Multicentric Study on Enteric Protists Occurrence in Zoological Parks in Portugal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Sample Collection
2.2. DNA Extraction and Purification
2.3. Molecular Detection
2.4. Electrophoresis
2.5. Sanger Sequencing and Phylogeny
3. Results
3.1. Balantioides coli
3.2. Blastocystis sp.
3.3. Cryptosporidium spp.
3.4. Eimeria spp.
3.5. Giardia spp.
3.6. Clinical Impact of Infections
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fletcher, S.; Stark, D.; Harkness, J.; Ellis, J. Enteric Protozoa in the Developed World: A Public Health Perspective. Clin. Microbiol. Rev. 2012, 25, 420–449. [Google Scholar] [CrossRef]
- Kotloff, K.L.; Nataro, J.P.; Blackwelder, W.C.; Nasrin, D.; Farag, T.H.; Panchalingam, S.; Wu, Y.; Sow, S.O.; Sur, D.; Breiman, R.F.; et al. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): A prospective, case-control study. Lancet 2013, 382, 209–222. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Vega, J.T.; Tay-Zavala, J.; Calderón-Romero, L.; Aguilar-Chiu, A.; Ruiz-Sánchez, D.; Rodríguez-Covarrubias, J.A.; Malagón, F.; Ordóñez-Martínez, J. Cryptosporidiosis and Other Intestinal Protozoan Infections in Children Less Than One Year of Age in Mexico City. Am. J. Trop. Med. Hyg. 2006, 75, 1095–1098. [Google Scholar] [CrossRef]
- Ellatif, N.A.; Mohamed, M.; El-Taweel, H.; Hamam, M.; Saudi, M. Intestinal protozoa in diarrheic children in an Egyptian rural area: Role of water contamination and other possible risk factors. Parasitol. United J. 2018, 11, 82–89. [Google Scholar] [CrossRef]
- Schär, F.; Inpankaew, T.; Traub, R.J.; Khieu, V.; Dalsgaard, A.; Chimnoi, W.; Chhoun, C.; Sok, D.; Marti, H.; Muth, S.; et al. The prevalence and diversity of intestinal parasitic infections in humans and domestic animals in a rural Cambodian village. Parasitol. Int. 2014, 63, 597–603. [Google Scholar] [CrossRef]
- Yasur-Landau, D.; Zilberberg, M.; Markovich, M.P.; Behar, A.; Fleiderovitz, L.; Mazuz, M.L. Cryptosporidium parvum subtypes from diarrheic dairy calves in Israel. Vet. Parasitol. Reg. Stud. Rep. 2021, 25, 100608. [Google Scholar] [CrossRef] [PubMed]
- Badiei, K.; Pourjafar, M.; Ghane, M. Detection of faecal Cryptosporidium parvum antigen in diarrheic Holstein dairy cows. Trop. Biomed. 2011, 28, 382–388. [Google Scholar] [PubMed]
- Blake, D.P.; Knox, J.; Dehaeck, B.; Huntington, B.; Rathinam, T.; Ravipati, V.; Ayoade, S.; Gilbert, W.; Adebambo, A.O.; Jatau, I.D.; et al. Re-calculating the cost of coccidiosis in chickens. Vet. Res. 2020, 51, 115. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, C.; Larsen, J.W.; Besier, R.B.; Lloyd, J.B.; Kahn, L.P. Diarrhoea associated with gastrointestinal parasites in grazing sheep. Vet. Parasitol. 2020, 282, 109139. [Google Scholar] [CrossRef] [PubMed]
- Levecke, B.; Dorny, P.; Geurden, T.; Vercammen, F.; Vercruysse, J. Gastrointestinal protozoa in non-human primates of four zoological gardens in Belgium. Vet. Parasitol. 2007, 148, 236–246. [Google Scholar] [CrossRef] [PubMed]
- Björkman, C.; Svensson, C.; Christensson, B.; de Verdier, K. Cryptosporidium parvum and Giardia intestinalis in Calf Diarrhoea in Sweden. Acta Vet. Scand. 2003, 44, 145–152. [Google Scholar] [CrossRef]
- Park, Y.-J.; Cho, H.-C.; Jang, D.-H.; Park, J.; Choi, K.-S. Multilocus genotyping of Giardia duodenalis in pre-weaned calves with diarrhea in the Republic of Korea. PLoS ONE 2023, 18, e0279533. [Google Scholar] [CrossRef]
