Future Prospects, Approaches, and the Government’s Role in the Development of a Hepatitis C Virus Vaccine
Abstract
:1. Global and Egypt Prevalence of HCV
2. Structural and Non-Structural Protein Antigens as Targets for HCV Vaccine
3. HCV Vaccines Targets and Technologies
3.1. Structural Proteins
The Envelope Glycoprotein 1 (E1)
3.2. The Envelope Glycoprotein 2 (E2)
3.3. Core Proteins
3.4. Non-Structural Proteins
3.5. Use of Multi-Epitopes
3.6. Contributions of Monoclonal Antibodies to HCV Vaccine Development
4. Knowledge Obtained from Vaccines Targeting SARS-CoV-2
5. The Government’s Role in Ensuring Affordability and Accessibility in the Development of the HCV Vaccination
6. Future Prospects and Approaches in the Development of an HCV Vaccine
6.1. Innovations and Advancements in HCV Vaccine Development Methods and Technologies
6.2. Integration of HCV Vaccines into Public Health Programs
6.3. Collaborative Efforts and Lessons from Global Vaccine Initiatives
7. General Advancement and Considerations in HCV Vaccine
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roudot-Thoraval, F. Epidemiology of hepatitis C virus infection. Clin. Res. Hepatol. Gastroenterol. 2021, 45, 101596. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.B.; Bukh, J.; Kuiken, C.; Muerhoff, A.S.; Rice, C.M.; Stapleton, J.T.; Simmonds, P. Expanded classification of hepatitis C virus into 7 genotypes and 67 subtypes: Updated criteria and genotype assignment web resource. Hepatology 2014, 59, 318–327. [Google Scholar] [CrossRef] [PubMed]
- El-Zanaty, F.; Way, A. Egypt Demographic and Health Survey 2008; Ministry of Health: Cairo, Egypt, 2009. [Google Scholar]
- Hassanin, A.; Kamel, S.; Waked, I.; Fort, M. Egypt’s Ambitious Strategy to Eliminate Hepatitis C Virus: A Case Study. Glob. Health Sci. Pract. 2021, 9, 187–200. [Google Scholar] [CrossRef] [PubMed]
- Hatzakis, A.; Lazarus, J.V.; Cholongitas, E.; Baptista-Leite, R.; Boucher, C.; Busoi, C.S.; Deuffic-Burban, S.; Chhatwal, J.; Esmat, G.; Hutchinson, S.; et al. Securing sustainable funding for viral hepatitis elimination plans. Liver Int. 2020, 40, 260–270. [Google Scholar] [CrossRef] [PubMed]
- Elrashdy, F.; Hagag, S.; Mohamed, R.; Alem, S.A.; Meshaal, S.; Cordie, A.; Elsharkawy, A.; Esmat, G. Incidence of hepatitis C virus infection among people living with HIV: An Egyptian cohort study. South. Afr. J. HIV Med. 2022, 23, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Omran, D.; Alboraie, M.; Zayed, R.A.; Wifi, M.N.; Naguib, M.; Eltabbakh, M.; Abdellah, M.; Sherief, A.F.; Maklad, S.; Eldemellawy, H.H.; et al. Towards hepatitis C virus elimination: Egyptian experience, achievements and limitations. World J. Gastroenterol. 2018, 24, 4330–4340. [Google Scholar] [CrossRef] [PubMed]
- Waked, I. Case study of hepatitis C virus control in Egypt: Impact of access program. Antivir. Ther. 2022, 27, 13596535211067592. [Google Scholar] [CrossRef] [PubMed]
- Ayoub, H.H.; Abu-Raddad, L.J. Impact of treatment on hepatitis C virus transmission and incidence in Egypt: A case for treatment as prevention. J. Viral Hepat. 2017, 24, 486–495. [Google Scholar] [CrossRef]
