Evaluating Alterations of the Oral Microbiome and Its Link to Oral Cancer among Betel Quid Chewers: Prospecting Reversal through Probiotic Intervention
Abstract
:1. Introduction
2. Betel Quid and Oral Cancer Prevalence
3. Multifaceted Effects of Betel Quid Components in Oral Carcinogenesis
4. The Human Oral Microbiome, Dysbiosis, and Oral Cancer Development
5. Approach for the Reversal of Oral Microbiome Dysbiosis
6. Conclusions and Future Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA. Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Mathur, P.; Sathishkumar, K.; Chaturvedi, M.; Das, P.; Sudarshan, K.L.; Santhappan, S.; Nallasamy, V.; John, A.; Narasimhan, S.; Roselind, F.S.; et al. Cancer Statistics, 2020: Report From National Cancer Registry Programme, India. JCO Glob. Oncol. 2020, 6, 1063–1075. [Google Scholar] [CrossRef] [PubMed]
- Papke, R.; Horenstein, N.; Stokes, C. Nicotinic Activity of Arecoline, the Psychoactive Element of “Betel Nuts”, Suggests a Basis for Habitual Use and Anti-Inflammatory Activity. PLoS One 2015, 10, e0140907. [Google Scholar] [CrossRef] [PubMed]
- Jeng, J.H.; Chang, M.C.; Hahn, L.J. Role of Areca Nut in Betel Quid-Associated Chemical Carcinogenesis: Current Awareness and Future Perspectives. Oral Oncol. 2001, 37, 477–492. [Google Scholar] [CrossRef] [PubMed]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Betel-Quid and Areca-Nut Chewing and Some Areca-Nut-Derived N-Nitrosamines. IARC Monogr. Eval. Carcinog. Risks to Humans 2004, 85, 1. [Google Scholar]
- Ko, A.M.-S.; Tu, H.-P.; Ko, Y.-C. Systematic Review of Roles of Arecoline and Arecoline N-Oxide in Oral Cancer and Strategies to Block Carcinogenesis. Cells 2023, 12, 1208. [Google Scholar] [CrossRef]
- Chang, M.C.; Ho, Y.S.; Lee, J.J.; Kok, S.H.; Hahn, L.J.; Jeng, J.H. Prevention of the Areca Nut Extract-Induced Unscheduled DNA Synthesis of Gingival Keratinocytes by Vitamin C and Thiol Compounds. Oral Oncol. 2002, 38, 258–265. [Google Scholar] [CrossRef]
- Radoï, L.; Luce, D. A Review of Risk Factors for Oral Cavity Cancer: The Importance of a Standardized Case Definition. Community Dent. Oral Epidemiol. 2013, 41, 97–109. [Google Scholar] [CrossRef]
- Ko, A.M.S.; Lee, C.H.; Ko, Y.C. Betel Quid–Associated Cancer: Prevention Strategies and Targeted Treatment. Cancer Lett. 2020, 477, 60–69. [Google Scholar] [CrossRef]
- Srivastava, S.; Ghosh, S.; Kagan, J.; Mazurchuk, R.; Boja, E.; Chuaqui, R.; Chavarria-Johnson, E.; Davidsen, T.; Eary, J.; Haim, T.; et al. The Making of a PreCancer Atlas: Promises, Challenges, and Opportunities. Trends in Cancer 2019, 5, 263. [Google Scholar] [CrossRef]
- Avinash Tejasvi, M.; Anulekha, C.; Afroze, M.; Shenai, K.; Chatra, L.; Bhayya, H. A Correlation between Oral Mucosal Lesions and Various Quid-Chewing Habit Patterns: A Cross-Sectional Study. J. Cancer Res. Ther. 2019, 15, 620. [Google Scholar] [CrossRef]
- Shah, N.; Sharma, P.P. Role of Chewing and Smoking Habits in the Etiology of Oral Submucous Fibrosis (OSF): A Case-Control Study. J. Oral Pathol. Med. 1998, 27, 475–479. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.C.; Chiang, C.P.; Lin, C.L.; Lee, J.J.; Hahn, L.J.; Jeng, J.H. Cell-Mediated Immunity and Head and Neck Cancer: With Special Emphasis on Betel Quid Chewing Habit. Oral Oncol. 2005, 41, 757–775. [Google Scholar] [CrossRef] [PubMed]
- Cheng, R.H.; Wang, Y.P.; Chang, J.Y.F.; Pan, Y.H.; Chang, M.C.; Jeng, J.H. Genetic Susceptibility and Protein Expression of Extracellular Matrix Turnover-Related Genes in Oral Submucous Fibrosis. Int. J. Mol. Sci. 2020, 21, 8104. [Google Scholar] [CrossRef] [PubMed]
- Shih, Y.-H.; Wang, T.-H.; Shieh, T.-M.; Tseng, Y.-H. Oral Submucous Fibrosis: A Review on Etiopathogenesis, Diagnosis, and Therapy. Int. J. Mol. Sci. 2019, Vol. 20, Page 2940 2019, 20, 2940. [Google Scholar] [CrossRef] [Green Version]
- Bewley, A.F.; Farwell, D.G. Oral Leukoplakia and Oral Cavity Squamous Cell Carcinoma. Clin. Dermatol. 2017, 35, 461–467. [Google Scholar] [CrossRef]
- Sulyanto, R.M.; Thompson, Z.A.; Beall, C.J.; Leys, E.J.; Griffen, A.L. The Predominant Oral Microbiota Is Acquired Early in an Organized Pattern. Sci. Rep. 2019, 9, 10550. [Google Scholar] [CrossRef] [Green Version]
- Ji, W.T.; Chuang, Y.C.; Chen, H.P.; Lee, C.C.; Chen, J.Y.F.; Yang, S.R.; Chen, J.H.; Wang, C.J.; Chen, H.R. Areca Nut Extracts Exert Different Effects in Oral Cancer Cells Depending on Serum Concentration: A Clue to the Various Oral Alterations in Betel Quid Chewers. Toxicol. Reports 2014, 1, 1087–1095. [Google Scholar] [CrossRef]
- Lee, W.-H.; Chen, H.-M.; Yang, S.-F.; Liang, C.; Peng, C.-Y.; Lin, F.-M.; Tsai, L.-L.; Wu, B.-C.; Hsin, C.-H.; Chuang, C.-Y.; et al. Bacterial Alterations in Salivary Microbiota and Their Association in Oral Cancer. Sci. Rep. 2017, 7, 16540. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.J.; Muthukumaran, R.B.; Chen, J.L.; Chang, H.Y.; Hung, Y.C.; Hu, C.W.; Chao, M.R. Simultaneous Determination of Areca Nut- and Tobacco-Specific Alkaloids in Saliva by LC-MS/MS: Distribution and Transformation of Alkaloids in Oral Cavity. J. Hazard. Mater. 2022, 426, 128116. [Google Scholar] [CrossRef]
- Siqueira, J.F.; Rôças, I.N. The Oral Microbiota in Health and Disease: An Overview of Molecular Findings. Methods Mol. Biol. 2017, 1537, 127–138. [Google Scholar] [CrossRef]
- Burcham, Z.M.; Garneau, N.L.; Comstock, S.S.; Tucker, R.M.; Knight, R.; Metcalf, J.L.; Miranda, A.; Reinhart, B.; Meyers, D.; Woltkamp, D.; et al. Patterns of Oral Microbiota Diversity in Adults and Children: A Crowdsourced Population Study. Sci. Rep. 2020, 10, 2133. [Google Scholar] [CrossRef] [Green Version]
- Bahuguna, M.; Hooda, S.; Mohan, L.; Gupta, R.K.; Diwan, P. Identifying Oral Microbiome Alterations in Adult Betel Quid Chewing Population of Delhi, India. PLoS One 2023, 18, e0278221. [Google Scholar] [CrossRef] [PubMed]
- Chattopadhyay, I.; Verma, M.; Panda, M. Role of Oral Microbiome Signatures in Diagnosis and Prognosis of Oral Cancer. Technol. Cancer Res. Treat. 2019, 18, 153303381986735. [Google Scholar] [CrossRef] [Green Version]
- Perera, M.; Al-hebshi, N.N.; Speicher, D.J.; Perera, I.; Johnson, N.W. Emerging Role of Bacteria in Oral Carcinogenesis: A Review with Special Reference to Perio-Pathogenic Bacteria. J. Oral Microbiol. 2016, 8, 32762. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, N.; Nyvad, B. The Role of Bacteria in the Caries Process: Ecological Perspectives. J. Dent. Res. 2011, 90, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Socransky, S.S.; Haffajee, A.D.; Cugini, M.A.; Smith, C.; Kent, R.L. Microbial Complexes in Subgingival Plaque. J. Clin. Periodontol. 1998, 25, 134–144. [Google Scholar] [CrossRef]
- Al-hebshi, N.N.; Al-Alimi, A.; Taiyeb-Ali, T.; Jaafar, N. Quantitative Analysis of Classical and New Putative Periodontal Pathogens in Subgingival Biofilm: A Case–Control Study. J. Periodontal Res. 2015, 50, 320–329. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.-W.; Wu, G.-H.; Lee, B.-S.; Liu, C.-T.; Li, H.-Y.; Cheng, S.-J.; Kuo, W.-T.; Jeng, J.-H.; Chang, P.-C.; Lin, C.-P.; et al. Third-Generation Sequencing-Selected Scardovia Wiggsiae Promotes Periodontitis Progression in Mice. J. Periodontal Res. 2023, 58, 155–164. [Google Scholar] [CrossRef]
- Homann, N.; Tillonen, J.; Meurman, J.H.; Rintamäki, H.; Lindqvist, C.; Rautio, M.; Jousimies-Somer, H.; Salaspuro, M. Increased Salivary Acetaldehyde Levels in Heavy Drinkers and Smokers: A Microbiological Approach to Oral Cavity Cancer. Carcinogenesis 2000, 21, 663–668. [Google Scholar] [CrossRef]