- Ahmed, A.; Ijaz, M.; Ayyub, R.M.; Ghaffar, A.; Ghauri, H.N.; Aziz, M.U.; Ali, S.; Altaf, M.; Awais, M.; Naveed, M.; et al. Balantidium coli in domestic animals: An emerging protozoan pathogen of zoonotic significance. Acta Trop. 2020, 203, 105298. [Google Scholar] [CrossRef]
- Jian, Y.-N.; Wang, G.-P.; Li, X.-P.; Zhang, X.-Y.; Ma, L.-Q. The First Case of Diarrhoea in Tibetan Sheep, Ovis aries, Caused by Balantidium coli in the Qinghai Tibetan Plateau Area, China. Korean J. Parasitol. 2018, 56, 603–607. [Google Scholar] [CrossRef]
- Pierce, K.K.; Kirkpatrick, B.D. Update on human infections caused by intestinal protozoa. Curr. Opin. Gastroenterol. 2009, 25, 12–17. [Google Scholar] [CrossRef]
- Okhuysen, P.C.; Ericsson, C.D.; Steffen, R. Traveler’s Diarrhea Due to Intestinal Protozoa. Clin. Infect. Dis. 2001, 33, 110–114. [Google Scholar] [CrossRef] [PubMed]
- David, B.; Guimarães, S.; de Oliveira, A.P.; de Oliveira-Sequeira, T.C.G.; Bittencourt, G.N.; Nardi, A.R.M.; Ribolla, P.E.M.; Franco, R.M.B.; Branco, N.; Tosini, F.; et al. Molecular characterization of intestinal protozoa in two poor communities in the State of São Paulo, Brazil. Parasites Vectors 2015, 8, 103. [Google Scholar] [CrossRef]
- Santos-Silva, S.; Moraes, D.F.d.S.D.; López-López, P.; Palmeira, J.D.; Torres, R.T.; Nascimento, M.S.J.; Dashti, A.; Carmena, D.; Rivero-Juarez, A.; Mesquita, J.R. Survey of Zoonotic Diarrheagenic Protist and Hepatitis E Virus in Wild Boar (Sus scrofa) of Portugal. Animals 2023, 13, 256. [Google Scholar] [CrossRef]
- Davis, C.C. Ciliated Protozoa. Ecology 1962, 43, 783. [Google Scholar] [CrossRef]
- Aninagyei, E.; Nanga, S.; Acheampong, D.O.; Mensah, R.; Boadu, M.N.; Kwansa-Bentum, H.T.; Tettey, C.O. Prevalence and risk factors of human Balantidium coli infection and its association with haematological and biochemical parameters in Ga West Municipality, Ghana. BMC Infect. Dis. 2021, 21, 1047. [Google Scholar] [CrossRef] [PubMed]
- Swartzwelder, J.C. Balantidiasis. Dig. Dis. Sci. 1950, 17, 173–179. [Google Scholar] [CrossRef]
- Walzer, P.D.; English, D.K.; Judson, F.N.; Schultz, M.G.; Healy, G.R.; Murphy, K.B. Balantidiasis outbreak in Truk. Am. J. Trop. Med. Hyg. 1973, 22, 33–41. [Google Scholar] [CrossRef]
- Ponce-Gordo, F.; García-Rodríguez, J.J. Balantioides coli. Res. Vet. Sci. 2020, 135, 424–431. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.J.; Lindsay, D.S.; Sriranganathan, N. Wild boars as sources for infectious diseases in livestock and humans. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2009, 364, 2697–2707. [Google Scholar] [CrossRef]
- Sanggari, A.; Komala, T.; Rauff-Adetotun, A.A.; Awosolu, O.B.; Attah, O.A.; Farah Haziqah, M.T. Blastocystis in captivated and free-ranging wild animals worldwide: A review. Trop. Biomed. 2022, 39, 338–372. [Google Scholar] [CrossRef] [PubMed]
- Baek, S.; Maloney, J.G.; Molokin, A.; George, N.S.; Vecino, J.A.C.; Santin, M. Diversity of Blastocystis Subtypes in Horses in Colombia and Identification of Two New Subtypes. Microorganisms 2022, 10, 1693. [Google Scholar] [CrossRef] [PubMed]
- Maloney, J.G.; Molokin, A.; da Cunha, M.J.R.; Cury, M.C.; Santin, M. Blastocystis subtype distribution in domestic and captive wild bird species from Brazil using next generation amplicon sequencing. Parasite Epidemiol. Control 2020, 9, e00138. [Google Scholar] [CrossRef] [PubMed]
