Hospital-acquired | 1.950 | 0.868–4.382 | 0.106 | |||
BMI | 1.035 | 0.896–1.194 | 0.642 | |||
MDR | 3.216 | 1.338–7.730 | 0.009 | 2.74 | 1.09–6.85 | 0.031 |
CCI | 1.328 | 1.095–1.611 | 0.004 | 1.26 | 1.02–1.55 | 0.032 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schinas, G.; Skintzi, K.; De Lastic, A.-L.; Rodi, M.; Gogos, C.; Mouzaki, A.; Akinosoglou, K. Patterns, Cost, and Immunological Response of MDR vs. Non MDR-Bacteremia: A Prospective Cohort Study. Pathogens 2023, 12, 1044. https://doi.org/10.3390/pathogens12081044
Schinas G, Skintzi K, De Lastic A-L, Rodi M, Gogos C, Mouzaki A, Akinosoglou K. Patterns, Cost, and Immunological Response of MDR vs. Non MDR-Bacteremia: A Prospective Cohort Study. Pathogens. 2023; 12(8):1044. https://doi.org/10.3390/pathogens12081044
Chicago/Turabian StyleSchinas, Georgios, Katerina Skintzi, Anne-Lise De Lastic, Maria Rodi, Charalambos Gogos, Athanasia Mouzaki, and Karolina Akinosoglou. 2023. "Patterns, Cost, and Immunological Response of MDR vs. Non MDR-Bacteremia: A Prospective Cohort Study" Pathogens 12, no. 8: 1044. https://doi.org/10.3390/pathogens12081044
APA StyleSchinas, G., Skintzi, K., De Lastic, A. -L., Rodi, M., Gogos, C., Mouzaki, A., & Akinosoglou, K. (2023). Patterns, Cost, and Immunological Response of MDR vs. Non MDR-Bacteremia: A Prospective Cohort Study. Pathogens, 12(8), 1044. https://doi.org/10.3390/pathogens12081044