Breaking Barriers: Exploiting Envelope Biogenesis and Stress Responses to Develop Novel Antimicrobial Strategies in Gram-Negative Bacteria
Abstract
:1. Introduction
2. Envelope of Gram-Negative Bacteria
2.1. Envelope Assembly Pathways for Outer Membrane Biogenesis
2.1.1. OMP Transport via Bam
2.1.2. LPS Transport via Lpt
2.1.3. Lipoprotein Transport via Lol
2.2. Envelope Assembly Pathways as Antibiotic Targets in Gram-Negative Bacteria
2.3. ESR Pathways as Major Determinants of Cell Envelope Integrity, Virulence, and Pathogenesis in Gram-Negative Bacteria
2.3.1. Regulator of Capsule Synthesis (Rcs) System
2.3.2. CpxRA Two-Component System in Mediating Multidrug Resistance
2.3.3. BaeSR and AdeRS Two-Component Systems in Controlling Virulence
2.3.4. Role of PmrAB Two-Component System in LPS Remodeling
2.3.5. PhoPQ Two-Component System
2.4. Targeting TCSs for the Development of Novel Antimicrobial Drugs
3. Limitations Associated with the Development of ESR Inhibitors
4. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E. Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Fong, I.W. Antimicrobial Resistance: A Crisis in the Making. In New Antimicrobials: For the Present and the Future; Springer: Cham, Switzerland, 2023; pp. 1–21. [Google Scholar]
- De Oliveira, D.M.; Forde, B.M.; Kidd, T.J.; Harris, P.N.; Schembri, M.A.; Beatson, S.A.; Paterson, D.L.; Walker, M.J. Antimicrobial Resistance in ESKAPE Pathogens. Clin. Microbiol. Rev. 2020, 33, e00181-19. [Google Scholar] [CrossRef] [PubMed]
- Hews, C.L.; Cho, T.; Rowley, G.; Raivio, T.L. Maintaining Integrity Under Stress: Envelope Stress Response Regulation of Pathogenesis in Gram-Negative Bacteria. Front. Cell. Infect. Microbiol. 2019, 9, 313. [Google Scholar] [CrossRef]
- Munita, J.M.; Arias, C.A. Mechanisms of Antibiotic Resistance; Wiley: Hoboken, NJ, USA, 2016; Volume 4. [Google Scholar] [CrossRef]
- Silhavy, T.J.; Kahne, D.; Walker, S. The Bacterial Cell Envelope. Cold Spring Harb. Perspect. Biol. 2010, 2, a000414. [Google Scholar] [CrossRef] [PubMed]
- Troman, L.A.; Collinson, I. Pushing the Envelope: The Mysterious Journey through the Bacterial Secretory Machinery, and Beyond. Front. Microbiol. 2021, 12, 782900. [Google Scholar] [CrossRef]
- Vollmer, W.; Blanot, D.; De Pedro, M.A. Peptidoglycan Structure and Architecture. FEMS Microbiol. Rev. 2008, 32, 149–167. [Google Scholar] [CrossRef]
- Gan, L.; Chen, S.; Jensen, G.J. Molecular Organization of Gram-Negative Peptidoglycan. Proc. Natl. Acad. Sci. USA 2008, 105, 18953–18957. [Google Scholar] [CrossRef]
- Raetz, C.R.H.; Whitfield, C. Lipopolysaccharide Endotoxins. Annu. Rev. Biochem. 2002, 71, 635–700. [Google Scholar] [CrossRef]
- Harding, C.M.; Nasr, M.A.; Kinsella, R.L.; Scott, N.E.; Foster, L.J.; Weber, B.S.; Fiester, S.E.; Actis, L.A.; Tracy, E.N.; Munson, R.S., Jr.; et al. Acinetobacter Strains Carry Two Functional Oligosaccharyltransferases, One Devoted Exclusively to Type IV Pilin, and the Other One Dedicated to O-Glycosylation of Multiple Proteins. Mol. Microbiol. 2015, 96, 1023–1041. [Google Scholar] [CrossRef]
- Plésiat, P.; Nikaido, H. Outer Membranes of Gram-Negative Bacteria Are Permeable to Steroid Probes. Mol. Microbiol. 1992, 6, 1323–1333. [Google Scholar] [CrossRef]
- Nikaido, H. Molecular Basis of Bacterial Outer Membrane Permeability Revisited. Microbiol. Mol. Biol. Rev. 2003, 67, 593–656. [Google Scholar] [CrossRef] [PubMed]
- Rojas, E.R.; Billings, G.; Odermatt, P.D.; Auer, G.K.; Zhu, L.; Miguel, A.; Chang, F.; Weibel, D.B.; Theriot, J.A.; Huang, K.C. The Outer Membrane Is an Essential Load-Bearing Element in Gram-Negative Bacteria. Nature 2018, 559, 617–621. [Google Scholar] [CrossRef] [PubMed]
- Vaara, M. Polymyxins and Their Novel Derivatives. Curr. Opin. Microbiol. 2010, 13, 574–581. [Google Scholar] [CrossRef] [PubMed]
- Coves, X.; Mamat, U.; Conchillo-Solé, O.; Huedo, P.; Bravo, M.; Gómez, A.-C.; Krohn, I.; Streit, W.R.; Schaible, U.E.; Gibert, I. The Mla System and Its Role in Maintaining Outer Membrane Barrier Function in Stenotrophomonas maltophilia. Front. Cell. Infect. Microbiol. 2024, 14, 1346565. [Google Scholar] [CrossRef]
- May, K.L.; Silhavy, T.J. The Escherichia coli Phospholipase PldA Regulates Outer Membrane Homeostasis via Lipid Signaling. mBio 2018, 9, e00379-18. [Google Scholar] [CrossRef]