- Santin, M.; Figueiredo, A.; Molokin, A.; George, N.S.; Köster, P.C.; Dashti, A.; González-Barrio, D.; Carmena, D.; Maloney, J.G. Division of Blastocystis ST10 into three new subtypes: ST42-ST44. J. Eukaryot. Microbiol. 2023, 71, e12998. [Google Scholar] [CrossRef]
- Parkar, U.; Traub, R.J.; Kumar, S.; Mungthin, M.; Vitali, S.; Leelayoova, S.; Morris, K.; Thompson, R.C.A. Direct characterization of Blastocystis from faeces by PCR and evidence of zoonotic potential. Parasitology 2006, 134, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Köster, P.C.; Martínez-Nevado, E.; González, A.; Abelló-Poveda, M.T.; Fernández-Bellon, H.; de la Riva-Fraga, M.; Marquet, B.; Guéry, J.-P.; Knauf-Witzens, T.; Weigold, A.; et al. Intestinal Protists in Captive Non-human Primates and Their Handlers in Six European Zoological Gardens. Molecular Evidence of Zoonotic Transmission. Front. Vet. Sci. 2022, 8, 819887. [Google Scholar] [CrossRef] [PubMed]
- Stensvold, C.R.; Alfellani, M.A.; Nørskov-Lauritsen, S.; Prip, K.; Victory, E.L.; Maddox, C.; Nielsen, H.V.; Clark, C.G. Subtype distribution of Blastocystis isolates from synanthropic and zoo animals and identification of a new subtype. Int. J. Parasitol. 2008, 39, 473–479. [Google Scholar] [CrossRef] [PubMed]
- Greige, S.; El Safadi, D.; Bécu, N.; Gantois, N.; Pereira, B.; Chabé, M.; Benamrouz-Vanneste, S.; Certad, G.; El Hage, R.; Chemaly, M.; et al. Prevalence and subtype distribution of Blastocystis sp. isolates from poultry in Lebanon and evidence of zoonotic potential. Parasites Vectors 2018, 11, 389. [Google Scholar] [CrossRef]
- Li, L.-H.; Zhou, X.-N.; Du, Z.-W.; Wang, X.-Z.; Wang, L.-B.; Jiang, J.-Y.; Yoshikawa, H.; Steinmann, P.; Utzinger, J.; Wu, Z.; et al. Molecular epidemiology of human Blastocystis in a village in Yunnan province, China. Parasitol. Int. 2007, 56, 281–286. [Google Scholar] [CrossRef]
- Wang, W.; Owen, H.; Traub, R.J.; Cuttell, L.; Inpankaew, T.; Bielefeldt-Ohmann, H. Molecular epidemiology of Blastocystis in pigs and their in-contact humans in Southeast Queensland, Australia, and Cambodia. Vet. Parasitol. 2014, 203, 264–269. [Google Scholar] [CrossRef]
- Tan, K.S.W. New Insights on Classification, Identification, and Clinical Relevance of Blastocystis spp. Clin. Microbiol. Rev. 2008, 21, 639–665. [Google Scholar] [CrossRef] [PubMed]
- Lepczyńska, M.; Chen, W.; Dzika, E. Mysterious chronic urticaria caused by Blastocystis spp.? Int. J. Dermatol. 2015, 55, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Rajič, B.; Arapović, J.; Raguž, K.; Bošković, M.; Babić, S.M.; Maslać, S. Eradication of Blastocystis hominis prevents the development of symptomatic Hashimoto’s thyroiditis: A case report. J. Infect. Dev. Ctries. 2015, 9, 788–791. [Google Scholar] [CrossRef] [PubMed]
- Reh, L.; Muadica, A.S.; Köster, P.C.; Balasegaram, S.; Verlander, N.Q.; Chércoles, E.R.; Carmena, D. Substantial prevalence of enteroparasites Cryptosporidium spp., Giardia duodenalis and Blastocystis sp. in asymptomatic schoolchildren in Madrid, Spain, November 2017 to June 2018. Eurosurveillance 2019, 24, 1900241. [Google Scholar] [CrossRef]