- Khattab, M.A.; Zakaria, Y.; Sadek, E.; Abd El Fatah, A.S.; Fouad, M.; Khattab, M.; Moness, H.M.; Adel, N.M.; Ahmed, E. Detection of hepatitis C virus (HCV) RNA in the peripheral blood mononuclear cells of HCV-infected patients following sustained virologic response. Clin. Exp. Med. 2023, 23, 131–140. [Google Scholar] [CrossRef]
- Kaito, M.; Watanabe, S.; Tanaka, H.; Fujita, N.; Konishi, M.; Iwasa, M.; Kobayashi, Y.; Gabazza, E.C.; Adachi, Y.; Tsukiyama-Kohara, K.; et al. Morphological identification of hepatitis C virus E1 and E2 envelope glycoproteins on the virion surface using immunogold electron microscopy. Int. J. Mol. Med. 2006, 18, 673–678. [Google Scholar] [CrossRef]
- Ikram, A.; Zaheer, T.; Awan, F.M.; Obaid, A.; Naz, A.; Hanif, R.; Paracha, R.Z.; Ali, A.; Naveed, A.K.; Janjua, H.A. Exploring NS3/4A, NS5A and NS5B proteins to design conserved subunit multi-epitope vaccine against HCV utilizing immunoinformatics approaches. Sci. Rep. 2018, 8, 16107. [Google Scholar] [CrossRef] [PubMed]
- Duncan, J.D.; Urbanowicz, R.A.; Tarr, A.W.; Ball, J.K. Hepatitis C Virus Vaccine: Challenges and Prospects. Vaccines 2020, 8, 90. [Google Scholar] [CrossRef]
- Sepulveda-Crespo, D.; Resino, S.; Martinez, I. Hepatitis C virus vaccine design: Focus on the humoral immune response. J. Biomed. Sci. 2020, 27, 78. [Google Scholar] [CrossRef] [PubMed]
- Shayeghpour, A.; Kianfar, R.; Hosseini, P.; Ajorloo, M.; Aghajanian, S.; Hedayat Yaghoobi, M.; Hashempour, T.; Mozhgani, S.H. Hepatitis C virus DNA vaccines: A systematic review. Virol. J. 2021, 18, 248. [Google Scholar] [CrossRef] [PubMed]
- Hartlage, A.S.; Kapoor, A. Hepatitis C Virus Vaccine Research: Time to Put Up or Shut Up. Viruses 2021, 13, 1596. [Google Scholar] [CrossRef]
- Guest, J.D.; Pierce, B.G. Structure-Based and Rational Design of a Hepatitis C Virus Vaccine. Viruses 2021, 13, 837. [Google Scholar] [CrossRef]
- Yechezkel, I.; Law, M.; Tzarum, N. From Structural Studies to HCV Vaccine Design. Viruses 2021, 13, 833. [Google Scholar] [CrossRef]
- Hajikhezri, Z.; Roohvand, F.; Maleki, M.; Shahmahmoodi, S.; Amirzargar, A.A.; Keshavarz, A.; Seyed, N.; Farahmand, M.; Samimi-Rad, K. HCV Core/NS3 Protein Immunization with “N-Terminal Heat Shock gp96 Protein (rNT (gp96))” Induced Strong and Sustained Th1-Type Cytokines in Immunized Mice. Vaccines 2021, 9, 215. [Google Scholar] [CrossRef]
- Behmard, E.; Abdulabbas, H.T.; Abdalkareem Jasim, S.; Najafipour, S.; Ghasemian, A.; Farjadfar, A.; Barzegari, E.; Kouhpayeh, A.; Abdolmaleki, P. Design of a novel multi-epitope vaccine candidate against hepatitis C virus using structural and nonstructural proteins: An immunoinformatics approach. PLoS ONE 2022, 17, e0272582. [Google Scholar] [CrossRef]
- Zhao, Q.; He, K.; Zhang, X.; Xu, M.; Zhang, X.; Li, H. Production and immunogenicity of different prophylactic vaccines for hepatitis C virus (Review). Exp. Ther. Med. 2022, 24, 474. [Google Scholar] [CrossRef]
- Gomez-Escobar, E.; Roingeard, P.; Beaumont, E. Current Hepatitis C Vaccine Candidates Based on the Induction of Neutralizing Antibodies. Viruses 2023, 15, 1151. [Google Scholar] [CrossRef]
- Bernal, L.A.; Soti, V. Hepatitis C Virus: Insights Into Its History, Treatment, Challenges, and Future Directions. Cureus 2023, 15, e43924. [Google Scholar] [CrossRef] [PubMed]