- El Rayes, J.; Rodríguez-Alonso, R.; Collet, J.-F. Lipoproteins in Gram-Negative Bacteria: New Insights into Their Biogenesis, Subcellular Targeting and Functional Roles. Curr. Opin. Microbiol. 2021, 61, 25–34. [Google Scholar] [CrossRef]
- Saha, S.; Lach, S.R.; Konovalova, A. Homeostasis of the Gram-Negative Cell Envelope. Curr. Opin. Microbiol. 2021, 61, 99–106. [Google Scholar] [CrossRef]
- Emiola, A.; Andrews, S.S.; Heller, C.; George, J. Crosstalk between the Lipopolysaccharide and Phospholipid Pathways during Outer Membrane Biogenesis in Escherichia coli. Proc. Natl. Acad. Sci. USA 2016, 113, 3108–3113. [Google Scholar] [CrossRef]
- Wiktor, M.; Weichert, D.; Howe, N.; Huang, C.-Y.; Olieric, V.; Boland, C.; Bailey, J.; Vogeley, L.; Stansfeld, P.J.; Buddelmeijer, N.; et al. Structural Insights into the Mechanism of the Membrane Integral N-Acyltransferase Step in Bacterial Lipoprotein Synthesis. Nat. Commun. 2017, 8, 15952. [Google Scholar] [CrossRef]
- Wu, T.; McCandlish, A.C.; Gronenberg, L.S.; Chng, S.-S.; Silhavy, T.J.; Kahne, D. Identification of a Protein Complex That Assembles Lipopolysaccharide in the Outer Membrane of Escherichia coli. Proc. Natl. Acad. Sci. USA 2006, 103, 11754–11759. [Google Scholar] [CrossRef]
- Grimm, J.; Shi, H.; Wang, W.; Mitchell, A.M.; Wingreen, N.S.; Huang, K.C.; Silhavy, T.J. The Inner Membrane Protein YhdP Modulates the Rate of Anterograde Phospholipid Flow in Escherichia coli. Proc. Natl. Acad. Sci. USA 2020, 117, 26907–26914. [Google Scholar] [CrossRef] [PubMed]
- Sposato, D.; Mercolino, J.; Torrini, L.; Sperandeo, P.; Lucidi, M.; Alegiani, R.; Varone, I.; Molesini, G.; Leoni, L.; Rampioni, G.; et al. Redundant Essentiality of AsmA-like Proteins in Pseudomonas aeruginosa. mSphere 2024, 9, e00677-23. [Google Scholar] [CrossRef] [PubMed]
- Isom, G.L.; Coudray, N.; MacRae, M.R.; McManus, C.T.; Ekiert, D.C.; Bhabha, G. LetB Structure Reveals a Tunnel for Lipid Transport across the Bacterial Envelope. Cell 2020, 181, 653–664.e19. [Google Scholar] [CrossRef]
- Ekiert, D.C.; Coudray, N.; Bhabha, G. Structure and Mechanism of the Bacterial Lipid ABC Transporter, MlaFEDB. Curr. Opin. Struct. Biol. 2022, 76, 102429. [Google Scholar] [CrossRef]
- Low, W.-Y.; Chng, S.-S. Current Mechanistic Understanding of Intermembrane Lipid Trafficking Important for Maintenance of Bacterial Outer Membrane Lipid Asymmetry. Curr. Opin. Chem. Biol. 2021, 65, 163–171. [Google Scholar] [CrossRef]
- Kumar, S.; Ruiz, N. Bacterial AsmA-Like Proteins: Bridging the Gap in Intermembrane Phospholipid Transport. Contact 2023, 6, 25152564231185931. [Google Scholar] [CrossRef]
- Hart, E.M.; O’Connell, A.; Tang, K.; Wzorek, J.S.; Grabowicz, M.; Kahne, D.; Silhavy, T.J. Fine-Tuning of σE Activation Suppresses Multiple Assembly-Defective Mutations in Escherichia coli. J. Bacteriol. 2019, 201. [Google Scholar] [CrossRef]
- Meredith, T.C.; Mamat, U.; Kaczynski, Z.; Lindner, B.; Holst, O.; Woodard, R.W. Modification of Lipopolysaccharide with Colanic Acid (M-Antigen) Repeats in Escherichia coli. J. Bacteriol. Chem. 2007, 282, 7790–7798. [Google Scholar] [CrossRef]
- Delhaye, A.; Laloux, G.; Collet, J.-F. The Lipoprotein NlpE Is a Cpx Sensor That Serves as a Sentinel for Protein Sorting and Folding Defects in the Escherichia coli Envelope. J. Bacteriol. 2019, 201. [Google Scholar] [CrossRef]
- Rapoport, T.A. Protein Translocation across the Eukaryotic Endoplasmic Reticulum and Bacterial Plasma Membranes. Nature 2007, 450, 663–669. [Google Scholar] [CrossRef]
- Weirich, J.; Bräutigam, C.; Mühlenkamp, M.; Franz-Wachtel, M.; Macek, B.; Meuskens, I.; Skurnik, M.; Leskinen, K.; Bohn, E.; Autenrieth, I.; et al. Identifying Components Required for OMP Biogenesis as Novel Targets for Antiinfective Drugs. Virulence 2017, 8, 1170–1188. [Google Scholar] [CrossRef]
- Schwalm, J.; Mahoney, T.F.; Soltes, G.R.; Silhavy, T.J. Role for Skp in LptD Assembly in Escherichia coli. J. Bacteriol. 2013, 195, 3734–3742. [Google Scholar] [CrossRef]
- Sklar, J.G.; Wu, T.; Kahne, D.; Silhavy, T.J. Defining the Roles of the Periplasmic Chaperones SurA, Skp, and DegP in Escherichia coli. Genes Dev. 2007, 21, 2473–2484. [Google Scholar] [CrossRef]
- Combs, A.N.; Silhavy, T.J. Periplasmic Chaperones: Outer Membrane Biogenesis and Envelope Stress. Annu. Rev. Microbiol. 2024, 78. [Google Scholar] [CrossRef]
- Konovalova, A.; Kahne, D.E.; Silhavy, T.J. Outer Membrane Biogenesis. Annu. Rev. Microbiol. 2017, 71, 539–556. [Google Scholar] [CrossRef]