- Popruk, S.; Adao, D.E.V.; Rivera, W.L. Epidemiology and subtype distribution of Blastocystis in humans: A review. Infect. Genet. Evol. 2021, 95, 105085. [Google Scholar] [CrossRef]
- Cassano, N.; Scoppio, B.M.; Loviglio, M.C.; Vena, G. Remission of Delayed Pressure Urticaria after Eradication of Blastocystis hominis. Acta Derm. Venereol. 2005, 85, 357–358. [Google Scholar] [CrossRef]
- Biedermann, T.; Hartmann, K.; Sing, A.; Przybilla, B. Hypersensitivity to non-steroidal anti-inflammatory drugs and chronic urticaria cured by treatment of Blastocystis hominis infection. Br. J. Dermatol. 2002, 146, 1113–1114. [Google Scholar] [CrossRef]
- Ryan, U.M.; Feng, Y.; Fayer, R.; Xiao, L. Taxonomy and molecular epidemiology of Cryptosporidium and Giardia—A 50 year perspective (1971–2021). Int. J. Parasitol. 2021, 51, 1099–1119. [Google Scholar] [CrossRef]
- Kivistö, R.; Kämäräinen, S.; Huitu, O.; Niemimaa, J.; Henttonen, H. Zoonotic Cryptosporidium spp. in Wild Rodents and Shrews. Microorganisms 2021, 9, 2242. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Deng, H.; Zheng, Y.; Zhang, H.; Wang, S.; He, L.; Zhao, J. First Characterization and Zoonotic Potential of Cryptospor-idium spp. and Giardia Duodenalis in Pigs in Hubei Province of China. Front. Cell Infect. Microbiol. 2022, 12, 949773. [Google Scholar] [CrossRef]
- García-Livia, K.; Fernández-Álvarez, Á.; Feliu, C.; Miquel, J.; Quilichini, Y.; Foronda, P. Cryptosporidium spp. in wild murids (Rodentia) from Corsica, France. Parasitol. Res. 2021, 121, 345–354. [Google Scholar] [CrossRef]
- Duszynski, D.W. Eimeria. In Encyclopedia of Life Sciences; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2011. [Google Scholar]
- Kemp, L.E.; Yamamoto, M.; Soldati-Favre, D. Subversion of host cellular functions by the apicomplexan parasites. FEMS Microbiol. Rev. 2013, 37, 607–631. [Google Scholar] [CrossRef] [PubMed]
- Sprong, H.; Cacciò, S.M.; van der Giessen, J.W.B.; on behalf of the ZOOPNET network and partners. Identification of Zoonotic Genotypes of Giardia duodenalis. PLoS Negl. Trop. Dis. 2009, 3, e558. [Google Scholar] [CrossRef]
- Lasek-Nesselquist, E.; Welch, D.M.; Sogin, M.L. The identification of a new Giardia duodenalis assemblage in marine vertebrates and a preliminary analysis of G. duodenalis population biology in marine systems. Int. J. Parasitol. 2010, 40, 1063–1074. [Google Scholar] [CrossRef] [PubMed]
- Minetti, C.; Taweenan, W.; Hogg, R.; Featherstone, C.; Randle, N.; Latham, S.M.; Wastling, J.M. Occurrence and Diversity of Giardia duodenalis Assemblages in Livestock in the UK. Transbound. Emerg. Dis. 2013, 61, e60–e67. [Google Scholar] [CrossRef] [PubMed]
- Shu, F.; Song, S.; Wei, Y.; Li, F.; Guo, Y.; Feng, Y.; Xiao, L.; Li, N. High zoonotic potential of Cryptosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi in wild nonhuman primates from Yunnan Province, China. Parasites Vectors 2022, 15, 85. [Google Scholar] [CrossRef]
- Dixon, B.R. Giardia duodenalis in humans and animals–Transmission and disease. Res. Vet. Sci. 2020, 135, 283–289. [Google Scholar] [CrossRef]
- Feng, Y.; Xiao, L. Zoonotic Potential and Molecular Epidemiology of Giardia Species and Giardiasis. Clin. Microbiol. Rev. 2011, 24, 110–140. [Google Scholar] [CrossRef] [PubMed]
- Thompson, R.C.; Monis, P.T. Variation in Giardia: Implications for Taxonomy and Epidemiology. Adv. Parasitol. 2004, 58, 69–137. [Google Scholar] [CrossRef]