- Gaonkar, P.P.; Patankar, S.R.; Tripathi, N.; Sridharan, G. Oral Bacterial Flora and Oral Cancer: The Possible Link? J. Oral Maxillofac. Pathol. 2018, 22, 234–238. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Liu, Y.; Zheng, H.J.; Zhang, C.P. The Oral Microbiota May Have Influence on Oral Cancer. Front. Cell. Infect. Microbiol. 2020, 9, 476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- la Rosa, G.R.M.; Gattuso, G.; Pedullà, E.; Rapisarda, E.; Nicolosi, D.; Salmeri, M. Association of Oral Dysbiosis with Oral Cancer Development (Review). Oncol. Lett. 2020, 19, 3045–3058. [Google Scholar] [CrossRef] [PubMed]
- Chocolatewala, N.; Chaturvedi, P.; Desale, R. The Role of Bacteria in Oral Cancer. Indian J. Med. Paediatr. Oncol. 2010, 31, 126–131. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, P.K.; Wang, H.; Retuerto, M.; Zhang, H.; Burkey, B.; Ghannoum, M.A.; Eng, C.; Mukherjee, P.K.; Wang, H.; Retuerto, M.; et al. Bacteriome and Mycobiome Associations in Oral Tongue Cancer. Oncotarget 2017, 8, 97273–97289. [Google Scholar] [CrossRef] [Green Version]
- Guerrero-Preston, R.; Godoy-Vitorino, F.; Jedlicka, A.; Rodríguez-Hilario, A.; González, H.; Bondy, J.; Lawson, F.; Folawiyo, O.; Michailidi, C.; Dziedzic, A.; et al. 16S RRNA Amplicon Sequencing Identifies Microbiota Associated with Oral Cancer, Human Papilloma Virus Infection and Surgical Treatment. Oncotarget 2016, 7, 51320–51334. [Google Scholar] [CrossRef] [Green Version]
- Amtha, R.; Razak, I.A.; Basuki, B.; Roeslan, B.O.; Gautama, W.; Puwanto, D.J.; Ghani, W.M.N.; Zain, R.B. Tobacco (Kretek) Smoking, Betel Quid Chewing and Risk of Oral Cancer in a Selected Jakarta Population. Asian Pac. J. Cancer Prev. 2014, 15, 8673–8678. [Google Scholar] [CrossRef]
- Alavanja, M.; Baron, J.A.; Brownson, R.C.; Buffler, P.A.; DeMarini, D.M.; Djordjevic, M.V.; Doll, R.; Fontham, E.T.H.; Gao, Y.T.; Gray, N.; et al. Tobacco Smoke and Involuntary Smoking. In Proceedings of the IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; IARC Press: Lyon, France, 2004; Volume 83, pp. 1–1413. [Google Scholar]
- Benegal, V.; Rajkumar, R.P.; Muralidharan, K. Does Areca Nut Use Lead to Dependence? Drug Alcohol Depend. 2008, 97, 114–121. [Google Scholar] [CrossRef]
- Lee, C.H.; Ko, A.M.S.; Yen, C.F.; Chu, K.S.; Gao, Y.J.; Warnakulasuriya, S.; Sunarjo; Ibrahim, S.O.; Zain, R.B.; Patrick, W.K.; et al. Betel-Quid Dependence and Oral Potentially Malignant Disorders in Six Asian Countries. Br. J. Psychiatry 2012, 201, 383–391. [Google Scholar] [CrossRef] [Green Version]
- Bhat, S.K.; Ashwin, D.; Mythri, S.; Bhat, S. Betel Nut Chewing and Human Health: Certain Glaring Lacunae in Research. JDMS IOSR 2018, 17, 09–15. [Google Scholar]
- Tirupathi, R.G.; Suresh, B.K.; Kumar, J.U.; Sujana, P.; Rao, A.V.; Sreedhar, A.S. Anti-Microbial Principles of Selected Remedial Plants from Southern India. Asian Pac. J. Trop. Biomed. 2011, 1, 298–305. [Google Scholar] [CrossRef] [Green Version]
- Chu, N.S. Neurological Aspects of Areca and Betel Chewing. Addict. Biol. 2002, 7, 111–114. [Google Scholar] [CrossRef] [PubMed]
- Petti, S.; Masood, M.; Scully, C. The Magnitude of Tobacco Smoking-Betel Quid Chewing-Alcohol Drinking Interaction Effect on Oral Cancer in South-East Asia. A Meta-Analysis of Observational Studies. PLoS One 2013, 8, e78999. [Google Scholar] [CrossRef]
- Sharan, R.N.; Mehrotra, R.; Choudhury, Y.; Asotra, K. Association of Betel Nut with Carcinogenesis: Revisit with a Clinical Perspective. PLoS One 2012, 7, e42759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, X.; Lu, Q.; Zhang, Q.; He, Y.; Wei, W.; Wang, Y. Oral Microbiota Alteration Associated with Oral Cancer and Areca Chewing. Oral Dis. 2021, 27, 226–239. [Google Scholar] [CrossRef] [PubMed]
- Reddy, D.I.; Narayana, M.L.; Viswambharan, V.; Chaithanya, N.R. Betel Quid and Tobacco Chewing Habits and Its Associated Clinical Findings in a Rural Tertiary Care Hospital. Int. J. Otorhinolaryngol. Head Neck Surg. 2020, 6, 732. [Google Scholar] [CrossRef]
- Rehan, A.D.; Shafi Dar, M.; George, J.J.; Kausar, T.; Bhargava, A.; Saigal, S.; Einstein, A. Prevalence of Oral Potentially Malignant Disorders among Tobacco and Betel Quid Users in Lucknow. Int. J. Dent. Heal. Sci. 2017, 4, 444–452. [Google Scholar]
- Wu, Y.-H.; Yen, C.-J.; Hsiao, J.-R.; Ou, C.-Y.; Huang, J.-S.; Wong, T.-Y.; Tsai, S.-T.; Huang, C.-C.; Lee, W.-T.; Chen, K.-C.; et al. A Comprehensive Analysis on the Association between Tobacco-Free Betel Quid and Risk of Head and Neck Cancer in Taiwanese Men. PLoS One 2016, 11, e0164937. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Shen, M.; Xiong, J.; Yuan, Y.; Wu, X.; Gao, X.; Xu, J.; Guo, F.; Jian, X. Synergistic Effects of Betel Quid Chewing, Tobacco Use (in the Form of Cigarette Smoking), and Alcohol Consumption on the Risk of Malignant Transformation of Oral Submucous Fibrosis (OSF): A Case-Control Study in Hunan Province, China. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2015, 120, 337–345. [Google Scholar] [CrossRef]
- Bharali, M.K.; Arangham, G. Synergistic Effect of Betel Quid, Tobacco, and Alcohol in Cigarette Smoking Induced Micronuclei in a Population of Arunachal Pradesh, India. Hum. Ecol. Risk Assess. An Int. J. 2014, 20, 527–536. [Google Scholar] [CrossRef]
- Akhtar, S.; Sheikh, A.A.; Qureshi, H.U. Chewing Areca Nut, Betel Quid, Oral Snuff, Cigarette Smoking and the Risk of Oesophageal Squamous-Cell Carcinoma in South Asians: A Multicentre Case–Control Study. Eur. J. Cancer 2012, 48, 655–661. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.H.; Lee, K.W.; Fang, F.M.; Wu, D.C.; Shieh, T.Y.; Huang, H.L.; Chen, C.H.; Chen, P.H.; Chen, M.K.; Kuo, S.J.; et al. The Use of Tobacco-Free Betel-Quid in Conjunction with Alcohol/Tobacco Impacts Early-Onset Age and Carcinoma Distribution for Upper Aerodigestive Tract Cancer. J. Oral Pathol. Med. 2011, 40, 684–692. [Google Scholar] [CrossRef]
- Lin, W.-J.; Jiang, R.-S.; Wu, S.-H.; Chen, F.-J.; Liu, S.-A. Smoking, Alcohol, and Betel Quid and Oral Cancer: A Prospective Cohort Study. J. Oncol. 2011, 2011, 525976. [Google Scholar] [CrossRef] [PubMed]
- Amarasinghe, H.K.; Usgodaarachchi, U.S.; Johnson, N.W.; Lalloo, R.; Warnakulasuriya, S. Betel-Quid Chewing with or without Tobacco Is a Major Risk Factor for Oral Potentially Malignant Disorders in Sri Lanka: A Case-Control Study. Oral Oncol. 2010, 46, 297–301. [Google Scholar] [CrossRef]
- Tsai, K.-Y.; Su, C.-C.; Lian, I.-B. P3.74. Quantification of Betel Quid Chewing and Cigarette Smoking in Oral Cancer Patients. Oral Oncol. Suppl. 2009, 3, 226. [Google Scholar] [CrossRef]
- Kausar, A.; Giri, S.; Mazumdar, M.; Giri, A.; Roy, P.; Dhar, P. Micronucleus and Other Nuclear Abnormalities among Betel Quid Chewers with or without Sadagura, a Unique Smokeless Tobacco Preparation, in a Population from North-East India. Mutat. Res. Toxicol. Environ. Mutagen. 2009, 677, 72–75. [Google Scholar] [CrossRef]
- Lee, C.H.; Lee, J.M.; Wu, D.C.; Hsu, H.K.; Kao, E.L.; Huang, H.L.; Wang, T.N.; Huang, M.C.; Wu, M.T. Independent and Combined Effects of Alcohol Intake, Tobacco Smoking and Betel Quid Chewing on the Risk of Esophageal Cancer in Taiwan. Int. J. Cancer 2005, 113, 475–482. [Google Scholar] [CrossRef]