- Malinverni, J.C.; Werner, J.; Kim, S.; Sklar, J.G.; Kahne, D.; Misra, R.; Silhavy, T.J. YfiO Stabilizes the YaeT Complex and Is Essential for Outer Membrane Protein Assembly in Escherichia coli. Mol. Microbiol. 2006, 61, 151–164. [Google Scholar] [CrossRef]
- Lee, J.; Xue, M.; Wzorek, J.S.; Wu, T.; Grabowicz, M.; Gronenberg, L.S.; Sutterlin, H.A.; Davis, R.M.; Ruiz, N.; Silhavy, T.J.; et al. Characterization of a Stalled Complex on the β-Barrel Assembly Machine. Proc. Natl. Acad. Sci. USA 2016, 113, 8717–8722. [Google Scholar] [CrossRef]
- Bakelar, J.; Buchanan, S.K.; Noinaj, N. The Structure of the β-Barrel Assembly Machinery Complex. Science 2016, 351, 180–186. [Google Scholar] [CrossRef]
- Rodríguez-Alonso, R.; Létoquart, J.; Van Son, N.; Louis, G.; Calabrese, A.N.; Iorga, B.I.; Radford, S.E.; Cho, S.-H.; Remaut, H.; Collet, J.-F. Structural Insight into the Formation of Lipoprotein-β-Barrel Complexes. Nat. Chem. Biol. 2020, 16, 1019–1025. [Google Scholar] [CrossRef]
- Bertani, B.; Ruiz, N. Function and Biogenesis of Lipopolysaccharides. EcoSal Plus 2018, 8. [Google Scholar] [CrossRef]
- Okuda, S.; Sherman, D.J.; Silhavy, T.J.; Ruiz, N.; Kahne, D. Lipopolysaccharide Transport and Assembly at the Outer Membrane: The PEZ Model. Nat. Rev. Microbiol. 2016, 14, 337–345. [Google Scholar] [CrossRef]
- Mi, W.; Li, Y.; Yoon, S.H.; Ernst, R.K.; Walz, T.; Liao, M. Structural Basis of MsbA-Mediated Lipopolysaccharide Transport. Nature 2017, 549, 233–237. [Google Scholar] [CrossRef]
- Greenfield, L.K.; Whitfield, C. Synthesis of Lipopolysaccharide O-Antigens by ABC Transporter-Dependent Pathways. Carbohydr. Res. 2012, 356, 12–24. [Google Scholar] [CrossRef]
- Li, Y.; Orlando, B.J.; Liao, M. Structural Basis of Lipopolysaccharide Extraction by the LptB2FGC Complex. Nature 2019, 567, 486–490. [Google Scholar] [CrossRef]
- Luo, Q.; Yang, X.; Yu, S.; Shi, H.; Wang, K.; Xiao, L.; Zhu, G.; Sun, C.; Li, T.; Li, D.; et al. Structural Basis for Lipopolysaccharide Extraction by ABC Transporter LptB2FG. Nat. Struct. Mol. Biol. 2017, 24, 469–474. [Google Scholar] [CrossRef]
- Sperandeo, P.; Martorana, A.M.; Polissi, A. The Lipopolysaccharide Transport (Lpt) Machinery: A Nonconventional Transporter for Lipopolysaccharide Assembly at the Outer Membrane of Gram-Negative Bacteria. J. Biol. Chem. 2017, 292, 17981–17990. [Google Scholar] [CrossRef]
- Santambrogio, C.; Sperandeo, P.; Villa, R.; Sobott, F.; Polissi, A.; Grandori, R. LptA Assembles into Rod-Like Oligomers Involving Disorder-to-Order Transitions. J. Am. Soc. Mass Spectrom. 2013, 24, 1593–1602. [Google Scholar] [CrossRef]
- Freinkman, E.; Chng, S.-S.; Kahne, D. The Complex That Inserts Lipopolysaccharide into the Bacterial Outer Membrane Forms a Two-Protein Plug-and-Barrel. Proc. Natl. Acad. Sci. USA 2011, 108, 2486–2491. [Google Scholar] [CrossRef]
- Dong, H.; Xiang, Q.; Gu, Y.; Wang, Z.; Paterson, N.G.; Stansfeld, P.J.; He, C.; Zhang, Y.; Wang, W.; Dong, C. Structural Basis for Outer Membrane Lipopolysaccharide Insertion. Nature 2014, 511, 52–56. [Google Scholar] [CrossRef]
- Weiner, J.H.; Li, L. Proteome of the Escherichia coli Envelope and Technological Challenges in Membrane Proteome Analysis. Biochim. Biophys. Acta BBA-Biomembr. 2008, 1778, 1698–1713. [Google Scholar] [CrossRef]
- Typas, A.; Banzhaf, M.; Saparoea, B. van den B. van; Verheul, J.; Biboy, J.; Nichols, R.J.; Zietek, M.; Beilharz, K.; Kannenberg, K.; Rechenberg, M. von; et al. Regulation of Peptidoglycan Synthesis by Outer-Membrane Proteins. Cell 2010, 143, 1097–1109. [Google Scholar] [CrossRef]
- Laloux, G.; Collet, J.-F. Major Tom to Ground Control: How Lipoproteins Communicate Extracytoplasmic Stress to the Decision Center of the Cell. J. Bacteriol. 2017, 199. [Google Scholar] [CrossRef]
- Zückert, W.R. Secretion of Bacterial Lipoproteins: Through the Cytoplasmic Membrane, the Periplasm and Beyond. Biochim. Biophys. Acta. 2014, 1843, 1509–1516. [Google Scholar] [CrossRef]
- Crane, J.M.; Randall, L.L. The Sec System: Protein Export in Escherichia coli. EcoSal Plus 2017, 7. [Google Scholar] [CrossRef]
- Narita, S.; Tokuda, H. Bacterial Lipoproteins; Biogenesis, Sorting and Quality Control. Biochim. Biophys. Acta BBA-Lipids 2017, 1862, 1414–1423. [Google Scholar] [CrossRef]