- Appelbee, A.J.; Thompson, R.A.; Olson, M.E. Giardia and Cryptosporidium in mammalian wildlife–current status and future needs. Trends Parasitol. 2005, 21, 370–376. [Google Scholar] [CrossRef]
- Ponce-Gordo, F.; Jimenez-Ruiz, E.; Martínez-Díaz, R. Tentative identification of the species of Balantidium from ostriches (Struthio camelus) as Balantidium coli-like by analysis of polymorphic DNA. Vet. Parasitol. 2008, 157, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Scicluna, S.M.; Tawari, B.; Clark, C.G. DNA Barcoding of Blastocystis. Protist 2006, 157, 77–85. [Google Scholar] [CrossRef]
- Tiangtip, R.; Jongwutiwes, S. Molecular analysis of Cryptosporidium species isolated from HIV-infected patients in Thailand. Trop. Med. Int. Health 2002, 7, 357–364. [Google Scholar] [CrossRef]
- Li, N.; Xiao, L.; Alderisio, K.; Elwin, K.; Cebelinski, E.; Chalmers, R.; Santin, M.; Fayer, R.; Kvac, M.; Ryan, U.; et al. Subtyping Cryptosporidium ubiquitum, a Zoonotic Pathogen Emerging in Humans. Emerg. Infect. Dis. 2014, 20, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Couso-Pérez, S.; Ares-Mazás, E.; Gómez-Couso, H. First molecular data on Eimeria truttae from brown trout (Salmo trutta). Parasitol. Res. 2019, 118, 2121–2127. [Google Scholar] [CrossRef]
- Helmy, Y.A.; Spierling, N.G.; Schmidt, S.; Rosenfeld, U.M.; Reil, D.; Imholt, C.; Jacob, J.; Ulrich, R.G.; Aebischer, T.; Klotz, C. Occurrence and distribution of Giardia species in wild rodents in Germany. Parasites Vectors 2018, 11, 213. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Tamura, K. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C-content biases. Mol. Biol. Evol. 1992, 9, 678–687. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, A.d.S.; Pinheiro, J.L.; dos Santos, C.R.; de Lima, C.S.C.C.; Dib, L.V.; Echarte, G.V.; Augusto, A.M.; Bastos, A.C.M.P.; Uchôa, C.M.A.; Bastos, O.M.P.; et al. Gastrointestinal Parasites in Captive Animals at the Rio de Janeiro Zoo. Acta Parasitol. 2019, 65, 237–249. [Google Scholar] [CrossRef]
- Mirzapour, A.; Kiani, H.; Mobedi, I.; Spotin, A.; Seyyed Tabaei, S.J.; Rahimi, M. Frequency of Intestinal Parasites among Zoo Animal by Morphometric Criteria and First Report of the Bivitellobilharzia nairi from Elephant (Elephasmaximus maximus) in Iran. Iran. J. Parasitol. 2018, 13, 611–617. [Google Scholar] [PubMed]
- Conrad, C.C.; Stanford, K.; Narvaez-Bravo, C.; Callaway, T.; McAllister, T. Farm Fairs and Petting Zoos: A Review of Animal Contact as a Source of Zoonotic Enteric Disease. Foodborne Pathog. Dis. 2017, 14, 59–73. [Google Scholar] [CrossRef]
- Lim, Y.; Ngui, R.; Shukri, J.; Rohela, M.; Naim, H.M. Intestinal parasites in various animals at a zoo in Malaysia. Vet. Parasitol. 2008, 157, 154–159. [Google Scholar] [CrossRef] [PubMed]
- Dhakal, P.; Sharma, H.P.; Shah, R.; Thapa, P.J.; Pokheral, C.P. Copromicroscopic study of gastrointestinal parasites in captive mammals at Central Zoo, Lalitpur, Nepal. Vet. Med. Sci. 2022, 9, 457–464. [Google Scholar] [CrossRef] [PubMed]
- Vonfeld, I.; Prenant, T.; Polack, B.; Guillot, J.; Quintard, B. Gastrointestinal parasites in non-human primates in zoological institutions in France. Parasite 2022, 29, 43. [Google Scholar] [CrossRef] [PubMed]