- Toth, E.A.; Andrianov, A.K.; Fuerst, T.R. Prospects for developing an Hepatitis C virus E1E2-based nanoparticle vaccine. Rev. Med. Virol. 2023, 33, e2474. [Google Scholar] [CrossRef] [PubMed]
- Adugna, A. Therapeutic strategies and promising vaccine for hepatitis C virus infection. Immun. Inflamm. Dis. 2023, 11, e977. [Google Scholar] [CrossRef] [PubMed]
- Olivera, S.; Perez, A.; Falcon, V.; Urquiza, D.; Pichardo, D.; Martinez-Donato, G. Protective cellular immune response against hepatitis C virus elicited by chimeric protein formulations in BALB/c mice. Arch. Virol. 2020, 165, 593–607. [Google Scholar] [CrossRef] [PubMed]
- Donnison, T.; von Delft, A.; Brown, A.; Swadling, L.; Hutchings, C.; Hanke, T.; Chinnakannan, S.; Barnes, E. Viral vectored hepatitis C virus vaccines generate pan-genotypic T cell responses to conserved subdominant epitopes. Vaccine 2020, 38, 5036–5048. [Google Scholar] [CrossRef] [PubMed]
- El Omari, K.; Iourin, O.; Kadlec, J.; Sutton, G.; Harlos, K.; Grimes, J.M.; Stuart, D.I. Unexpected structure for the N-terminal domain of hepatitis C virus envelope glycoprotein E1. Nat. Commun. 2014, 5, 4874. [Google Scholar] [CrossRef]
- Douam, F.; Thi, V.L.D.; Maurin, G.; Fresquet, J.; Mompelat, D.; Zeisel, M.B.; Baumert, T.F.; Cosset, F.L.; Lavillette, D. Critical interaction between E1 and E2 glycoproteins determines binding and fusion properties of hepatitis C virus during cell entry. Hepatology 2014, 59, 776–788. [Google Scholar] [CrossRef]
- Torrents de la Peña, A.; Sliepen, K.; Eshun-Wilson, L.; Newby, M.L.; Allen, J.D.; Zon, I.; Koekkoek, S.; Chumbe, A.; Crispin, M.; Schinkel, J.; et al. Structure of the hepatitis C virus E1E2 glycoprotein complex. Science 2022, 378, 263–269. [Google Scholar] [CrossRef]
- Colbert, M.D.; Flyak, A.I.; Ogega, C.O.; Kinchen, V.J.; Massaccesi, G.; Hernandez, M.; Davidson, E.; Doranz, B.J.; Cox, A.L.; Crowe, J.E., Jr.; et al. Broadly Neutralizing Antibodies Targeting New Sites of Vulnerability in Hepatitis C Virus E1E2. J. Virol. 2019, 93, 10–1128. [Google Scholar] [CrossRef]
- Kumar, A.; Rohe, T.C.; Elrod, E.J.; Khan, A.G.; Dearborn, A.D.; Kissinger, R.; Grakoui, A.; Marcotrigiano, J. Regions of hepatitis C virus E2 required for membrane association. Nat. Commun. 2023, 14, 433. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Giang, E.; Nieusma, T.; Kadam, R.U.; Cogburn, K.E.; Hua, Y.; Dai, X.; Stanfield, R.L.; Burton, D.R.; Ward, A.B.; et al. Hepatitis C virus E2 envelope glycoprotein core structure. Science 2013, 342, 1090–1094. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.G.; Whidby, J.; Miller, M.T.; Scarborough, H.; Zatorski, A.V.; Cygan, A.; Price, A.A.; Yost, S.A.; Bohannon, C.D.; Jacob, J.; et al. Structure of the core ectodomain of the hepatitis C virus envelope glycoprotein 2. Nature 2014, 509, 381–384. [Google Scholar] [CrossRef] [PubMed]
- Alhammad, Y.; Gu, J.; Boo, I.; Harrison, D.; McCaffrey, K.; Vietheer, P.T.; Edwards, S.; Quinn, C.; Coulibaly, F.; Poumbourios, P.; et al. Monoclonal Antibodies Directed toward the Hepatitis C Virus Glycoprotein E2 Detect Antigenic Differences Modulated by the N-Terminal Hypervariable Region 1 (HVR1), HVR2, and Intergenotypic Variable Region. J. Virol. 2015, 89, 12245–12261. [Google Scholar] [CrossRef] [PubMed]