- Lee, C.H.; Ko, Y.C.; Huang, H.L.; Chao, Y.Y.; Tsai, C.C.; Shieh, T.Y.; Lin, L.M. The Precancer Risk of Betel Quid Chewing, Tobacco Use and Alcohol Consumption in Oral Leukoplakia and Oral Submucous Fibrosis in Southern Taiwan. Br. J. Cancer 2003, 88, 366–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balaram, P.; Sridhar, H.; Rajkumar, T.; Vaccarella, S.; Herrero, R.; Nandakumar, A.; Ravichandran, K.; Ramdas, K.; Sankaranarayanan, R.; Gajalakshmi, V.; et al. Oral Cancer in Southern India: The Influence of Smoking, Drinking, Paan-Chewing and Oral Hygiene. Int. J. Cancer 2002, 98, 440–445. [Google Scholar] [CrossRef]
- Merchant, A.; Husain, S.S.M.; Hosain, M.; Fikree, F.F.; Pitiphat, W.; Siddiqui, A.R.; Hayder, S.J.; Haider, S.M.; Chuang, S.-K.; Saeed, S.A. PAAN WITHOUT TOBACCO: AN INDEPENDENT RISK FACTOR FOR ORAL CANCER. South Asia. Int. J. Cancer 2000, 86, 128–131. [Google Scholar] [CrossRef]
- Ko, Y.-C.; Huang, Y.-L.; Lee, C.-H.; Chen, M.-J.; Lin, L.-M.; Tsai, C.-C. Betel Quid Chewing, Cigarette Smoking and Alcohol Consumption Related to Oral Cancer in Taiwan. J. Oral Pathol. Med. 1995, 24, 450–453. [Google Scholar] [CrossRef]
- van Wyk, C.W.; Stander, I.; Padayachee, A.; Grobler-Rabie, A.F. The Areca Nut Chewing Habit and Oral Squamous Cell Carcinoma in South African Indians. A Retrospective Study. S. Afr. Med. J. 1993, 83, 425–429. [Google Scholar] [PubMed]
- Tsai, Y.-S.; Lee, K.-W.; Huang, J.-L.; Liu, Y.-S.; Juo, S.-H.H.; Kuo, W.-R.; Chang, J.-G.; Lin, C.-S.; Jong, Y.-J. Arecoline, a Major Alkaloid of Areca Nut, Inhibits P53, Represses DNA Repair, and Triggers DNA Damage Response in Human Epithelial Cells. Toxicology 2008, 249, 230–237. [Google Scholar] [CrossRef] [PubMed]
- Chien, K.J.; Yang, M.L.; Tsai, P.K.; Su, C.H.; Chen, C.H.; Horng, C.T.; Yeh, C.H.; Chen, W.Y.; Lin, M.L.; Chen, C.J.; et al. Safrole Induced Cytotoxicity, DNA Damage, and Apoptosis in Macrophages via Reactive Oxygen Species Generation and Akt Phosphorylation. Environ. Toxicol. Pharmacol. 2018, 64, 94–100. [Google Scholar] [CrossRef]
- Jeng, J.H.; Kuo, M.L.; Hahn, L.J.; Kuo, M.Y. Genotoxic and Non-Genotoxic Effects of Betel Quid Ingredients on Oral Mucosal Fibroblasts in Vitro. J. Dent. Res. 1994, 73, 1043–1049. [Google Scholar] [CrossRef] [Green Version]
- Chang, M.C.; Uang, B.J.; Wu, H.L.; Lee, J.J.; Hahn, L.J.; Jeng, J.H. Inducing the Cell Cycle Arrest and Apoptosis of Oral KB Carcinoma Cells by Hydroxychavicol: Roles of Glutathione and Reactive Oxygen Species. Br. J. Pharmacol. 2002, 135, 619–630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shieh, D.H.; Chiang, L.C.; Lee, C.H.; Yang, Y.H.; Shieh, T.Y. Effects of Arecoline, Safrole, and Nicotine on Collagen Phagocytosis by Human Buccal Mucosal Fibroblasts as a Possible Mechanism for Oral Submucous Fibrosis in Taiwan. J. Oral Pathol. Med. 2004, 33, 581–587. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-C.; Yin, P.-H.; Yu, T.-N.; Chang, Y.-D.; Hsu, W.-C.; Kao, S.-Y.; Chi, C.-W.; Liu, T.-Y.; Wei, Y.-H. Accumulation of Mitochondrial DNA Deletions in Human Oral Tissues — Effects of Betel Quid Chewing and Oral Cancer. Mutat. Res. Toxicol. Environ. Mutagen. 2001, 493, 67–74. [Google Scholar] [CrossRef]
- Cox, S.; Vickers, E.R.; Ghu, S.; Zoellner, H. Salivary Arecoline Levels during Areca Nut Chewing in Human Volunteers. J. Oral Pathol. Med. 2010, 39, 465–469. [Google Scholar] [CrossRef]
- Chung-Hung, T.; Shun-Fa, Y.; Yu-Chao, C. The Upregulation of Cystatin C in Oral Submucous Fibrosis. Oral Oncol. 2007, 43, 680–685. [Google Scholar] [CrossRef]
- Giri, S.; Idle, J.R.; Chen, C.; Zabriskie, T.M.; Krausz, K.W.; Gonzalez, F.J. A Metabolomic Approach to the Metabolism of the Areca Nut Alkaloids Arecoline and Arecaidine in the Mouse. Chem. Res. Toxicol. 2006, 19, 818–827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Islam, S.; Muthumala, M.; Matsuoka, H.; Uehara, O.; Kuramitsu, Y.; Chiba, I.; Abiko, Y. How Each Component of Betel Quid Is Involved in Oral Carcinogenesis: Mutual Interactions and Synergistic Effects with Other Carcinogens—a Review Article. Curr. Oncol. Rep. 2019, 21, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Nair, U.J.; Obe, G.; Friesen, M.; Goldberg, M.T.; Bartsch, H. Role of Lime in the Generation of Reactive Oxygen Species from Betel-Quid Ingredients. Environ. Health Perspect. 1992, 98, 203–205. [Google Scholar] [CrossRef]
- Kumpawat, K.; Chatterjee, A. The Usefulness of Cytogenetic Parameters, Level of P53 Protein and Endogenous Glutathione as Intermediate End-Points in Raw Betel-Nut Genotoxicity. Hum. Exp. Toxicol. 2003, 22, 363–371. [Google Scholar]
- Nair, U.J.; Nair, J.; Friesen, M.D.; Bartsch, H.; Ohshima, H. Ortho- and Meta-Tyrosine Formation from Phenylalanine in Human Saliva as a Marker of Hydroxyl Radical Generation during Betel Quid Chewing. Carcinogenesis 1995, 16, 1195–1198. [Google Scholar] [CrossRef] [PubMed]
- Chang, P.Y.; Kuo, T.M.; Chen, P.K.; Lin, Y.Z.; Hua, C.H.; Chen, Y.C.; Ko, Y.C. Arecoline N-Oxide Upregulates Caspase-8 Expression in Oral Hyperplastic Lesions of Mice. J. Agric. Food Chem. 2017, 65, 10197–10205. [Google Scholar] [CrossRef]
- Kuo, T.M.; Nithiyanantham, S.; Lee, C.P.; Hsu, H.T.; Luo, S.Y.; Lin, Y.Z.; Yeh, K.T.; Ko, Y.C. Arecoline N-Oxide Regulates Oral Squamous Cell Carcinoma Development through NOTCH1 and FAT1 Expressions. J. Cell. Physiol. 2019, 234, 13984–13993. [Google Scholar] [CrossRef]
- Yost, S.; Stashenko, P.; Choi, Y.; Kukuruzinska, M.; Genco, C.A.; Salama, A.; Weinberg, E.O.; Kramer, C.D.; Frias-Lopez, J. Increased Virulence of the Oral Microbiome in Oral Squamous Cell Carcinoma Revealed by Metatranscriptome Analyses. Int. J. Oral Sci. 2018, 10, 32. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Chatra, L.; Prashanth, S.K.; Veena, K.M.; Rao, P.K. Pathogenesis of Oral Submucous Fibrosis. J. Cancer Res. Ther. 2012, 8, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Benn, A.M.L.; Heng, N.C.K.; Broadbent, J.M.; Thomson, W.M. Studying the Human Oral Microbiome: Challenges and the Evolution of Solutions. Aust. Dent. J. 2018, 63, 14–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hespell, R.B.; Paster, B.J.; Dewhirst, F.E. The Genus Selenomonas. In The Prokaryotes; Springer US: New York, NY, USA, 2006; Volume 130, pp. 982–990. [Google Scholar]
- Sandle, T. History and Development of Microbiological Culture Media. J. Inst. Sci. Technol. 2011, 10–14. [Google Scholar]
- Miller, W.D. The Micro-Organisms of the Human Mouth: The Local and General Diseases Which Are Caused by Them; S.S. White Dental Manufacturing Co.: Philadelphia, PA, USA, 1890. [Google Scholar]
- Clarke, J.K. On the Bacterial Factor in the Ætiology of Dental Caries. Br. J. Exp. Pathol. 1924, 5, 141–147. [Google Scholar]
- Paymaster, J.C. Cancer of the Buccal Mucosa.A Clinical Study of 650 Cases in Indian Patients. Cancer 1956, 9, 431–435. [Google Scholar] [CrossRef] [PubMed]
- Keyes, P.H. The Infectious and Transmissible Nature of Experimental Dental Caries. Arch. Oral Biol. 1960, 1, 304–320. [Google Scholar] [CrossRef] [PubMed]
- Alexander, M. Microbial Ecology; John Wiley& Sons, Inc.: New York, NY, USA, 1971. [Google Scholar]
- Costerton, J.W.; Cheng, K.J.; Geesey, G.G.; Ladd, T.I.; Nickel, J.C.; Dasgupta, M.; Marrie, T.J. Bacterial Biofilms in Nature and Disease. Annu. Rev. Microbiol. 1987, 41, 435–464. [Google Scholar] [CrossRef]
- Dymock, D.; Weightman, A.J.; Scully, C.; Wade, W.G. Molecular Analysis of Microflora Associated with Dentoalveolar Abscesses. J. Clin. Microbiol. 1996, 34, 537–542. [Google Scholar] [CrossRef]
- Joint FAO/WHO Working Group. Report on Drafting Guidelines for the Evaluation of Probiotics in Food. Cordoba, Argentina, 1–4 October 2001. Available online: https://www.mhlw.go.jp/file/05-Shingikai-11121000-Iyakushokuhinkyoku-Soumuka/0000197343.pdf (accessed on 18 December 2021).