- Yamaguchi, K.; Yu, F.; Inouye, M. A Single Amino Acid Determinant of the Membrane Localization of Lipoproteins in E. coli. Cell 1988, 53, 423–432. [Google Scholar] [CrossRef]
- Terada, M.; Kuroda, T.; Matsuyama, S.; Tokuda, H. Lipoprotein Sorting Signals Evaluated as the LolA-Dependent Release of Lipoproteins from the Cytoplasmic Membrane of Escherichia coli. J. Bacteriol. Chem. 2001, 276, 47690–47694. [Google Scholar] [CrossRef]
- Lewenza, S.; Vidal-Ingigliardi, D.; Pugsley, A.P. Direct Visualization of Red Fluorescent Lipoproteins Indicates Conservation of the Membrane Sorting Rules in the Family Enterobacteriaceae. J. Bacteriol. 2006, 188, 3516–3524. [Google Scholar] [CrossRef]
- Yakushi, T.; Masuda, K.; Narita, S.; Matsuyama, S.; Tokuda, H. A New ABC Transporter Mediating the Detachment of Lipid-Modified Proteins from Membranes. Nat. Cell Biol. 2000, 2, 212–218. [Google Scholar] [CrossRef]
- Takeda, K.; Miyatake, H.; Yokota, N.; Matsuyama, S.; Tokuda, H.; Miki, K. Crystal Structures of Bacterial Lipoprotein Localization Factors, LolA and LolB. EMBO J. 2003, 22, 3199–3209. [Google Scholar] [CrossRef]
- Matsuyama, S.; Yokota, N.; Tokuda, H. A Novel Outer Membrane Lipoprotein, LolB (HemM), Involved in the LolA (P20)-dependent Localization of Lipoproteins to the Outer Membrane of Escherichia coli. EMBO J. 1997, 16, 6947–6955. [Google Scholar] [CrossRef]
- Taniguchi, N.; Matsuyama, S.; Tokuda, H. Mechanisms Underlying Energy-Independent Transfer of Lipoproteins from LolA to LolB, Which Have Similar Unclosed β-Barrel Structures. J. Bacteriol. Chem. 2005, 280, 34481–34488. [Google Scholar] [CrossRef]
- Tsukahara, J.; Mukaiyama, K.; Okuda, S.; Narita, S.; Tokuda, H. Dissection of LolB Function – Lipoprotein Binding, Membrane Targeting and Incorporation of Lipoproteins into Lipid Bilayers. FEBS J. 2009, 276, 4496–4504. [Google Scholar] [CrossRef]
- Storek, K.M.; Auerbach, M.R.; Shi, H.; Garcia, N.K.; Sun, D.; Nickerson, N.N.; Vij, R.; Lin, Z.; Chiang, N.; Schneider, K.; et al. Monoclonal Antibody Targeting the β-Barrel Assembly Machine of Escherichia coli Is Bactericidal. Proc. Natl. Acad. Sci. USA 2018, 115, 3692–3697. [Google Scholar] [CrossRef]
- Hart, E.M.; Mitchell, A.M.; Konovalova, A.; Grabowicz, M.; Sheng, J.; Han, X.; Rodriguez-Rivera, F.P.; Schwaid, A.G.; Malinverni, J.C.; Balibar, C.J.; et al. A Small-Molecule Inhibitor of BamA Impervious to Efflux and the Outer Membrane Permeability Barrier. Proc. Natl. Acad. Sci. USA 2019, 116, 21748–21757. [Google Scholar] [CrossRef]
- Imai, Y.; Meyer, K.J.; Iinishi, A.; Favre-Godal, Q.; Green, R.; Manuse, S.; Caboni, M.; Mori, M.; Niles, S.; Ghiglieri, M.; et al. A New Antibiotic Selectively Kills Gram-Negative Pathogens. Nature 2019, 576, 459–464. [Google Scholar] [CrossRef]
- Hagan, C.L.; Wzorek, J.S.; Kahne, D. Inhibition of the β-Barrel Assembly Machine by a Peptide That Binds BamD. Proc. Natl. Acad. Sci. USA 2015, 112, 2011–2016. [Google Scholar] [CrossRef]
- Fenn, K.L.; Horne, J.E.; Crossley, J.A.; Böhringer, N.; Horne, R.J.; Schäberle, T.F.; Calabrese, A.N.; Radford, S.E.; Ranson, N.A. Outer Membrane Protein Assembly Mediated by BAM-SurA Complexes. Nat. Commun. 2024, 15, 7612. [Google Scholar] [CrossRef]
- Bell, E.W.; Zheng, E.J.; Ryno, L.M. Identification of Inhibitors of the E. coli Chaperone SurA Using in Silico and in Vitro Techniques. Bioorg. Med. Chem. Lett. 2018, 28, 3540–3548. [Google Scholar] [CrossRef]
- Sperandeo, P.; Martorana, A.M.; Zaccaria, M.; Polissi, A. Targeting the LPS Export Pathway for the Development of Novel Therapeutics. Biochim. Biophys. Acta BBA-Mol. Cell Res. 2023, 1870, 119406. [Google Scholar] [CrossRef]
- Ho, H.; Miu, A.; Alexander, M.K.; Garcia, N.K.; Oh, A.; Zilberleyb, I.; Reichelt, M.; Austin, C.D.; Tam, C.; Shriver, S.; et al. Structural Basis for Dual-Mode Inhibition of the ABC Transporter MsbA. Nature 2018, 557, 196–201. [Google Scholar] [CrossRef]
- Vetterli, S.U.; Zerbe, K.; Müller, M.; Urfer, M.; Mondal, M.; Wang, S.-Y.; Moehle, K.; Zerbe, O.; Vitale, A.; Pessi, G.; et al. Thanatin Targets the Intermembrane Protein Complex Required for Lipopolysaccharide Transport in Escherichia coli. Sci. Adv. 2018, 4, eaau2634. [Google Scholar] [CrossRef]
- Moura, E.C.C.M.; Baeta, T.; Romanelli, A.; Laguri, C.; Martorana, A.M.; Erba, E.; Simorre, J.-P.; Sperandeo, P.; Polissi, A. Thanatin Impairs Lipopolysaccharide Transport Complex Assembly by Targeting LptC–LptA Interaction and Decreasing LptA Stability. Front. Microbiol. 2020, 11, 909. [Google Scholar] [CrossRef]