- Muoria, P.K.; Muruthi, P.; Rubenstein, D.; Oguge, N.O.; Munene, E. Cross-sectional survey of gastro-intestinal parasites of Grevy’s zebras in southern Samburu, Kenya. Afr. J. Ecol. 2005, 43, 392–395. [Google Scholar] [CrossRef]
- Geraghty, V.; Mooney, J.; Pike, K. A study of parasitic infections in mammals and birds at the Dublin Zoological Gardens. Vet. Res. Commun. 1981, 5, 343–348. [Google Scholar] [CrossRef]
- Köster, P.C.; Dashti, A.; Bailo, B.; Muadica, A.S.; Maloney, J.G.; Santín, M.; Chicharro, C.; Migueláñez, S.; Nieto, F.J.; Cano-Terriza, D.; et al. Occurrence and Genetic Diversity of Protist Parasites in Captive Non-Human Primates, Zookeepers, and Free-Living Sympatric Rats in the Córdoba Zoo Conservation Centre, Southern Spain. Animals 2021, 11, 700. [Google Scholar] [CrossRef]
- Ponce-Gordo, F.; Fonseca-Salamanca, F.; Martínez-Díaz, R.A. Genetic Heterogeneity in Internal Transcribed Spacer Genes of Balantidium coli (Litostomatea, Ciliophora). Protist 2011, 162, 774–794. [Google Scholar] [CrossRef] [PubMed]
- Herrera, H.M.; Abreu, U.G.P.; Keuroghlian, A.; Freitas, T.P.; Jansen, A.M. The role played by sympatric collared peccary (Tayassu tajacu), white-lipped peccary (Tayassu pecari), and feral pig (Sus scrofa) as maintenance hosts for Trypanosoma evansi and Trypanosoma cruzi in a sylvatic area of Brazil. Parasitol. Res. 2008, 103, 619–624. [Google Scholar] [CrossRef] [PubMed]
- Dashti, A.; Rivero-Juárez, A.; Santín, M.; George, N.S.; Köster, P.C.; López-López, P.; Risalde, M.A.; García-Bocanegra, I.; Gómez-Villamandos, J.C.; Caballero-Gómez, J.; et al. Diarrhoea-causing enteric protist species in intensively and extensively raised pigs (Sus scrofa domesticus) in Southern Spain. Part I: Prevalence and genetic diversity. Transbound. Emerg. Dis. 2021, 69, E1051–E1064. [Google Scholar] [CrossRef] [PubMed]
- Grossel, L.A.; Javorouski, M.L.; Shimada, M.K. Report of a protozoan of the phylum Ciliophora compatible with Balantioides coli in feces of white-lipped peccaries in Brazil. Bol. Mus. Para. Emílio Goeldi-Ciências Nat. 2022, 17, 569–574. [Google Scholar] [CrossRef]
- Samuel, W.M.; Low, W.A. Parasites of the Collared Peccary from Texas. J. Wildl. Dis. 1970, 6, 16–23. [Google Scholar] [CrossRef]
- Hublin, J.S.; Maloney, J.G.; Santin, M. Blastocystis in domesticated and wild mammals and birds. Res. Vet. Sci. 2020, 135, 260–282. [Google Scholar] [CrossRef]
- Rauff-Adedotun, A.A.; Termizi, F.H.M.; Shaari, N.; Lee, I.L. The Coexistence of Blastocystis spp. in Humans, Animals and Environmental Sources from 2010–2021 in Asia. Biology 2021, 10, 990. [Google Scholar] [CrossRef]
- Singh, M.; Ho, L.C.; Yap, A.L.L.; Ng, G.C.; Tan, S.W.; Moe, K.T.; Yap, E.H. Axenic culture of reptilian Blastocystis isolates in monophasic medium and speciation by karyotypic typing. Parasitol. Res. 1996, 82, 165–169. [Google Scholar] [CrossRef]
- Xiao, L. Molecular epidemiology of cryptosporidiosis: An update. Exp. Parasitol. 2010, 124, 80–89. [Google Scholar] [CrossRef]
- Elwin, K.; Hadfield, S.J.; Robinson, G.; Chalmers, R.M. The Epidemiology of Sporadic Human Infections with Unusual Cryp-tosporidia Detected during Routine Typing in England and Wales, 2000–2008. Epidemiol. Infect. 2012, 140, 673–683. [Google Scholar] [CrossRef] [PubMed]
- Blake, D.P. Eimeria genomics: Where are we now and where are we going? Vet. Parasitol. 2015, 212, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Clark, E.L.; Tomley, F.M.; Blake, D.P. Are Eimeria Genetically Diverse, and Does It Matter? Trends Parasitol. 2017, 33, 231–241. [Google Scholar] [CrossRef]