- Gevers, D.; Knight, R.; Petrosino, J.F.; Huang, K.; McGuire, A.L.; Birren, B.W.; Nelson, K.E.; White, O.; Methé, B.A.; Huttenhower, C. The Human Microbiome Project: A Community Resource for the Healthy Human Microbiome. PLoS Biol. 2012, 10, e1001377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keijser, B.J.F.; Zaura, E.; Huse, S.M.; van der Vossen, J.M.B.M.; Schuren, F.H.J.; Montijn, R.C.; ten Cate, J.M.; Crielaard, W. Pyrosequencing Analysis of the Oral Microflora of Healthy Adults. J. Dent. Res. 2008, 87, 1016–1020. [Google Scholar] [CrossRef] [PubMed]
- Dewhirst, F.; Chen, T.; Izard, J.; Paster, B.; Tanner, A.; Yu, W.; Lakshmanan, A.; Wade, W. The Human Oral Microbiome. J. Bacteriol. 2010, 192, 5002–5017. [Google Scholar] [CrossRef] [Green Version]
- Hajishengallis, G.; Darveau, R.P.; Curtis, M.A. The Keystone-Pathogen Hypothesis. Nat. Rev. Microbiol. 2012, 10, 717–725. [Google Scholar] [CrossRef]
- Chen, T.; Yu, W.-H.; Izard, J.; Baranova, O.V.; Lakshmanan, A.; Dewhirst, F.E. The Human Oral Microbiome Database: A Web Accessible Resource for Investigating Oral Microbe Taxonomic and Genomic Information. Database J. Biol. Databases Curation 2010, 2010, baq013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The Human Microbiome Project Consortium. Structure, Function and Diversity of the Healthy Human Microbiome. Nature 2012, 486, 207–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caselli, E.; Fabbri, C.; D’Accolti, M.; Soffritti, I.; Bassi, C.; Mazzacane, S.; Franchi, M. Defining the Oral Microbiome by Whole-Genome Sequencing and Resistome Analysis: The Complexity of the Healthy Picture. BMC Microbiol. 2020, 20, 120. [Google Scholar] [CrossRef] [PubMed]
- Griffen, A.L.; Beall, C.J.; Firestone, N.D.; Gross, E.L.; DiFranco, J.M.; Hardman, J.H.; Vriesendorp, B.; Faust, R.A.; Janies, D.A.; Leys, E.J. CORE: A Phylogenetically-Curated 16S RDNA Database of the Core Oral Microbiome. PLoS One 2011, 6, e19051. [Google Scholar] [CrossRef] [PubMed]
- Verma, D.; Garg, P.K.; Dubey, A.K. Insights into the Human Oral Microbiome. Arch. Microbiol. 2018, 200, 525–540. [Google Scholar] [CrossRef]
- Wade, W.G. The Oral Microbiome in Health and Disease. Pharmacol. Res. 2013, 69, 137–143. [Google Scholar] [CrossRef]
- Kato, I.; Vasquez, A.; Moyerbrailean, G.; Land, S.; Djuric, Z.; Sun, J.; Lin, H.S.; Ram, J.L. Nutritional Correlates of Human Oral Microbiome. J. Am. Coll. Nutr. 2016, 36, 88–98. [Google Scholar] [CrossRef] [Green Version]
- Murtaza, N.; Burke, L.M.; Vlahovich, N.; Charlesson, B.; O’neill, H.M.; Ross, M.L.; Campbell, K.L.; Krause, L.; Morrison, M. Analysis of the Effects of Dietary Pattern on the Oral Microbiome of Elite Endurance Athletes. Nutrients 2019, 11, 614. [Google Scholar] [CrossRef] [Green Version]
- Mark Welch, J.L.; Dewhirst, F.E.; Borisy, G.G. Biogeography of the Oral Microbiome: The Site-Specialist Hypothesis. Annu. Rev. Microbiol. 2019, 73, 335–358. [Google Scholar] [CrossRef]
- Kilian, M.; Chapple, I.L.C.; Hannig, M.; Marsh, P.D.; Meuric, V.; Pedersen, A.M.L.; Tonetti, M.S.; Wade, W.G.; Zaura, E. The Oral Microbiome – an Update for Oral Healthcare Professionals. Br. Dent. J. 2016, 221, 657–666. [Google Scholar] [CrossRef]
- Kilian, M. The Oral Microbiome – Friend or Foe? Eur. J. Oral Sci. 2018, 126, 5–12. [Google Scholar] [CrossRef] [PubMed]
- Schwabe, R.F.; Jobin, C. The Microbiome and Cancer. Nat. Rev. Cancer 2013, 13, 800–812. [Google Scholar] [CrossRef] [Green Version]
- Karpiński, T.M. Role of Oral Microbiota in Cancer Development. Microorganisms 2019, 7, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Wang, X.; Li, H.; Ni, C.; Du, Z.; Yan, F. Human Oral Microbiota and Its Modulation for Oral Health. Biomed. Pharmacother. 2018, 99, 883–893. [Google Scholar] [CrossRef]
- Mager, D.L.; Haffajee, A.D.; Delvin, P.M.; Norris, C.M.; Posner, M.R.; Goodson, J.M. The Salivary Microbiota as a Diagnostic Indicator of Oral Cancer: A Descriptive, Non-Randomized Study of Cancer-Free and Oral Squamous Cell Carcinoma Subjects. J. Transl. Med. 2005, 3, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marttila, E.; Bowyer, P.; Sanglard, D.; Uittamo, J.; Kaihovaara, P.; Salaspuro, M.; Richardson, M.; Rautemaa, R. Fermentative 2-Carbon Metabolism Produces Carcinogenic Levels of Acetaldehyde in Candida Albicans. Mol. Oral Microbiol. 2013, 28, 281–291. [Google Scholar] [CrossRef]
- Nagy, K.N.; Sonkodi, I.; Szöke, I.; Nagy, E.; Newman, H.N. The Microflora Associated with Human Oral Carcinomas. Oral Oncol. 1998, 34, 304–308. [Google Scholar] [CrossRef]
- Gholizadeh, P.; Eslami, H.; Yousefi, M.; Asgharzadeh, M.; Aghazadeh, M.; Kafil, H.S. Role of Oral Microbiome on Oral Cancers, a Review. Biomed. Pharmacother. 2016, 84, 552–558. [Google Scholar] [CrossRef]
- Atanasova, K.R.; Yilmaz, Ö. Prelude to Oral Microbes and Chronic Diseases: Past, Present and Future. Microbes Infect. 2015, 17, 473–483. [Google Scholar] [CrossRef] [Green Version]
- Brennan, C.A.; Garrett, W.S. Fusobacterium Nucleatum—Symbiont, Opportunist and Oncobacterium. Nat. Rev. Microbiol. 2018, 17, 156–166. [Google Scholar] [CrossRef]
- Yamamura, K.; Baba, Y.; Nakagawa, S.; Mima, K.; Miyake, K.; Nakamura, K.; Sawayama, H.; Kinoshita, K.; Ishimoto, T.; Iwatsuki, M.; et al. Human Microbiome Fusobacterium Nucleatum in Esophageal Cancer Tissue Is Associated with Prognosis. Clin. Cancer Res. 2016, 22, 5574–5581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Hebshi, N.N.; Ali Alharbi, F.; Mahri, M.; Chen, T. Differences in the Bacteriome of Smokeless Tobacco Products with Different Oral Carcinogenicity: Compositional and Predicted Functional Analysis. Genes 2017, 8, 106. [Google Scholar] [CrossRef] [PubMed]
- Amer, A.; Galvin, S.; Healy, C.M.; Moran, G.P. The Microbiome of Potentially Malignant Oral Leukoplakia Exhibits Enrichment for Fusobacterium, Leptotrichia, Campylobacter, and Rothia Species. Front. Microbiol. 2017, 8, 2391. [Google Scholar] [CrossRef] [Green Version]
- Börnigen, D.; Ren, B.; Pickard, R.; Li, J.; Ozer, E.; Hartmann, E.M.; Xiao, W.; Tickle, T.; Rider, J.; Gevers, D.; et al. Alterations in Oral Bacterial Communities Are Associated with Risk Factors for Oral and Oropharyngeal Cancer. Sci. Rep. 2017, 7, 17686. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, B.L.; Kuczynski, J.; Bhattacharya, A.; Huey, B.; Corby, P.M.; Queiroz, E.L.S.; Nightingale, K.; Kerr, A.R.; DeLacure, M.D.; Veeramachaneni, R.; et al. Changes in Abundance of Oral Microbiota Associated with Oral Cancer. PLoS One 2014, 9, e98741. [Google Scholar] [CrossRef]
- Di Meo, S.; Reed, T.T.; Venditti, P.; Victor, V.M. Role of ROS and RNS Sources in Physiological and Pathological Conditions. Oxid. Med. Cell. Longev. 2016, 2016, 1245049. [Google Scholar] [CrossRef]
- Siddique, H.R.; Gupta, S.C.; Mitra, K.; Murthy, R.C.; Saxena, D.K.; Chowdhuri, D.K. Induction of Biochemical Stress Markers and Apoptosis in Transgenic Drosophila Melanogaster against Complex Chemical Mixtures: Role of Reactive Oxygen Species. Chem. Biol. Interact. 2007, 169, 171–188. [Google Scholar] [CrossRef]