- Alzua, G.P.; Pihl, A.F.; Offersgaard, A.; Duarte Hernandez, C.R.; Duan, Z.; Feng, S.; Fahnøe, U.; Sølund, C.; Weis, N.; Law, M.; et al. Inactivated genotype 1a, 2a and 3a HCV vaccine candidates induced broadly neutralising antibodies in mice. Gut 2023, 72, 560–572. [Google Scholar] [CrossRef] [PubMed]
- Pihl, A.F.; Feng, S.; Offersgaard, A.; Alzua, G.P.; Augestad, E.H.; Mathiesen, C.K.; Jensen, T.B.; Krarup, H.; Law, M.; Prentoe, J.; et al. Inactivated whole hepatitis C virus vaccine employing a licensed adjuvant elicits cross-genotype neutralizing antibodies in mice. J. Hepatol. 2022, 76, 1051–1061. [Google Scholar] [CrossRef] [PubMed]
- Roohvand, F.; Aghasadeghi, M.R.; Sadat, S.M.; Budkowska, A.; Khabiri, A.R. HCV core protein immunization with Montanide/CpG elicits strong Th1/Th2 and long-lived CTL responses. Biochem. Biophys. Res. Commun. 2007, 354, 641–649. [Google Scholar] [CrossRef]
- Drane, D.; Maraskovsky, E.; Gibson, R.; Mitchell, S.; Barnden, M.; Moskwa, A.; Shaw, D.; Gervase, B.; Coates, S.; Houghton, M.; et al. Priming of CD4+ and CD8+ T cell responses using a HCV core ISCOMATRIX vaccine: A phase I study in healthy volunteers. Hum. Vaccines 2009, 5, 151–157. [Google Scholar] [CrossRef]
- Gawlik, K.; Gallay, P.A. HCV core protein and virus assembly: What we know without structures. Immunol. Res. 2014, 60, 1–10. [Google Scholar] [CrossRef]
- Christiansen, D.; Earnest-Silveira, L.; Grubor-Bauk, B.; Wijesundara, D.K.; Boo, I.; Ramsland, P.A.; Vincan, E.; Drummer, H.E.; Gowans, E.J.; Torresi, J. Pre-clinical evaluation of a quadrivalent HCV VLP vaccine in pigs following microneedle delivery. Sci. Rep. 2019, 9, 9251. [Google Scholar] [CrossRef]
- Mohammadzadeh, S.; Roohvand, F.; Ehsani, P.; Salmanian, A.H.; Ajdary, S. Canola oilseed- and Escherichia coli- derived hepatitis C virus (HCV) core proteins adjuvanted with oil bodies, induced robust Th1-oriented immune responses in immunized mice. J. Pathol. Microbiol. Immunol. APMIS 2020, 128, 593–602. [Google Scholar] [CrossRef]
- Masoudi, M.R.; Rafati, A. Immunogenicity against hepatitis C virus with mesenchymal stem cells of inbreed BALB/c mice sub cloned with HCVcp protein gene. Transpl. Immunol. 2022, 74, 101651. [Google Scholar] [CrossRef] [PubMed]
- Bastola, R.; Noh, G.; Keum, T.; Bashyal, S.; Seo, J.E.; Choi, J.; Oh, Y.; Cho, Y.; Lee, S. Vaccine adjuvants: Smart components to boost the immune system. Arch. Pharmacal Res. 2017, 40, 1238–1248. [Google Scholar] [CrossRef] [PubMed]
- Pouriayevali, M.H.; Bamdad, T.; Aghasadeghi, M.R.; Sadat, S.M.; Sabahi, F. Construction and Immunogenicity Analysis of Hepatitis C Virus (HCV) Truncated Non-Structural Protein 3 (NS3) Plasmid Vaccine. Jundishapur J. Microbiol. 2016, 9, e33909. [Google Scholar] [CrossRef] [PubMed]
- Behzadi, M.A.; Alborzi, A.; Kalani, M.; Pouladfar, G.; Dianatpour, M.; Ziyaeyan, M. Immunization with a Recombinant Expression Vector Encoding NS3/NS4A of Hepatitis C Virus Genotype 3a Elicits Cell-Mediated Immune Responses in C57BL/6 Mice. Viral Immunol. 2016, 29, 138–147. [Google Scholar] [CrossRef] [PubMed]