- Long, P.L.; Joyner, L.P. Problems in the Identification of Species of Eimeria. J. Protozool. 1984, 31, 535–541. [Google Scholar] [CrossRef] [PubMed]
- El-Sherry, S.; Ogedengbe, M.E.; Hafeez, M.A.; Barta, J.R. Divergent nuclear 18S rDNA paralogs in a turkey coccidium, Eimeria meleagrimitis, complicate molecular systematics and identification. Int. J. Parasitol. 2013, 43, 679–685. [Google Scholar] [CrossRef] [PubMed]
Target Organism | Locus | Primer | Sequence (5′-3′) | Reference |
---|---|---|---|---|
Balantioides coli | ITS region and the last 117 bp at the 3′ end of the ssu-rRNA | B5D B5RC | 5′–GCTCCTACCGATACCGGGT–3′ 5′–ATATGCTTAAGTTCAGCGGG–3′ | [56] |
Blastocystis sp. | 600 bp region of the ssu-rRNA gene | RD5 BhRdr | 5′–ATCTGGTTGATCCTGCCAGT–3′ 5′–GAGCTTTTTAACTGCAACAACG–3′ | [57] |
Cryptosporidium spp.–SSU-rRNA | 587 bp region of the ssu-rRNA gene | CR-P1 CRP2 CR-P3 CPB-DIAGR | 5′–CAGGGAGGTAGTGACAAGAA–3′ 5′–TCAGCCTTGCGACCATACTC–3′ 5′–ATTGGAGGGCAAGTCTGGTG–3′ 5′–TAAGGTGCTGAAGG AGTAAGG–3′ | [58] |
Cryptosporidium spp.–gp60 | 948 bp region of the gp60 gene | Ubi-18S-F1 Ubi-18S-R1 Ubi-18S-F2 Ubi-18S-R2 | 5′–TTTACCCACACATCTGTAGCGTCG–3′ 5′–ACGGACGGAATGATGTATCTGA–3′ 5′–ATAGGTGATAATTAGTCAGTCTTTAAT–3′ 5′–TCCAAAAGCGGCTGAGTCAGCATC–3′ | [59] |
Eimeria spp. | 420 bp region of the ssu-rRNA gene | Ei18sF Ei18sR ER10 | 5′–CCCAATGAAAACAGYTTCGAGG–3′ 5′–AAACCCCCTACTGTCGTTCTTG–3′ 5′–GCCCCCAACTGTCCCTATTA–3′ | [60] |
Giardia spp. | 293 bp region of the ssu-rRNA gene | RH11-derivates Gia2150c RH4–derivates | Equal mix of 5′–CATCCGGTCGATCCTGCC–3′ and 5′–CATCCGGTTGATCCTGCC–3′ (RH11 derivates) 5′–CTGCTGCCGTCCTTGGATGT–3′ (Gia2150c) Equal mix of 5′–AGTCGAACCCTGATTCTCCGCCAGG–3′ and 5′–AGTCAAACCCTGATCCTCCGCCAGG–3′ and 5′–AGTCGAACCCTGATTCTCCGTCAGG–3′ (RH4–derivates) | [61] |
Parasite | Positive Samples (n) | Frequency (%) | 95% Confidence Interval |
---|---|---|---|
B. coli | 6 | 2.9 | 0.01–0.06 |
Blastocystis sp. | 24 | 11.6 | 0.08–0.17 |
Cryptosporidium spp. | 1 | 0.5 | 0.00–0.03 |
Eimeria spp. | 1 | 0.5 | 0.00–0.03 |
Giardia spp. | 1 | 0.5 | 0.00–0.03 |
Isolate | Genbank ID | Host Species | Variant | Reference | Stretch | SNPs |
---|---|---|---|---|---|---|
ZL30 | OM349074 | Sus scrofa domesticus | B | JQ073362 | 8–506 | A8T, T399C |
ZL32 | OM349075 | Sus scrofa domesticus | B | JQ073366 | 18–505 | T479C, G505A |
ZL46 | OM349076 | Tayassu tajacu | B | JQ073366 | 11–507 | T470C, G505A, A506T, T507G |
ZM74 | OR987597 | Lutra lutra | B | JQ073366 | 120–499 | T469A |
Q28 | OR987497 | Eublepharis macularis | A | JQ073359 | 145–503 | T246C |
Q36 | OR987498 | Sus scrofa domesticus | B | JQ073362 | 76–479 | T399C |
Isolate | Genbank ID | Host Species | Blastocystis sp. STs | Reference | Stretch | SNPs |
---|---|---|---|---|---|---|
ZL1 | OR987545 | Gorilla gorilla | ST1 | MT898451 | 31–584 | A71G, T225G, G226T, G382A, A475T, C477T, A478C |
ZL4 | OR987546 | Aepyceros melampus | ST24 | MW887928 | 28–585 | G113T |
ZL14 | OR987547 | Addax nasomaculatus | ST10a | MZ265404 | 22–593 | - |
ZL40 | OR987548 | Colobus guereza | ST1 | MT898451 | 32–579 | A71G, T225G, G226T, C477T, A478C |
ZL57 | OR987549 | Choeropsis liberiensis | ST3 | AB091234 | 2–554 | A104T, A150G, A238T, |