- Bhatt, A.P.; Redinbo, M.R.; Bultman, S.J. The Role of the Microbiome in Cancer Development and Therapy. CA. Cancer J. Clin. 2017, 67, 326–344. [Google Scholar] [CrossRef] [Green Version]
- Hernandez, B.Y.; Zhu, X.; Goodman, M.T.; Gatewood, R.; Mendiola, P.; Quinata, K.; Paulino, Y.C. Betel Nut Chewing, Oral Premalignant Lesions, and the Oral Microbiome. PLoS One 2017, 12, e0172196. [Google Scholar] [CrossRef] [Green Version]
- Dhingra, K.; Jeng, J.-H. Does a High-Sugar Diet Alter the Bacterial Diversity of the Oral Cavity? Evid. Based. Dent. 2023, 24, 9–11. [Google Scholar] [CrossRef]
- Bik, E.M.; Long, C.D.; Armitage, G.C.; Loomer, P.; Emerson, J.; Mongodin, E.F.; Nelson, K.E.; Gill, S.R.; Fraser-Liggett, C.M.; Relman, D.A. Bacterial Diversity in the Oral Cavity of 10 Healthy Individuals. ISME J. 2010, 4, 962–974. [Google Scholar] [CrossRef]
- Ghanwate, N.; Thakare, P.V. ANTIMICROBIAL AND SYNERGISTIC ACTIVITY OF INGREDIENTS OF BETEL QUID ON ORAL AND ENTERIC PATHOGENS. Available online: https://www.researchgate.net/publication/265974924_ANTIMICROBIAL_AND_SYNERGISTIC_ACTIVITY_OF_INGREDIENTS_OF_BETEL_QUID_ON_ORAL_AND_ENTERIC_PATHOGENS (accessed on 18 December 2021).
- Hashimoto, K.; Shimizu, D.; Hirabayashi, S.; Ueda, S.; Miyabe, S.; Oh-iwa, I.; Nagao, T.; Shimozato, K.; Nomoto, S. Changes in Oral Microbial Profiles Associated with Oral Squamous Cell Carcinoma vs Leukoplakia. J. Investig. Clin. Dent. 2019, 10, e12445. [Google Scholar] [CrossRef]
- Banerjee, S.; Tian, T.; Wei, Z.; Peck, K.N.; Shih, N.; Chalian, A.A.; O’Malley, B.W.; Weinstein, G.S.; Feldman, M.D.; Alwine, J.; et al. Microbial Signatures Associated with Oropharyngeal and Oral Squamous Cell Carcinomas. Sci. Rep. 2017, 7, 4036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, A.M.; Gleber-Netto, F.O.; Fernandes, G.R.; Amorim, M.; Barbosa, L.F.; Francisco, A.L.N.; de Andrade, A.G.; Setubal, J.C.; Kowalski, L.P.; Nunes, D.N.; et al. Alcohol and Tobacco Consumption Affects Bacterial Richness in Oral Cavity Mucosa Biofilms. BMC Microbiol. 2014, 14, 250. [Google Scholar] [CrossRef] [Green Version]
- Hsiao, J.R.; Chang, C.C.; Lee, W.T.; Huang, C.C.; Ou, C.Y.; Tsai, S.T.; Chen, K.C.; Huang, J.S.; Wong, T.Y.; Lai, Y.H.; et al. The Interplay between Oral Microbiome, Lifestyle Factors and Genetic Polymorphisms in the Risk of Oral Squamous Cell Carcinoma. Carcinogenesis 2018, 39, 778–787. [Google Scholar] [CrossRef] [Green Version]
- Lim, Y.; Fukuma, N.; Totsika, M.; Kenny, L.; Morrison, M.; Punyadeera, C. The Performance of an Oral Microbiome Biomarker Panel in Predicting Oral Cavity and Oropharyngeal Cancers. Front. Cell. Infect. Microbiol. 2018, 8, 267. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Chu, M.; Huang, Z.; Yang, X.; Ran, S.; Hu, B.; Zhang, C.; Liang, J. Variations in Oral Microbiota Associated with Oral Cancer. Sci. Rep. 2017, 7, 11773. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.Y.; Yeh, Y.M.; Yu, H.Y.; Chin, C.Y.; Hsu, C.W.; Liu, H.; Huang, P.J.; Hu, S.N.; Liao, C.T.; Chang, K.P.; et al. Oral Microbiota Community Dynamics Associated with Oral Squamous Cell Carcinoma Staging. Front. Microbiol. 2018, 9, 862. [Google Scholar] [CrossRef] [Green Version]
- Metsäniitty, M.; Hasnat, S.; Salo, T.; Salem, A. Oral Microbiota—A New Frontier in the Pathogenesis and Management of Head and Neck Cancers. Cancers 2021, 14, 46. [Google Scholar] [CrossRef]
- Torralba, M.G.; Aleti, G.; Li, W.; Moncera, K.J.; Lin, Y.-H.; Yu, Y.; Masternak, M.M.; Golusinski, W.; Golusinski, P.; Lamperska, K.; et al. Oral Microbial Species and Virulence Factors Associated with Oral Squamous Cell Carcinoma. Microb. Ecol. 2021, 82, 1030–1046. [Google Scholar] [CrossRef]
- Sasaki, M.; Yamaura, C.; Ohara-Nemoto, Y.; Tajika, S.; Kodama, Y.; Ohya, T.; Harada, R.; Kimura, S. Streptococcus Anginosus Infection in Oral Cancer and Its Infection Route. Oral Dis. 2005, 11, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Grine, G.; Terrer, E.; Boualam, M.A.; Aboudharam, G.; Chaudet, H.; Ruimy, R.; Drancourt, M. Tobacco-Smoking-Related Prevalence of Methanogens in the Oral Fluid Microbiota. Sci. Rep. 2018, 8, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Uehara, O.; Hiraki, D.; Kuramitsu, Y.; Matsuoka, H.; Takai, R.; Fujita, M.; Harada, F.; Paudel, D.; Takahashi, S.; Yoshida, K.; et al. Alteration of Oral Flora in Betel Quid Chewers in Sri Lanka. J. Microbiol. Immunol. Infect. 2021, 54, 1159–1166. [Google Scholar] [CrossRef]
- Saleem, F.; Mujtaba, G.; Kori, J.A.; Hassan, A.; Azim, M.K. Microbiome Evaluation Revealed Salivary Dysbiosis in Addicts of Betel Nut Preparations. medRxiv 2020. [Google Scholar] [CrossRef]
- Hooper, S.J.; Crean, S.J.; Fardy, M.J.; Lewis, M.A.O.; Spratt, D.A.; Wade, W.G.; Wilson, M.J. A Molecular Analysis of the Bacteria Present within Oral Squamous Cell Carcinoma. J. Med. Microbiol. 2007, 56, 1651–1659. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.-H.; Mahmood, Q.; Mariottini, G.L.; Chiang, T.-A.; Lee, K.-W. Adverse Health Effects of Betel Quid and the Risk of Oral and Pharyngeal Cancers. Biomed Res. Int. 2017, 2017, 3904098. [Google Scholar] [CrossRef] [Green Version]
- Mok, S.F.; Karuthan, C.; Cheah, Y.K.; Ngeow, W.C.; Rosnah, B.Z.; Yap, S.F.; Ong, H.K.A. The Oral Microbiome Community Variations Associated with Normal, Potentially Malignant Disorders and Malignant Lesions of the Oral Cavity. Malays. J. Pathol. 2017, 39, 1–15. [Google Scholar] [PubMed]
- Pushalkar, S.; Mane, S.P.; Ji, X.; Li, Y.; Evans, C.; Crasta, O.R.; Morse, D.; Meagher, R.; Singh, A.; Saxena, D. Microbial Diversity in Saliva of Oral Squamous Cell Carcinoma. FEMS Immunol. Med. Microbiol. 2011, 61, 269–277. [Google Scholar] [CrossRef] [Green Version]
- Pushalkar, S.; Ji, X.; Li, Y.; Estilo, C.; Yegnanarayana, R.; Singh, B.; Li, X.; Saxena, D. Comparison of Oral Microbiota in Tumor and Non-Tumor Tissues of Patients with Oral Squamous Cell Carcinoma. BMC Microbiol. 2012, 12, 144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mascitti, M.; Togni, L.; Troiano, G.; Caponio, V.C.A.; Gissi, D.B.; Montebugnoli, L.; Procaccini, M.; Muzio, L.L.; Santarelli, A. Beyond Head and Neck Cancer: The Relationship between Oral Microbiota and Tumour Development in Distant Organs. Front. Cell. Infect. Microbiol. 2019, 9, 232. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, L.; Yuan, R.; Yu, X.; Chen, Z.; Yang, F.; Sun, G.; Dong, Q. Signatures of Mucosal Microbiome in Oral Squamous Cell Carcinoma Identified Using a Random Forest Model. Cancer Manag. Res. 2020, 12, 5353–5363. [Google Scholar] [CrossRef] [PubMed]
- Zarco, M.F.; Vess, T.J.; Ginsburg, G.S. The Oral Microbiome in Health and Disease and the Potential Impact on Personalized Dental Medicine. Oral Dis. 2012, 18, 109–120. [Google Scholar] [CrossRef]
- Zeeuwen, P.L.J.M.; Kleerebezem, M.; Timmerman, H.M.; Schalkwijk, J. Microbiome and Skin Diseases. Curr. Opin. Allergy Clin. Immunol. 2013, 13, 514–520. [Google Scholar] [CrossRef] [PubMed]
