Recent Advances in the Detection of Indoor Fungi
Acknowledgments
Conflicts of Interest
References
- World Health Organization (WHO). Guidelines for Indoor Air Quality: Dampness and Mould; Regional Office for Europe: Copenhagen, Denmark, 2009. [Google Scholar]
- Bozek, A.; Pyrkosz, K. Immunotherapy of mold allergy: A review. Hum. Vaccines Immunother. 2017, 13, 2397–2401. [Google Scholar] [CrossRef]
- Straube, J.F.; Degraauw, J.P. Indoor air quality and hygroscopically active materials. ASHRAE Trans. 2001, 107, 444–450. [Google Scholar]
- Arumala, J.O. Mold and the construction industry. Int. J. Constr. Educ. Res. 2006, 2, 75–89. [Google Scholar] [CrossRef]
- Yassin, M.F.; Almouqatea, S. Assessment of airborne bacteria and fungi in an indoor and outdoor environment. Int. J. Environ. Sci. Technol. 2010, 7, 535–544. [Google Scholar] [CrossRef]
- Viegas, C.; Dias, M.; Viegas, S. Electrostatic dust cloth: A useful passive sampling method when assessing exposure to fungi demonstrated in studies developed in Portugal (2018–2021). Pathogens 2022, 11, 345. [Google Scholar] [CrossRef] [PubMed]
- Tseng, C.C.; Huang, N.; Hsieh, C.J.; Hung, C.C.; Guo, Y.L.L. Contribution of visible surface mold to airborne fungal concentration as assessed by digital image quantification. Pathogens 2021, 10, 1032. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, B.V.; Higgins Jones, D.; Banerjee, G.; Agrawal, S.; Sulaiman, I.M.; Jia, C.; Banerjee, P. Indoor Bacterial and Fungal Burden in “Moldy” versus “Non-Moldy” Homes: A Case Study Employing Advanced Sequencing Techniques in a US Metropolitan Area. Pathogens 2023, 12, 1006. [Google Scholar] [CrossRef] [PubMed]
- Andersson, M.; Vornanen-Winqvist, C.; Koivisto, T.; Varga, A.; Mikkola, R.; Kredics, L.; Salonen, H. Composition of Culturable Microorganisms in Dusts Collected from Sport Facilities in Finland during the COVID-19 Pandemic. Pathogens 2023, 12, 339. [Google Scholar] [CrossRef] [PubMed]
- Salin, J.; Ohtonen, P.; Andersson, M.A.; Syrjälä, H. The toxicity of wiped dust and airborne microbes in individual classrooms increase the risk of teachers’ work-related symptoms: A cross-sectional study. Pathogens 2021, 10, 1360. [Google Scholar] [CrossRef] [PubMed]
- Paavanen-Huhtala, S.; Kalichamy, K.; Pessi, A.M.; Häkkilä, S.; Saarto, A.; Tuomela, M.; Andersson, M.A.; Koskinen, P.J. Biomonitoring of Indoor Air Fungal or Chemical Toxins with Caenorhabditis elegans nematodes. Pathogens 2023, 12, 161. [Google Scholar] [CrossRef] [PubMed]
- Jakšić, D.; Jelić, D.; Kopjar, N.; Šegvić Klarić, M. Combined Toxicity of the Most Common Indoor Aspergilli. Pathogens 2023, 12, 459. [Google Scholar] [CrossRef] [PubMed]
- Andersson, M.; Varga, A.; Mikkola, R.; Vornanen-Winqvist, C.; Salo, J.; Kredics, L.; Kocsubé, S.; Salonen, H. Aspergillus Was the Dominant Genus Found during Diversity Tracking of Potentially Pathogenic Indoor Fungal Isolates. Pathogens 2022, 11, 1171. [Google Scholar] [CrossRef] [PubMed]
- Micheluz, A.; Pinzari, F.; Rivera-Valentín, E.G.; Manente, S.; Hallsworth, J.E. Biophysical manipulation of the extracellular environment by Eurotium halophilicum. Pathogens 2022, 11, 1462. [Google Scholar] [CrossRef] [PubMed]
- Andersson, M.A.; Salo, J.; Mikkola, R.; Marik, T.; Kredics, L.; Kurnitski, J.; Salonen, H. Melinacidin-producing Acrostalagmus luteoalbus, a major constituent of mixed mycobiota contaminating insulation material in an outdoor wall. Pathogens 2021, 10, 843. [Google Scholar] [CrossRef] [PubMed]
- Kedves, O.; Kocsubé, S.; Bata, T.; Andersson, M.A.; Salo, J.M.; Mikkola, R.; Salonen, H.; Szűcs, A.; Kedves, A.; Kónya, Z.; et al. Chaetomium and Chaetomium-like species from European indoor environments include Dichotomopilus finlandicus sp. nov. Pathogens 2021, 10, 1133. [Google Scholar] [CrossRef] [PubMed]
- Magyar, D.; Tartally, A.; Merényi, Z. Hagnosa longicapillata, gen. nov., sp. nov., a New Sordariaceous Ascomycete in the Indoor Environment, and the Proposal of Hagnosaceae fam. nov. Pathogens 2022, 11, 593. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magyar, D. Recent Advances in the Detection of Indoor Fungi. Pathogens 2023, 12, 1136. https://doi.org/10.3390/pathogens12091136
Magyar D. Recent Advances in the Detection of Indoor Fungi. Pathogens. 2023; 12(9):1136. https://doi.org/10.3390/pathogens12091136
Chicago/Turabian StyleMagyar, Donát. 2023. "Recent Advances in the Detection of Indoor Fungi" Pathogens 12, no. 9: 1136. https://doi.org/10.3390/pathogens12091136
APA StyleMagyar, D. (2023). Recent Advances in the Detection of Indoor Fungi. Pathogens, 12(9), 1136. https://doi.org/10.3390/pathogens12091136