- Pishraft Sabet, L.; Taheri, T.; Memarnejadian, A.; Mokhtari Azad, T.; Asgari, F.; Rahimnia, R.; Alavian, S.M.; Rafati, S.; Samimi Rad, K. Immunogenicity of Multi-Epitope DNA and Peptide Vaccine Candidates Based on Core, E2, NS3 and NS5B HCV Epitopes in BALB/c Mice. Hepat. Mon. 2014, 14, e22215. [Google Scholar] [CrossRef] [PubMed]
- Dawood, R.M.; Moustafa, R.I.; Abdelhafez, T.H.; El-Shenawy, R.; El-Abd, Y.; Bader El Din, N.G.; Dubuisson, J.; El Awady, M.K. A multiepitope peptide vaccine against HCV stimulates neutralizing humoral and persistent cellular responses in mice. BMC Infect. Dis. 2019, 19, 932. [Google Scholar] [CrossRef]
- Tong, Y.; Li, Q.; Li, R.; Xu, Y.; Pan, Y.; Niu, J.; Zhong, J. A Novel Approach To Display Structural Proteins of Hepatitis C Virus Quasispecies in Patients Reveals a Key Role of E2 HVR1 in Viral Evolution. J. Virol. 2020, 94, e00622-20. [Google Scholar] [CrossRef]
- Brasher, N.A.; Adhikari, A.; Lloyd, A.R.; Tedla, N.; Bull, R.A. Hepatitis C Virus Epitope Immunodominance and B Cell Repertoire Diversity. Viruses 2021, 13, 983. [Google Scholar] [CrossRef]
- Quadeer, A.A.; Louie, R.H.Y.; McKay, M.R. Identifying immunologically-vulnerable regions of the HCV E2 glycoprotein and broadly neutralizing antibodies that target them. Nat. Commun. 2019, 10, 2073. [Google Scholar] [CrossRef]
- Tabll, A.; Abbas, A.T.; El-Kafrawy, S.; Wahid, A. Monoclonal antibodies: Principles and applications of immmunodiagnosis and immunotherapy for hepatitis C virus. World J. Hepatol. 2015, 7, 2369–2383. [Google Scholar] [CrossRef] [PubMed]
- Vlatkovic, I.; Ludwig, J.; Boros, G.; Szabó, G.T.; Reichert, J.; Buff, M.; Baiersdörfer, M.; Reinholz, J.; Mahiny, A.J.; Şahin, U.; et al. Ribozyme Assays to Quantify the Capping Efficiency of In Vitro-Transcribed mRNA. Pharmaceutics 2022, 14, 328. [Google Scholar] [CrossRef]
- Echeverría, N.; Comas, V.; Aldunate, F.; Perbolianachis, P.; Moreno, P.; Cristina, J. In the era of rapid mRNA-based vaccines: Why is there no effective hepatitis C virus vaccine yet? World J. Hepatol. 2021, 13, 1234–1268. [Google Scholar] [CrossRef] [PubMed]
- Krienke, C.; Kolb, L.; Diken, E.; Streuber, M.; Kirchhoff, S.; Bukur, T.; Akilli-Öztürk, Ö.; Kranz, L.M.; Berger, H.; Petschenka, J.; et al. A noninflammatory mRNA vaccine for treatment of experimental autoimmune encephalomyelitis. Science 2021, 371, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, S.; Satapathy, S.R.; Dutta, T. Delivery Strategies for mRNA Vaccines. Pharm. Med. 2022, 36, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Semple, S.C.; Leone, R.; Barbosa, C.J.; Tam, Y.K.; Lin, P.J. Lipid Nanoparticle Delivery Systems to Enable mRNA-Based Therapeutics. Pharmaceutics 2022, 14, 398. [Google Scholar] [CrossRef]
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C.; et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef]
- Pardi, N.; Hogan, M.J.; Porter, F.W.; Weissman, D. mRNA vaccines—A new era in vaccinology. Nat. Rev. Drug Discov. 2018, 17, 261–279. [Google Scholar] [CrossRef]
- Dong, Y.; Dai, T.; Wei, Y.; Zhang, L.; Zheng, M.; Zhou, F. A systematic review of SARS-CoV-2 vaccine candidates. Signal Transduct. Target. Ther. 2020, 5, 237. [Google Scholar] [CrossRef]