- Sheflin, A.M.; Whitney, A.K.; Weir, T.L. Cancer-Promoting Effects of Microbial Dysbiosis. Curr. Oncol. Rep. 2014, 16, 406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hand, T.W.; Vujkovic-Cvijin, I.; Ridaura, V.K.; Belkaid, Y. Linking the Microbiota, Chronic Disease, and the Immune System. Trends Endocrinol. Metab. 2016, 27, 831–843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sudhakara, P.; Gupta, A.; Bhardwaj, A.; Wilson, A. Oral Dysbiotic Communities and Their Implications in Systemic Diseases. Dent. J. 2018, 6, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilkins, L.J.; Monga, M.; Miller, A.W. Defining Dysbiosis for a Cluster of Chronic Diseases. Sci. Rep. 2019, 9, 12918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ceccarani, C.; Foschi, C.; Parolin, C.; D’Antuono, A.; Gaspari, V.; Consolandi, C.; Laghi, L.; Camboni, T.; Vitali, B.; Severgnini, M.; et al. Diversity of Vaginal Microbiome and Metabolome during Genital Infections. Sci. Rep. 2019, 9, 14095. [Google Scholar] [CrossRef] [Green Version]
- Dassi, E.; Ferretti, P.; Covello, G.; HTM-CMB-2015; Bertorelli, R.; Denti, M.A.; De Sanctis, V.; Tett, A.; Segata, N. The Short-Term Impact of Probiotic Consumption on the Oral Cavity Microbiome. Sci. Rep. 2018, 8, 10476. [Google Scholar] [CrossRef] [Green Version]
- Paetzold, B.; Willis, J.R.; Pereira de Lima, J.; Knödlseder, N.; Brüggemann, H.; Quist, S.R.; Gabaldón, T.; Güell, M. Skin Microbiome Modulation Induced by Probiotic Solutions. Microbiome 2019, 7, 95. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.K.; Guevarra, R.B.; Kim, Y.T.; Kwon, J.; Kim, H.; Cho, J.H.; Kim, H.B.; Lee, J.H. Role of Probiotics in Human Gut Microbiome-Associated Diseases. J. Microbiol. Biotechnol. 2019, 29, 1335–1340. [Google Scholar] [CrossRef]
- Barrientos-Durán, A.; Fuentes-López, A.; de Salazar, A.; Plaza-Díaz, J.; García, F. Reviewing the Composition of Vaginal Microbiota: Inclusion of Nutrition and Probiotic Factors in the Maintenance of Eubiosis. Nutrients 2020, 12, 419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-Moreno, A.; Aguilera, M. Probiotics Dietary Supplementation for Modulating Endocrine and Fertility Microbiota Dysbiosis. Nutrients 2020, 12, 757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chugh, P.; Dutt, R.; Sharma, A.; Bhagat, N.; Dhar, M.S. A Critical Appraisal of the Effects of Probiotics on Oral Health. J. Funct. Foods 2020, 70, 103985. [Google Scholar] [CrossRef]
- Allaker, R.P.; Ian Douglas, C.W. Non-Conventional Therapeutics for Oral Infections. Virulence 2015, 6, 196–207. [Google Scholar] [CrossRef] [PubMed]
- Allaker, R.P.; Stephen, A.S. Use of Probiotics and Oral Health. Curr. Oral Heal. Reports 2017, 4, 309–318. [Google Scholar] [CrossRef] [Green Version]
- Naureen, Z.; Medori, M.C.; Dhuli, K.; Donato, K.; Connelly, S.T.; Bellinato, F.; Gisondi, P.; Bertelli, M. Polyphenols and Lactobacillus Reuteri in Oral Health. J. Prev. Med. Hyg. 2022, 63, E246–E254. [Google Scholar] [CrossRef]
- Sookkhee, S.; Chulasiri, S.; Prachyabrued, W. Lactic Acid Bacteria from Healthy Oral Cavity of Thai Volunteers: Inhibition of Oral Pathogens. J. Appl. Microbiol. 2001, 90, 172–179. [Google Scholar] [CrossRef]
- Kõll-Klais, P.; Mändar, R.; Leibur, E.; Marcotte, H.; Hammarström, L.; Mikelsaar, M. Oral Lactobacilli in Chronic Periodontitis and Periodontal Health: Species Composition and Antimicrobial Activity. Oral Microbiol. Immunol. 2005, 20, 354–361. [Google Scholar] [CrossRef]
- Ahuja, V.; Ahuja, A. Efficacy of Probiotic Lactobacillus Reuteri on Chronic Generalised Periodontitis: A Systematic Review of Randomized Controlled Clinical Trials in Humans. J. Dent. Panacea 2021, 3, 106–117. [Google Scholar] [CrossRef]
- Lai, W.-K.; Lu, Y.-C.; Hsieh, C.-R.; Wei, C.-K.; Tsai, Y.-H.; Chang, F.-R.; Chan, Y. Developing Lactic Acid Bacteria as an Oral Healthy Food. Life 2021, 11, 268. [Google Scholar] [CrossRef] [PubMed]
- Terai, T.; Okumura, T.; Imai, S.; Nakao, M.; Yamaji, K.; Ito, M.; Nagata, T.; Kaneko, K.; Miyazaki, K.; Okada, A.; et al. Screening of Probiotic Candidates in Human Oral Bacteria for the Prevention of Dental Disease. PLoS One 2015, 10, e0128657. [Google Scholar] [CrossRef] [PubMed]
- Meurman, J.H. Probiotics: Do They Have a Role in Oral Medicine and Dentistry? Eur. J. Oral Sci. 2005, 113, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Wilson, I.D.; Nicholson, J.K. Gut Microbiome Interactions with Drug Metabolism, Efficacy, and Toxicity. Transl. Res. 2017, 179, 204–222. [Google Scholar] [CrossRef] [Green Version]
- Le Leu, R.K.; Hu, Y.; Brown, I.L.; Woodman, R.J.; Young, G.P. Synbiotic Intervention of Bifidobacterium Lactis and Resistant Starch Protects against Colorectal Cancer Development in Rats. Carcinogenesis 2010, 31, 246–251. [Google Scholar] [CrossRef]
- Choi, S.S.; Kim, Y.; Han, K.S.; You, S.; Oh, S.; Kim, S.H. Effects of Lactobacillus Strains on Cancer Cell Proliferation and Oxidative Stress in Vitro. Lett. Appl. Microbiol. 2006, 42, 452–458. [Google Scholar] [CrossRef]
- Patel, S.; Goyal, A. Evolving Roles of Probiotics in Cancer Prophylaxis and Therapy. Probiotics Antimicrob. Proteins 2013, 5, 59–67. [Google Scholar] [CrossRef]
- Zendeboodi, F.; Khorshidian, N.; Mortazavian, A.M.; da Cruz, A.G. Probiotic: Conceptualization from a New Approach. Curr. Opin. Food Sci. 2020, 32, 103–123. [Google Scholar] [CrossRef]
- Jones, S.E.; Versalovic, J. Probiotic Lactobacillus Reuteri Biofilms Produce Antimicrobial and Anti-Inflammatory Factors. BMC Microbiol. 2009, 9, 35. [Google Scholar] [CrossRef] [Green Version]
- Mohd Fuad, A.S.; Amran, N.A.; Nasruddin, N.S.; Burhanudin, N.A.; Dashper, S.; Arzmi, M.H. The Mechanisms of Probiotics, Prebiotics, Synbiotics, and Postbiotics in Oral Cancer Management. Probiotics Antimicrob. Proteins 2022, 1–14. [Google Scholar] [CrossRef]
- Jung, J.-I.; Baek, S.-M.; Nguyen, T.H.; Kim, J.W.; Kang, C.-H.; Kim, S.; Imm, J.-Y. Effects of Probiotic Culture Supernatant on Cariogenic Biofilm Formation and RANKL-Induced Osteoclastogenesis in RAW 264.7 Macrophages. Molecules 2021, 26, 733. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, F.; Jiang, L.; Liu, R.; Zhang, L.; Lei, X.; Li, J.; Jiang, J.; Guo, H.; Fang, B.; et al. Lactobacillus Salivarius REN Inhibits Rat Oral Cancer Induced by 4-Nitroquioline 1-Oxide. Cancer Prev. Res. 2013, 6, 686–694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aghazadeh, Z.; Pouralibaba, F.; Yari Khosroushahi, A. The Prophylactic Effect of Acetobacter Syzygii Probiotic Species against Squamous Cell Carcinoma. J. Dent. Res. Dent. Clin. Dent. Prospects 2017, 11, 208–214. [Google Scholar]
- Wan Mohd Kamaluddin, W.N.F.; Rismayuddin, N.A.R.; Ismail, A.F.; Mohamad Aidid, E.; Othman, N.; Mohamad, N.A.H.; Arzmi, M.H. Probiotic Inhibits Oral Carcinogenesis: A Systematic Review and Meta-Analysis. Arch. Oral Biol. 2020, 118, 104855. [Google Scholar] [CrossRef] [PubMed]