- Pahil, K.S.; Gilman, M.S.A.; Baidin, V.; Clairfeuille, T.; Mattei, P.; Bieniossek, C.; Dey, F.; Muri, D.; Baettig, R.; Lobritz, M.; et al. A New Antibiotic Traps Lipopolysaccharide in Its Intermembrane Transporter. Nature 2024, 625, 572–577. [Google Scholar] [CrossRef]
- Zampaloni, C.; Mattei, P.; Bleicher, K.; Winther, L.; Thäte, C.; Bucher, C.; Adam, J.-M.; Alanine, A.; Amrein, K.E.; Baidin, V.; et al. A Novel Antibiotic Class Targeting the Lipopolysaccharide Transporter. Nature 2024, 625, 566–571. [Google Scholar] [CrossRef]
- Zhang, G.; Baidin, V.; Pahil, K.S.; Moison, E.; Tomasek, D.; Ramadoss, N.S.; Chatterjee, A.K.; McNamara, C.W.; Young, T.S.; Schultz, P.G.; et al. Cell-Based Screen for Discovering Lipopolysaccharide Biogenesis Inhibitors. Proc. Natl. Acad. Sci. USA 2018, 115, 6834–6839. [Google Scholar] [CrossRef]
- Srinivas, N.; Jetter, P.; Ueberbacher, B.J.; Werneburg, M.; Zerbe, K.; Steinmann, J.; Van der Meijden, B.; Bernardini, F.; Lederer, A.; Dias, R.L.A.; et al. Peptidomimetic Antibiotics Target Outer-Membrane Biogenesis in Pseudomonas aeruginosa. Science 2010, 327, 1010–1013. [Google Scholar] [CrossRef]
- May, J.M.; Owens, T.W.; Mandler, M.D.; Simpson, B.W.; Lazarus, M.B.; Sherman, D.J.; Davis, R.M.; Okuda, S.; Massefski, W.; Ruiz, N.; et al. The Antibiotic Novobiocin Binds and Activates the ATPase That Powers Lipopolysaccharide Transport. J. Am. Chem. Soc. 2017, 139, 17221–17224. [Google Scholar] [CrossRef]
- Nickerson, N.N.; Jao, C.C.; Xu, Y.; Quinn, J.; Skippington, E.; Alexander, M.K.; Miu, A.; Skelton, N.; Hankins, J.V.; Lopez, M.S.; et al. A Novel Inhibitor of the LolCDE ABC Transporter Essential for Lipoprotein Trafficking in Gram-Negative Bacteria. Antimicrob. Agent Chemother. 2018, 62, e02151-17. [Google Scholar] [CrossRef]
- McLeod, S.M.; Fleming, P.R.; MacCormack, K.; McLaughlin, R.E.; Whiteaker, J.D.; Narita, S.; Mori, M.; Tokuda, H.; Miller, A.A. Small-Molecule Inhibitors of Gram-Negative Lipoprotein Trafficking Discovered by Phenotypic Screening. J. Bacteriol. 2015, 197, 1075–1082. [Google Scholar] [CrossRef]
- Nayar, A.S.; Dougherty, T.J.; Ferguson, K.E.; Granger, B.A.; McWilliams, L.; Stacey, C.; Leach, L.J.; Narita, S.; Tokuda, H.; Miller, A.A.; et al. Novel Antibacterial Targets and Compounds Revealed by a High-Throughput Cell Wall Reporter Assay. J. Bacteriol. 2015, 197, 1726–1734. [Google Scholar] [CrossRef] [PubMed]
- Buss, J.A.; Baidin, V.; Welsh, M.A.; Flores-Kim, J.; Cho, H.; Wood, B.M.; Uehara, T.; Walker, S.; Kahne, D.; Bernhardt, T.G. Pathway-Directed Screen for Inhibitors of the Bacterial Cell Elongation Machinery. Antimicrob. Agent Chemother. 2018, 63, e01530-18. [Google Scholar] [CrossRef] [PubMed]
- Pathania, R.; Zlitni, S.; Barker, C.; Das, R.; Gerritsma, D.A.; Lebert, J.; Awuah, E.; Melacini, G.; Capretta, F.A.; Brown, E.D. Chemical Genomics in Escherichia coli Identifies an Inhibitor of Bacterial Lipoprotein Targeting. Nat. Chem. Biol. 2009, 5, 849–856. [Google Scholar] [CrossRef] [PubMed]
- Lehman, K.M.; Smith, H.C.; Grabowicz, M. A Biological Signature for the Inhibition of Outer Membrane Lipoprotein Biogenesis. mBio 2022, 13, e00757-22. [Google Scholar] [CrossRef] [PubMed]
- Urfer, M.; Bogdanovic, J.; Monte, F.L.; Moehle, K.; Zerbe, K.; Omasits, U.; Ahrens, C.H.; Pessi, G.; Eberl, L.; Robinson, J.A. A Peptidomimetic Antibiotic Targets Outer Membrane Proteins and Disrupts Selectively the Outer Membrane in Escherichia coli. J. Bacteriol. Chem. 2016, 291, 1921–1932. [Google Scholar] [CrossRef]
- Mitchell, A.M.; Silhavy, T.J. Envelope Stress Responses: Balancing Damage Repair and Toxicity. Nat. Rev. Microbiol. 2019, 17, 417–428. [Google Scholar] [CrossRef]
- Dawan, J.; Ahn, J. Bacterial Stress Responses as Potential Targets in Overcoming Antibiotic Resistance. Microorganisms 2022, 10, 1385. [Google Scholar] [CrossRef]
- Cho, T.H.S.; Pick, K.; Raivio, T.L. Bacterial Envelope Stress Responses: Essential Adaptors and Attractive Targets. Biochim. Biophys. Acta BBA-Mol. Cell Res. 2023, 1870, 119387. [Google Scholar] [CrossRef]
- Jing, W.; Liu, J.; Wu, S.; Li, X.; Liu, Y. Role of cpxA Mutations in the Resistance to Aminoglycosides and β-Lactams in Salmonella enterica Serovar Typhimurium. Front. Microbiol. 2021, 12, 604079. [Google Scholar] [CrossRef]