- Cao, Y.; Gao, G.F. mRNA vaccines: A matter of delivery. EClinicalMedicine 2021, 32, 100746. [Google Scholar] [CrossRef]
- Ledford, H. Could mixing COVID vaccines boost immune response? Nature 2021, 590, 375–376. [Google Scholar] [CrossRef] [PubMed]
- Spencer, A.J.; McKay, P.F.; Belij-Rammerstorfer, S.; Ulaszewska, M.; Bissett, C.D.; Hu, K.; Samnuan, K.; Blakney, A.K.; Wright, D.; Sharpe, H.R.; et al. Heterologous vaccination regimens with self-amplifying RNA and adenoviral COVID vaccines induce robust immune responses in mice. Nat. Commun. 2021, 12, 2893. [Google Scholar] [CrossRef] [PubMed]
- Gianfredi, V.; Filia, A.; Rota, M.C.; Croci, R.; Bellini, L.; Odone, A.; Signorelli, C. Vaccine Procurement: A Conceptual Framework Based on Literature Review. Vaccines 2021, 9, 1434. [Google Scholar] [CrossRef]
- Kim, C.; Guo, A.; Yassanye, D.; Link-Gelles, R.; Yates, K.; Duggar, C.; Moore, L.; El Kalach, R.; Jones-Jack, N.; Walker, C.; et al. The US Federal Retail Pharmacy Program: Optimizing COVID-19 Vaccine Delivery Through a Strategic Public-Private Partnership. Public Health Rep. 2023, 138, 870–877. [Google Scholar] [CrossRef] [PubMed]
- Mao, W.; Zimmerman, A.; Urli Hodges, E.; Ortiz, E.; Dods, G.; Taylor, A.; Udayakumar, K. Comparing research and development, launch, and scale up timelines of 18 vaccines: Lessons learnt from COVID-19 and implications for other infectious diseases. BMJ Glob. Health 2023, 8, e012855. [Google Scholar] [CrossRef] [PubMed]
- Fajber, K. Business as Usual? Centering Human Rights to Advance Global COVID-19 Vaccine Equity Through COVAX. Health Hum. Rights 2022, 24, 219–228. [Google Scholar] [PubMed]
- Bush, H.; Paik, J.; Golabi, P.; de Avila, L.; Escheik, C.; Younossi, Z.M. Impact of hepatitis C virus and insurance coverage on mortality. Am. J. Manag. Care 2019, 25, 61–67. [Google Scholar]
- Ha, S.; Timmerman, K. Awareness and knowledge of hepatitis C among health care providers and the public: A scoping review. Can. Commun. Dis. Rep. 2018, 44, 157–165. [Google Scholar] [CrossRef]
- Kana, B.D.; Arbuthnot, P.; Botwe, B.K.; Choonara, Y.E.; Hassan, F.; Louzir, H.; Matsoso, P.; Moore, P.L.; Muhairwe, A.; Naidoo, K.; et al. Opportunities and challenges of leveraging COVID-19 vaccine innovation and technologies for developing sustainable vaccine manufacturing capabilities in Africa. Lancet Infect. Dis. 2023, 23, e288–e300. [Google Scholar] [CrossRef]
- Permaul Flores, H.; Kohler, J.C.; Dimancesco, D.; Wong, A.; Lexchin, J. Medicine donations: A review of policies and practices. Glob. Health 2023, 19, 67. [Google Scholar] [CrossRef]
- Soni, G.K.; Seth, S.; Arora, S.; Singh, K.; Kumari, A.; Kanagat, N.; Fields, R. Harnessing the Power of Collaboration to Expand the Coverage and Equity of COVID-19 Vaccinations in India: A Community Collaboration Model. Vaccines 2023, 11, 1022. [Google Scholar] [CrossRef]
- Mohanty, E.; Mohanty, A. Role of artificial intelligence in peptide vaccine design against RNA viruses. Inform. Med. Unlocked 2021, 26, 100768. [Google Scholar] [CrossRef] [PubMed]
- McCaffrey, P. Artificial Intelligence for Vaccine Design. Methods Mol. Biol. 2022, 2412, 3–13. [Google Scholar] [PubMed]