- Kamarajan, P.; Ateia, I.; Shin, J.M.; Fenno, J.C.; Le, C.; Zhan, L.; Chang, A.; Darveau, R.; Kapila, Y.L. Periodontal Pathogens Promote Cancer Aggressivity via TLR/MyD88 Triggered Activation of Integrin/FAK Signaling That Is Therapeutically Reversible by a Probiotic Bacteriocin. PLOS Pathog. 2020, 16, e1008881. [Google Scholar] [CrossRef]
- Nascimento, M.M. Oral Microbiota Transplant: A Potential New Therapy for Oral Diseases. J. Calif. Dent. Assoc. 2017, 45, 565. [Google Scholar] [CrossRef]
- Zhu, F.; Wu, H. Insights into Bacterial Protein Glycosylation in Human Microbiota. Sci. China Life Sci. 2015, 59, 11–18. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Palmer, S.R.; Ahn, S.J.; Richards, V.P.; Williams, M.L.; Nascimento, M.M.; Burne, R.A. A Highly Arginolytic Streptococcus Species That Potently Antagonizes Streptococcus Mutans. Appl. Environ. Microbiol. 2016, 82, 2187–2201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, Z.; Xu, H.; Wang, X.; Liu, Z. Lactobacillus Raises in Vitro Anticancer Effect of Geniposide in HSC-3 Human Oral Squamous Cell Carcinoma Cells. Exp. Ther. Med. 2017, 14, 4586–4594. [Google Scholar] [CrossRef] [Green Version]
- Gupta, N.; Ferreira, J.; Hong, C.H.L.; Tan, K.S. Lactobacillus Reuteri DSM 17938 and ATCC PTA 5289 Ameliorates Chemotherapy-Induced Oral Mucositis. Sci. Rep. 2020, 10, 16189. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-C.; Wu, C.-R.; Huang, T.-W. Preventive Effect of Probiotics on Oral Mucositis Induced by Cancer Treatment: A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2022, 23, 13268. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Zhang, Z.; Yang, W.; Zheng, X.; You, W.; Yao, Y.; Yan, J.; Liu, W. Turing Milk into Pro-Apoptotic Oral Nanotherapeutic: De Novo Bionic Chiral-Peptide Supramolecule for Cancer Targeted and Immunological Therapy. Theranostics 2022, 12, 2322–2334. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.; Zheng, C.; Jia, J.; Zhao, H.; Feng, Q.; Zhang, H.; Wang, L.; Zhang, Z.; Zhang, Y. A Probiotic Spore-Based Oral Autonomous Nanoparticles Generator for Cancer Therapy. Adv. Mater. 2019, 31, 1903793. [Google Scholar] [CrossRef] [PubMed]
- Secretan, B.; Straif, K.; Baan, R.; Grosse, Y.; El Ghissassi, F.; Bouvard, V.; Benbrahim-Tallaa, L.; Guha, N.; Freeman, C.; Galichet, L.; et al. A Review of Human Carcinogens--Part E: Tobacco, Areca Nut, Alcohol, Coal Smoke, and Salted Fish. Lancet. Oncol. 2009, 10, 1033–1034. [Google Scholar] [CrossRef]
- Paulino, Y.C.; Hurwitz, E.L.; Warnakulasuriya, S.; Gatewood, R.R.; Pierson, K.D.; Tenorio, L.F.; Novotny, R.; Palafox, N.A.; Wilkens, L.R.; Badowski, G. Screening for Oral Potentially Malignant Disorders among Areca (Betel) Nut Chewers in Guam and Saipan. BMC Oral Health 2014, 14, 151. [Google Scholar] [CrossRef] [Green Version]
- Hooper, S.J.; Wilson, M.J.; Crean, S.J. Exploring the Link between Microorganisms and Oral Cancer: A Systematic Review of the Literature. Head Neck 2009, 31, 1228–1239. [Google Scholar] [CrossRef] [PubMed]
- Rajeev, R.; Choudhary, K.; Panda, S.; Gandhi, N. Role of Bacteria in Oral Carcinogenesis. South Asian J. Cancer 2012, 1, 78. [Google Scholar] [CrossRef]
- Khajuria, N.; Metgud, R. Role of Bacteria in Oral Carcinogenesis. Indian J. Dent. 2015, 6, 37–43. [Google Scholar] [CrossRef] [Green Version]
- Cordero, O.J.; Varela-Calviño, R. Oral Hygiene Might Prevent Cancer. Heliyon 2018, 4, 879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, Y.; Totsika, M.; Morrison, M.; Punyadeera, C. Oral Microbiome: A New Biomarker Reservoir for Oral and Oropharyngeal Cancers. Theranostics 2017, 7, 4313–4321. [Google Scholar] [CrossRef] [PubMed]
- Duran-Pinedo, A.E.; Frias-Lopez, J. Beyond Microbial Community Composition: Functional Activities of the Oral Microbiome in Health and Disease. Microbes Infect. 2015, 17, 505–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McLean, J.S. Advancements toward a Systems Level Understanding of the Human Oral Microbiome. Front. Cell. Infect. Microbiol. 2014, 4, 98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Washio, J.; Takahashi, N.; Newton Baker, P.; McKenzie, E.; Han, T.-L. Metabolomic Studies of Oral Biofilm, Oral Cancer, and Beyond. Int. J. Mol. Sci. 2016, 17, 870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kassam, Z.; Lee, C.H.; Yuan, Y.; Hunt, R.H. Fecal Microbiota Transplantation for Clostridium Difficile Infection: Systematic Review and Meta-Analysis. Am. J. Gastroenterol. 2013, 108, 500–508. [Google Scholar] [CrossRef] [PubMed]
S. No. | Number of Subjects and Country of Study | Findings | References |
---|---|---|---|
1 | 42 OSCC patients, 45 OSF patients with areca chewing, 45 controls; China | Different abundance of bacterial taxa at different pathological stages of OSCC, areca chewing induces oral site-specific microbial alterations | [46] |
2 | 20 subjects; Andhra Pradesh, India | The duration, frequency of betel nut, tobacco chewing, and overnight placement were statistically significant factors associated with potentially malignant lesions in oral cavity | [47] |
3 | 2008 users Age: 20–80 years; Uttar Pradesh, India | High incidence of OPMDs in this population, associated with the smoking and BQ chewing habits | [48] |
4 | 487 male Head and. Neck Cancer subjects (313 OC, 119 Oro- and hypopharyngeal cancers, and 55 Laryngeal cancers) and 617 controls; Taiwan | The highest Head and Neck Cancer risk associated with BQ was reported in buccal mucosa and gingiva of oral cavity | [49] |
5 | 80 cases with OSF-associated OSCC and 80 controls with OSF but without evident OSCC; Hunan Province, Mainland China. | The use of BQ, cigarette, and alcohol identified as risk factors for malignant transformation of OSF in the synergistic effects between BQ chewing and cigarette or alcohol consumption were revealed | [50] |
6 | 110 Subjects; Arunachal Pradesh, North East Region, India | Increased frequency of micro nuclei in buccal epithelium among smokers and alcohol consumers, BQ chewers and tobacco users compared to the control group. | [51] |
7 | 81 cases of OC with 162 controls; Jakarta Indonesia | Smoking and BQ chewing are directly associated with OC risk. Chewing of at least one quid per day and betel leaf, AN, lime, and tobacco together caused a 5–6 times increased risk. | [37] |
8 | 91 cases of Oesophageal Squamous Cell Carcinoma and 364 controls from three tertiary-care hospitals; Karachi, Pakistan | Several fold increase in the risk of oesophageal squamous-cell carcinoma, if the subjects smoked cigarettes and chewed BQ with tobacco | [52] |
9 | 1522 Patients of aerodigestive tract OSCC; Taiwan | Groups with Alcohol, Betelnut and Cigarette and Alcohol, Tobacco-free BQ exhibited earlier diagnosis ages (10 years ahead) than non-users of these substances for OC | [53] |
10 | 10,657 patients; Taiwan | Strong relationship between smoking, alcohol consumption, and BQ chewing for OC development | [54] |
11 | 1029 subjects; Sri Lanka | Synergistic effect of chewing and alcohol consumption was reported as risk factors for oral potentially malignant disorders (OPMDs) | [55] |