- Weatherspoon-Griffin, N.; Yang, D.; Kong, W.; Hua, Z.; Shi, Y. The CpxR/CpxA Two-Component Regulatory System Up-Regulates the Multidrug Resistance Cascade to Facilitate Escherichia coli Resistance to a Model Antimicrobial Peptide. J. Bacteriol. Chem. 2014, 289, 32571–32582. [Google Scholar] [CrossRef]
- Huang, H.; Sun, Y.; Yuan, L.; Pan, Y.; Gao, Y.; Ma, C.; Hu, G. Regulation of the Two-Component Regulator CpxR on Aminoglycosides and β-Lactams Resistance in Salmonella enterica Serovar Typhimurium. Front. Microbiol. 2016, 7, 604. [Google Scholar] [CrossRef]
- Raivio, T.L. Everything Old Is New Again: An Update on Current Research on the Cpx Envelope Stress Response. Biochim. Biophys. Acta BBA-Mol. Cell Res. 2014, 1843, 1529–1541. [Google Scholar] [CrossRef] [PubMed]
- Lima, S.; Guo, M.S.; Chaba, R.; Gross, C.A.; Sauer, R.T. Dual Molecular Signals Mediate the Bacterial Response to Outer-Membrane Stress. Science 2013, 340, 837–841. [Google Scholar] [CrossRef] [PubMed]
- Flores-Kim, J.; Darwin, A.J. The Phage Shock Protein Response. Annu. Rev. Microbiol. 2016, 70, 83–101. [Google Scholar] [CrossRef]
- Hirakawa, H.; Kurushima, J.; Hashimoto, Y.; Tomita, H. Progress Overview of Bacterial Two-Component Regulatory Systems as Potential Targets for Antimicrobial Chemotherapy. Antibiotics 2020, 9, 635. [Google Scholar] [CrossRef]
- Chen, H.; Yu, C.; Wu, H.; Li, G.; Li, C.; Hong, W.; Yang, X.; Wang, H.; You, X. Recent Advances in Histidine Kinase-Targeted Antimicrobial Agents. Front. Chem. 2022, 10, 866392. [Google Scholar] [CrossRef]
- Gadar, K.; McCarthy, R.R. Using next Generation Antimicrobials to Target the Mechanisms of Infection. Npj Antimicrob. Resist. 2023, 1, 11. [Google Scholar] [CrossRef]
- Bem, A.E.; Velikova, N.; Pellicer, M.T.; van Baarlen, P.; Marina, A.; Wells, J.M. Bacterial Histidine Kinases as Novel Antibacterial Drug Targets. ACS Chem. Biol. 2015, 10, 213–224. [Google Scholar] [CrossRef]
- Meng, J.; Young, G.; Chen, J. The Rcs System in Enterobacteriaceae: Envelope Stress Responses and Virulence Regulation. Front. Microbiol. 2021, 12, 627104. [Google Scholar] [CrossRef]
- Majdalani, N.; Gottesman, S. THE RCS PHOSPHORELAY: A Complex Signal Transduction System. Annu. Rev. Microbiol. 2005, 59, 379–405. [Google Scholar] [CrossRef]
- Guo, X.-P.; Sun, Y.-C. New Insights into the Non-Orthodox Two Component Rcs Phosphorelay System. Front. Microbiol. 2017, 8, 2014. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.-H.; Dekoninck, K.; Collet, J.-F. Envelope-Stress Sensing Mechanism of Rcs and Cpx Signaling Pathways in Gram-Negative Bacteria. J Microbiol. 2023, 61, 317–329. [Google Scholar] [CrossRef]
- Tata, M.; Kumar, S.; Lach, S.R.; Saha, S.; Hart, E.M.; Konovalova, A. High-Throughput Suppressor Screen Demonstrates That RcsF Monitors Outer Membrane Integrity and Not Bam Complex Function. Proc. Natl. Acad. Sci. USA 2021, 118, e2100369118. [Google Scholar] [CrossRef] [PubMed]
- Konovalova, A.; Perlman, D.H.; Cowles, C.E.; Silhavy, T.J. Transmembrane Domain of Surface-Exposed Outer Membrane Lipoprotein RcsF Is Threaded through the Lumen of β-Barrel Proteins. Proc. Natl. Acad. Sci. USA 2014, 111, E4350–E4358. [Google Scholar] [CrossRef] [PubMed]
- Konovalova, A.; Mitchell, A.M.; Silhavy, T.J. A Lipoprotein/β-Barrel Complex Monitors Lipopolysaccharide Integrity Transducing Information across the Outer Membrane. eLife 2016, 5, e15276. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.; Rao, C.V.; Slauch, J.M. The Salmonella SPI1 Type Three Secretion System Responds to Periplasmic Disulfide Bond Status via the Flagellar Apparatus and the RcsCDB System. J. Bacteriol. 2008, 190, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Callewaert, L.; Vanoirbeek, K.G.A.; Lurquin, I.; Michiels, C.W.; Aertsen, A. The Rcs Two-Component System Regulates Expression of Lysozyme Inhibitors and Is Induced by Exposure to Lysozyme. J. Bacteriol. 2009, 191, 1979–1981. [Google Scholar] [CrossRef]
- Farris, C.; Sanowar, S.; Bader, M.W.; Pfuetzner, R.; Miller, S.I. Antimicrobial Peptides Activate the Rcs Regulon through the Outer Membrane Lipoprotein RcsF. J. Bacteriol. 2010, 192, 4894–4903. [Google Scholar] [CrossRef]
- Hirakawa, H.; Nishino, K.; Yamada, J.; Hirata, T.; Yamaguchi, A. β-Lactam Resistance Modulated by the Overexpression of Response Regulators of Two-Component Signal Transduction Systems in Escherichia coli. J. Antimicrob. Chemother. 2003, 52, 576–582. [Google Scholar] [CrossRef]