- Harris, M.; Rhodes, T. Hepatitis C treatment access and uptake for people who inject drugs: A review mapping the role of social factors. Harm Reduct. J. 2013, 10, 7. [Google Scholar] [CrossRef] [PubMed]
- Pedlar, A.; Sandhu, P.J. Promoting treatment for hepatitis C in people who inject drugs: A review of the barriers and opportunities. J. Am. Assoc. Nurse Pract. 2020, 32, 563–568. [Google Scholar] [CrossRef] [PubMed]
- Tuckerman, J.; Kaufman, J.; Danchin, M. Effective Approaches to Combat Vaccine Hesitancy. Pediatr. Infect. Dis. J. 2022, 41, e243–e245. [Google Scholar] [CrossRef] [PubMed]
- Druedahl, L.C.; Minssen, T.; Price, W.N. Collaboration in times of crisis: A study on COVID-19 vaccine R&D partnerships. Vaccine 2021, 39, 6291–6295. [Google Scholar]
- Sparke, M.; Levy, O. Competing Responses to Global Inequalities in Access to COVID Vaccines: Vaccine Diplomacy and Vaccine Charity Versus Vaccine Liberty. Clin. Infect. Dis. 2022, 75 (Suppl. S1), S86–S92. [Google Scholar] [CrossRef]
- Feld, J.J.; Bruneau, J.; Dore, G.J.; Ghany, M.G.; Hansen, B.; Sulkowski, M.; Thomas, D.L. Controlled human infection model for hepatitis C virus vaccine development: Trial design considerations. Clin. Infect. Dis. 2023, 77 (Suppl. S3), S262–S269. [Google Scholar] [CrossRef]
- Obaid, A.; Naz, A.; Ikram, A.; Awan, F.M.; Raza, A.; Ahmad, J.; Ali, A. Model of the adaptive immune response system against HCV infection reveals potential immunomodulatory agents for combination therapy. Sci. Rep. 2018, 8, 8874. [Google Scholar] [CrossRef]
- Wang, X.Y.; Wang, B.; Wen, Y.M. From therapeutic antibodies to immune complex vaccines. NPJ Vaccines 2019, 4, 2. [Google Scholar] [CrossRef] [PubMed]
- Kemming, J.; Thimme, R.; Neumann-Haefelin, C. Adaptive Immune Response against Hepatitis C Virus. Int. J. Mol. Sci. 2020, 21, 5644. [Google Scholar] [CrossRef]
- Matić, Z.; Šantak, M. Biotechnology, Current view on novel vaccine technologies to combat human infectious diseases. Appl. Microbiol. Biotechnol. 2022, 106, 25–56. [Google Scholar] [CrossRef] [PubMed]
- Vargová, S. Current Approaches in the Development of Vaccines against Infectious Viral Diseases. Bachelor’s Thesis, Charles University—Faculty of Science, Prague, Czech Republic, 2022. [Google Scholar]
- Guo, X.; Zhong, J.Y.; Li, J.W. Hepatitis C virus infection and vaccine development. J. Clin. Exp. Hepatol. 2018, 8, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, Z. Assessing and Improving the Hepatitis C Virus Cascade of Care for Marginalised Populations. Ph.D. Thesis, Imperial College London, London, UK, 2022. [Google Scholar]
- Cox, A.L. Challenges and promise of a hepatitis C virus vaccine. Cold Spring Harb. Perspect. Med. 2020, 10, a036947. [Google Scholar] [CrossRef] [PubMed]
- Locarnini, S.; Hatzakis, A.; Chen, D.S.; Lok, A. Strategies to control hepatitis B: Public policy, epidemiology, vaccine and drugs. J. Hepatol. 2015, 62, S76–S86. [Google Scholar] [CrossRef] [PubMed]
- Fries, C.N.; Curvino, E.J.; Chen, J.L.; Permar, S.R.; Fouda, G.G.; Collier, J.H. Advances in nanomaterial vaccine strategies to address infectious diseases impacting global health. Nat. Nanotechnol. 2021, 16, 1–14. [Google Scholar] [CrossRef]