ZL60 | OR987550 | Trachypithecus auratus | ST13 | KC148209 | 10–586 | G119T, A121C, A164C, T165C, G166A, T173C, G436C, C502T, T507C |
ZL68 | OR987551 | Macaca fuscata | ST1 | MT898451 | 22–594 | A71G, G129A, T225G, G226T, C477T, A478C |
ZL69 | OR987552 | Cercopithecus nictians | ST1 | MT898451 | 29–583 | A71G, T225G, G226T, C477T, A478C |
ZM31 | OR989903 | Rhea americana | ST13 | KC148209 | 37–573 | C153A |
ZM33 | OR989904 | Python regius | - | - | - | - |
ZM45 | OR989905 | Python bivittatus | - | - | - | - |
ZM46 | OR989906 | Tiliqua scincoides | - | - | - | - |
ZM47 | OR989907 | Pogona vitticeps | - | - | - | - |
ZM48 | OR989908 | Python bivittatus | - | - | - | - |
ZM49 | OR989909 | Python bivittatus | - | - | - | - |
ZM52 | OR98910 | Iguana iguana | - | - | - | - |
ZM60 | OR989911 | Crax rubra | - | - | - | - |
ZM63 | OR989912 | Zonosaurus maximus | - | - | - | - |
ZM64 | OR989913 | Morelia spilota variegate | - | - | - | - |
ZM67 | OR989914 | Python reticulatus | - | - | - | - |
ZM70 | OR989915 | Cercopithecus ascanius | ST1 | MT898451 | 14–596 | A71G, T225G, G226T, C477T, A478C, |
ZM72 | OR989916 | Chlorocebus pygerythrus | ST2 | AB070997 | 120–520 | T123G, T126G, C135T, T140G, G142A, C159T, C165T, T166A, A170C, T173G, C183T, T187G, T228G, G229T, T268A, A477G, C505T, |
Q32 | OR977104 | Sus scrofa domesticus | ST5 | AB070998 | 28–497 | C176A, A262G |
Q33 | OR987485 | Sus scrofa domesticus | ST5 | AB070998 | 23–496 | C176A, A262G |
Isolate | Genbank ID | Host Species | Reference | Stretch | SNPs |
---|---|---|---|---|---|
Q16 | OR987500 | Equus ferus caballus | MT026934 | 375–693 | A381C, G466A, G499T, T577G, G615A, C630A, A654G, C677G, C689A |
Isolate | Genbank ID | Host Species | Reference | Stretch | SNPs |
---|---|---|---|---|---|
ZM26 | OR987677 | Pavo cristatus | HG793039 | 521–859 | G633A; T639C; C646T; A679T; A688G; G689A; T717A; G718A; T719C; T768C |
Isolate | Genbank ID | Host Species | Reference | Stretch | SNPs |
ZM40 | OR991119 | Pogona vitticeps | AF113895 | 76–264 | G257A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mega, J.; Moreira, R.; Moreira, G.; Silva-Loureiro, A.; Gomes da Silva, P.; Istrate, C.; Santos-Silva, S.; Rivero-Juarez, A.; Carmena, D.; Mesquita, J.R. Multicentric Study on Enteric Protists Occurrence in Zoological Parks in Portugal. Pathogens 2024, 13, 874. https://doi.org/10.3390/pathogens13100874
Mega J, Moreira R, Moreira G, Silva-Loureiro A, Gomes da Silva P, Istrate C, Santos-Silva S, Rivero-Juarez A, Carmena D, Mesquita JR. Multicentric Study on Enteric Protists Occurrence in Zoological Parks in Portugal. Pathogens. 2024; 13(10):874. https://doi.org/10.3390/pathogens13100874
Chicago/Turabian StyleMega, João, Rafaela Moreira, Guilherme Moreira, Ana Silva-Loureiro, Priscilla Gomes da Silva, Claudia Istrate, Sérgio Santos-Silva, Antonio Rivero-Juarez, David Carmena, and João R. Mesquita. 2024. "Multicentric Study on Enteric Protists Occurrence in Zoological Parks in Portugal" Pathogens 13, no. 10: 874. https://doi.org/10.3390/pathogens13100874
APA StyleMega, J., Moreira, R., Moreira, G., Silva-Loureiro, A., Gomes da Silva, P., Istrate, C., Santos-Silva, S., Rivero-Juarez, A., Carmena, D., & Mesquita, J. R. (2024). Multicentric Study on Enteric Protists Occurrence in Zoological Parks in Portugal. Pathogens, 13(10), 874. https://doi.org/10.3390/pathogens13100874