- Ren, G.; Wang, Z.; Li, Y.; Hu, X.; Wang, X. Effects of Lipopolysaccharide Core Sugar Deficiency on Colanic Acid Biosynthesis in Escherichia coli. J. Bacteriol. 2016, 198, 1576–1584. [Google Scholar] [CrossRef]
- Tao, K.; Narita, S.; Tokuda, H. Defective Lipoprotein Sorting Induces lolA Expression through the Rcs Stress Response Phosphorelay System. J. Bacteriol. 2012, 194, 3643–3650. [Google Scholar] [CrossRef] [PubMed]
- Morgan, J.K.; Ortiz, J.A.; Riordan, J.T. The Role for TolA in Enterohemorrhagic Escherichia coli Pathogenesis and Virulence Gene Transcription. Microb. Pathog. 2014, 77, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Evans, K.L.; Kannan, S.; Li, G.; de Pedro, M.A.; Young, K.D. Eliminating a Set of Four Penicillin Binding Proteins Triggers the Rcs Phosphorelay and Cpx Stress Responses in Escherichia coli. J. Bacteriol. 2013, 195, 4415–4424. [Google Scholar] [CrossRef] [PubMed]
- Mouslim, C.; Groisman, E.A. Control of the Salmonella Ugd Gene by Three Two-Component Regulatory Systems. Mol. Microbiol. 2003, 47, 335–344. [Google Scholar] [CrossRef] [PubMed]
- Gervais, F.G.; Drapeau, G.R. Identification, Cloning, and Characterization of rcsF, a New Regulator Gene for Exopolysaccharide Synthesis That Suppresses the Division Mutation ftsZ84 in Escherichia coli K-12. J. Bacteriol. 1992, 174, 8016–8022. [Google Scholar] [CrossRef]
- Mouslim, C.; Delgado, M.; Groisman, E.A. Activation of the RcsC/YojN/RcsB Phosphorelay System Attenuates Salmonella Virulence. Mol. Microbiol. 2004, 54, 386–395. [Google Scholar] [CrossRef]
- García-Calderón, C.B.; García-Quintanilla, M.; Casadesús, J.; Ramos-Morales, F. Virulence Attenuation in Salmonella enterica rcsC Mutants with Constitutive Activation of the Rcs System. Microbiology 2005, 151, 579–588. [Google Scholar] [CrossRef]
- Detweiler, C.S.; Monack, D.M.; Brodsky, I.E.; Mathew, H.; Falkow, S. virK, somA and rcsC Are Important for Systemic Salmonella enterica Serovar Typhimurium Infection and Cationic Peptide Resistance. Mol. Microbiol. 2003, 48, 385–400. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, Y.; McClelland, M.; Harshey, R.M. The RcsCDB Signaling System and Swarming Motility in Salmonella enterica Serovar Typhimurium: Dual Regulation of Flagellar and SPI-2 Virulence Genes. J. Bacteriol. 2007, 189, 8447–8457. [Google Scholar] [CrossRef]
- Tobe, T.; Ando, H.; Ishikawa, H.; Abe, H.; Tashiro, K.; Hayashi, T.; Kuhara, S.; Sugimoto, N. Dual Regulatory Pathways Integrating the RcsC–RcsD–RcsB Signalling System Control Enterohaemorrhagic Escherichia coli Pathogenicity. Mol. Microbiol. 2005, 58, 320–333. [Google Scholar] [CrossRef]
- Francez-Charlot, A.; Laugel, B.; Van Gemert, A.; Dubarry, N.; Wiorowski, F.; Castanié-Cornet, M.-P.; Gutierrez, C.; Cam, K. RcsCDB His-Asp Phosphorelay System Negatively Regulates the flhDC Operon in Escherichia coli. Mol. Microbiol. 2003, 49, 823–832. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Wu, J.; Li, Y.; Cai, Z.; Huang, J.-D. Modification of the RpoS Network with a Synthetic Small RNA. Nucleic Acids Res. 2013, 41, 8332–8340. [Google Scholar] [CrossRef] [PubMed]
- Wall, E.; Majdalani, N.; Gottesman, S. The Complex Rcs Regulatory Cascade. Annu. Rev. Microbiol. 2018, 72, 111–139. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.; Bai, J.; Xu, J.; Huang, C.; Chen, J. Differential Regulation of Physiological Activities by RcsB and OmpR in Yersinia enterocolitica. FEMS Microbiol. Lett. 2019, 366, fnz210. [Google Scholar] [CrossRef] [PubMed]
- Grabowicz, M.; Silhavy, T.J. Envelope Stress Responses: An Interconnected Safety Net. Trends Biochem. Sci. 2017, 42, 232–242. [Google Scholar] [CrossRef]
- Weatherspoon-Griffin, N.; Zhao, G.; Kong, W.; Kong, Y.; Morigen; Andrews-Polymenis, H.; McClelland, M.; Shi, Y. The CpxR/CpxA Two-Component System Up-Regulates Two Tat-Dependent Peptidoglycan Amidases to Confer Bacterial Resistance to Antimicrobial Peptide. J. Bacteriol. Chem. 2011, 286, 5529–5539. [Google Scholar] [CrossRef]
- Kumar, S.; Tiwari, V.; Doerrler, W.T. Cpx-Dependent Expression of YqjA Requires Cations at Elevated pH. FEMS Microbiol. Lett. 2017, 364, fnx115. [Google Scholar] [CrossRef]
- Kumar, S.; Doerrler, W.T. Members of the Conserved DedA Family Are Likely Membrane Transporters and Are Required for Drug Resistance in Escherichia coli. Antimicrob. Agents Chemother. 2014, 58, 923–930. [Google Scholar] [CrossRef]