- Duraisamy, G.S.; Bhosale, D.; Lipenská, I.; Huvarova, I.; Růžek, D.; Windisch, M.P.; Miller, A.D. Advanced therapeutics, vaccinations, and precision medicine in the treatment and management of chronic hepatitis b viral infections: Where are we and where are we going? Viruses 2020, 12, 998. [Google Scholar] [CrossRef]
- Wedemeyer, H.; Tergast, T.L.; Lazarus, J.V.; Razavi, H.; Bakoyannis, K.; Baptista-Leite, R.; Bartoli, M.; Bruggmann, P.; Buşoi, C.S.; Buti, M.; et al. Securing wider EU commitment to the elimination of hepatitis C virus. Liver Int. 2023, 43, 276–291. [Google Scholar] [CrossRef]
- Shoukry, N.H. Hepatitis C vaccines, antibodies, and T cells. Liver Int. 2018, 9, 1480. [Google Scholar] [CrossRef]
- Travieso, T.; Li, J.; Mahesh, S.; Mello, J.; Blasi, M. The use of viral vectors in vaccine development. NPJ Vaccines 2022, 7, 75. [Google Scholar] [CrossRef] [PubMed]
- Stevens, H.; Debackere, K.; Goldman, M.; Mahoney, R.T.; Stevens, P.; Huys, I. Vaccines: Accelerating Innovation and Access; World Intellectual Property Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Hayman, B.; Suri, R.K.; Downham, M. Sustainable vaccine manufacturing in Low-and middle-income countries. Vaccine 2022, 40, 7288–7304. [Google Scholar] [CrossRef] [PubMed]
- Halliday, J.; Klenerman, P.; Barnes, E. Vaccination for hepatitis C virus: Closing in on an evasive target. Expert Rev. Vaccines 2011, 10, 659–672. [Google Scholar] [CrossRef] [PubMed]
- Kwok, A.J.; Mentzer, A.; Knight, J.C. Host genetics and infectious disease: New tools, insights and translational opportunities. Nat. Rev. Genet. 2021, 22, 137–153. [Google Scholar] [CrossRef]
- Bukh, J. The history of hepatitis C virus (HCV): Basic research reveals unique features in phylogeny, evolution and the viral life cycle with new perspectives for epidemic control. J. Hepatol. 2016, 65, S2–S21. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tabll, A.A.; Sohrab, S.S.; Ali, A.A.; Petrovic, A.; Steiner Srdarevic, S.; Siber, S.; Glasnovic, M.; Smolic, R.; Smolic, M. Future Prospects, Approaches, and the Government’s Role in the Development of a Hepatitis C Virus Vaccine. Pathogens 2024, 13, 38. https://doi.org/10.3390/pathogens13010038
Tabll AA, Sohrab SS, Ali AA, Petrovic A, Steiner Srdarevic S, Siber S, Glasnovic M, Smolic R, Smolic M. Future Prospects, Approaches, and the Government’s Role in the Development of a Hepatitis C Virus Vaccine. Pathogens. 2024; 13(1):38. https://doi.org/10.3390/pathogens13010038
Chicago/Turabian StyleTabll, Ashraf A., Sayed S. Sohrab, Ahmed A. Ali, Ana Petrovic, Sabina Steiner Srdarevic, Stjepan Siber, Marija Glasnovic, Robert Smolic, and Martina Smolic. 2024. "Future Prospects, Approaches, and the Government’s Role in the Development of a Hepatitis C Virus Vaccine" Pathogens 13, no. 1: 38. https://doi.org/10.3390/pathogens13010038
APA StyleTabll, A. A., Sohrab, S. S., Ali, A. A., Petrovic, A., Steiner Srdarevic, S., Siber, S., Glasnovic, M., Smolic, R., & Smolic, M. (2024). Future Prospects, Approaches, and the Government’s Role in the Development of a Hepatitis C Virus Vaccine. Pathogens, 13(1), 38. https://doi.org/10.3390/pathogens13010038