12 | 254 patients with oral Squamous Cell Carcinoma; Taiwan | BQ chewing and cigarette smoking patients are more likely to be diagnosed with oral cavity cancer at a younger age than those who have just one habit or none. | [56] |
13 | 75 Habituates; North East Region, India | BQ chewers showed a significant increase in the binucleated cells in comparison to the non-chewers. | [57] |
14 | 513 Patients of oesophagus Squamous cell carcinoma and 818 controls; Taiwan | Alcohol interacts with tobacco and BQ in a synergistic way in development of oesophageal cancer. | [58] |
15 | 219 Patients with confirmed Oral Leukoplakia (OL) or OSF, and 876 randomly selected community controls; Taiwan | Tobacco smoking act synergistically along with BQ chewing to cause OL and OSF | [59] |
16 | Samples from 591 incident cases of oral cavity cancer and 582 hospital controls; Bangalore, Madras and Trivandrum, India | 35% of OC in men was found attributable to the combination of smoking and alcohol consumption and 49% to pan-tobacco chewing. | [60] |
17 | 79 subjects and 149 controls from hospitals; Pakistan | Subjects using quid without tobacco were 9.9 times more likely to develop OSCC as compared with non-users, those using with tobacco were at 8.4 times the controls, clearly showing association between use of paan without tobacco and OSCC | [61] |
18 | 104 oral cancer patients compared with 194 controls; Taiwan | OC, 123-fold higher in patients who smoked, drank alcohol, and chewed BQ. Demonstrated synergistic effects of alcohol, tobacco smoke, and BQ in OC | [62] |
19 | 143 OSCC; Natal, South Africa | AN habit with or without tobacco use was important in the development of OSCC | [63] |
Bacteria | References | Clinically Useful Outcome | Summary of Key Findings |
---|---|---|---|
Porphyromonas gingivalis | [128] | May provide a diagnostic tool for OSCC | Increase in the abundance was noted in OC and leukoplakia. |
Bacteroidetes, Proteobacteria | [129] | Suggested biomarkers for OSCC | Reduction in the abundance of phylum Bacteroidetes and increased detection of phylum Proteobacteria in OSCC tumour. Reported yeasts like Rhodotorula, Geotrichum and Pneumocystis to be linked with the tumour |
[35] | Reduction in the abundance of Bacteroidetes in tumour tissue. | ||
Neisseria | [130] | Indicates a decrease in bacterial richness due to tobacco and alcohol abuse as a cause of oral health deterioration | Significant decrease in smokers |
Prevotella | Significant reduction in smokers and drinkers. | ||
[131] | Poor oral hygiene correlated with OSCC | Associated with OSCC | |
Capnocytophaga | [130,132] | Indicates a decrease in bacterial richness due to tobacco and alcohol abuse as a cause of oral health deterioration | Significant reduction in smokers and drinkers. |
Actinobacteria | [120,133] | Deviations in the abundance of oral microbiome related to OCC | Reduction in abundances in the tumour samples |
Fusobacterium nucleatum; Fusobacteria | [116] | F. nucleatum as a prognostic marker | Linked with aggressive tumour behaviour through stimulation of chemokines |
[117,119,131,133,134,135] | Association of F. nucleatum and Pseudomonas aeruginosa with OSCC. | Increase in the abundance was noted in OC. | |
[35] | Suggested biomarkers for OSCC | Reduction in the abundance in tumour tissue. | |
[136] | Suggested biomarkers for OSCC including bacteria and their metabolites. | Higher abundance of pathogenic bacteria and lower abundance of commensals observed in tumour tissues compared to the non-tumour ones. Identified differential metabolic activities in the tumour tissue. | |
Streptococcus anginosus | [137] | S. anginosus of dental plaque linked to squamous cell carcinoma | S. anginosus isolated from the cancer tissue was identical to that from the dental plaque implying that dental plaque was the source site of pathogenic S. anginosus |
Methanogenic archaea | [138] | Prevalence of methanogens in tobacco smokers and their transmission to non-smokers | Presence of Methanobrevibacter oralis and M. smithii in the oral fluid of tobacco smokers. |
Bacterial rRNA Amplification & Sequencing | Subject Count & Mean Age (years) | Region | Results | References |
---|---|---|---|---|
V3–V4 region | N = 22 | India | BQ chewers exhibit overall decreased bacterial diversity and richness | [23] |
V3–V4 region | N = 43; Age—37.9 ± 6.19 | Sri Lanka | Altered oral microflora in BQ chewers: increased abundance of periodontal pathogens (Actinomyces, Tannerella, and Prevotella), and decreased abundance of cariogenic pathogens (Streptococcus, Lautropia, and Actinobacillus) | [139] |
V3–V5 region | N = 122; Age not provided | Guam | BQ chewers showing oral lesions higher levels of Oribacterium, Actinomyces, and Streptococcus | [124] |
V1 region | N = 22; Age—58 | Brazil | Neisseria abundance decreased in smokers and drinkers than controls. Smokers had a significant increase in Prevotella and Capnocytophaga and reductions in Granulicatella, Staphylococcus, Peptostreptococcus, and Gemella. Smokers/drinkers had lower levels of Fusobacteria | [130] |
V4 region | N = 30; Age-62 | USA | Reduction in Firmicutes and Actinobacteria while the increase in Fusobacteria in oral tumour samples of the smokers | [120] |
V4 region | N = 252; Age—53 | Taiwan | Higher abundance of Cloacobacillus, Gemmiger, Oscillospora, and Roseburia in the saliva of smokers and chewers than controls. | [19] |
V4 region | N = 363; Age—58 (media) | USA | Higher abundance of Dialister in oral rinse samples of smokers than controls. | [119] |
V3–V4 region | N = 55; Age not provided | Pakistan | Acidogenic and aciduric bacteria including Veillonella, Streptococcus, Leptotrichia, and Serratia showed increased abundance in BQ chewers. | [140] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diwan, P.; Nirwan, M.; Bahuguna, M.; Kumari, S.P.; Wahlang, J.; Gupta, R.K. Evaluating Alterations of the Oral Microbiome and Its Link to Oral Cancer among Betel Quid Chewers: Prospecting Reversal through Probiotic Intervention. Pathogens 2023, 12, 996. https://doi.org/10.3390/pathogens12080996
Diwan P, Nirwan M, Bahuguna M, Kumari SP, Wahlang J, Gupta RK. Evaluating Alterations of the Oral Microbiome and Its Link to Oral Cancer among Betel Quid Chewers: Prospecting Reversal through Probiotic Intervention. Pathogens. 2023; 12(8):996. https://doi.org/10.3390/pathogens12080996
Chicago/Turabian StyleDiwan, Prerna, Mohit Nirwan, Mayank Bahuguna, Shashi Prabha Kumari, James Wahlang, and Rakesh Kumar Gupta. 2023. "Evaluating Alterations of the Oral Microbiome and Its Link to Oral Cancer among Betel Quid Chewers: Prospecting Reversal through Probiotic Intervention" Pathogens 12, no. 8: 996. https://doi.org/10.3390/pathogens12080996
APA StyleDiwan, P., Nirwan, M., Bahuguna, M., Kumari, S. P., Wahlang, J., & Gupta, R. K. (2023). Evaluating Alterations of the Oral Microbiome and Its Link to Oral Cancer among Betel Quid Chewers: Prospecting Reversal through Probiotic Intervention. Pathogens, 12(8), 996. https://doi.org/10.3390/pathogens12080996