- Sit, B.; Srisuknimit, V.; Bueno, E.; Zingl, F.G.; Hullahalli, K.; Cava, F.; Waldor, M.K. Undecaprenyl Phosphate Translocases Confer Conditional Microbial Fitness. Nature 2023, 613, 721–728. [Google Scholar] [CrossRef]
- Roney, I.J.; Rudner, D.Z. Two Broadly Conserved Families of Polyprenyl-Phosphate Transporters. Nature 2023, 613, 729. [Google Scholar] [CrossRef]
- Masi, M.; Pinet, E.; Pagès, J.-M. Complex Response of the CpxAR Two-Component System to β-Lactams on Antibiotic Resistance and Envelope Homeostasis in Enterobacteriaceae. Antimicrob. Agent Chemother. 2020, 64, e00291-20. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Y.-J.; Liu, P.-Y.; Luo, X.-W.; Liang, J.; Sun, Y.-W.; Cui, X.-D.; He, D.-D.; Pan, Y.-S.; Wu, H.; Hu, G.-Z. Analysis of Regulatory Mechanism of AcrB and CpxR on Colistin Susceptibility Based on Transcriptome and Metabolome of Salmonella typhimurium. Microbiol. Spectr. 2023, 11, e00530-23. [Google Scholar] [CrossRef] [PubMed]
- Kurabayashi, K.; Hirakawa, Y.; Tanimoto, K.; Tomita, H.; Hirakawa, H. Role of the CpxAR Two-Component Signal Transduction System in Control of Fosfomycin Resistance and Carbon Substrate Uptake. J. Bacteriol. 2014, 196, 248–256. [Google Scholar] [CrossRef] [PubMed]
- Macritchie, D.M.; Raivio, T.L. Envelope Stress Responses. EcoSal Plus 2009, 3. [Google Scholar] [CrossRef] [PubMed]
- Kröger, C.; Kary, S.C.; Schauer, K.; Cameron, A.D.S. Genetic Regulation of Virulence and Antibiotic Resistance in Acinetobacter baumannii. Genes 2017, 8, 12. [Google Scholar] [CrossRef]
- Sun, C.; Yu, Y.; Hua, X. Resistance Mechanisms of Tigecycline in Acinetobacter baumannii. Front. Cell. Infect. Microbiol. 2023, 13, 1141490. [Google Scholar] [CrossRef]
- Hu, W.S.; Li, P.-C.; Cheng, C.-Y. Correlation between Ceftriaxone Resistance of Salmonella enterica Serovar Typhimurium and Expression of Outer Membrane Proteins OmpW and Ail/OmpX-Like Protein, Which Are Regulated by BaeR of a Two-Component System. Antimicrob. Agent Chemother. 2005, 49, 3955–3958. [Google Scholar] [CrossRef]
- Fernando, D.; Kumar, A. Growth Phase-Dependent Expression of RND Efflux Pump- and Outer Membrane Porin-Encoding Genes in Acinetobacter baumannii ATCC 19606. J. Antimicrob. Chemother. 2012, 67, 569–572. [Google Scholar] [CrossRef]
- Bhagirath, A.Y.; Li, Y.; Patidar, R.; Yerex, K.; Ma, X.; Kumar, A.; Duan, K. Two Component Regulatory Systems and Antibiotic Resistance in Gram-Negative Pathogens. Int. J. Mol. Sci. 2019, 20, 1781. [Google Scholar] [CrossRef]
- Zack, K.M.; Sorenson, T.; Joshi, S.G. Types and Mechanisms of Efflux Pump Systems and the Potential of Efflux Pump Inhibitors in the Restoration of Antimicrobial Susceptibility, with a Special Reference to Acinetobacter baumannii. Pathogens 2024, 13, 197. [Google Scholar] [CrossRef]
- Yoon, E.-J.; Courvalin, P.; Grillot-Courvalin, C. RND-Type Efflux Pumps in Multidrug-Resistant Clinical Isolates of Acinetobacter baumannii: Major Role for AdeABC Overexpression and AdeRS Mutations. Antimicrob. Agent Chemother. 2013, 57, 2989–2995. [Google Scholar] [CrossRef] [PubMed]
- Lari, A.R.; Ardebili, A.; Hashemi, A. AdeR-AdeS Mutations & Overexpression of the AdeABC Efflux System in Ciprofloxacin-Resistant Acinetobacter baumannii Clinical Isolates. Indian J. Med. Res. 2018, 147, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.F.; Bilya, S.R.; Xu, W. adeABC Efflux Gene in Acinetobacter baumannii. New Microbes New Infect. 2019, 30, 100549. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.-F.; Lin, Y.-Y.; Yeh, H.-W.; Lan, C.-Y. Role of the BaeSR Two-Component System in the Regulation of Acinetobacter baumannii adeAB Genes and Its Correlation with Tigecycline Susceptibility. BMC Microbiol. 2014, 14, 119. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.-F.; Lin, Y.-Y.; Lan, C.-Y. The Role of the Two-Component System BaeSR in Disposing Chemicals through Regulating Transporter Systems in Acinetobacter baumannii. PLoS ONE 2015, 10, e0132843. [Google Scholar] [CrossRef]
- Kollef, M.; Dupont, H.; Greenberg, D.E.; Viale, P.; Echols, R.; Yamano, Y.; Nicolau, D.P. Prospective Role of Cefiderocol in the Management of Carbapenem-Resistant Acinetobacter baumannii Infections: Review of the Evidence. Int. J. Antimicrob. Agents 2023, 62, 106882. [Google Scholar] [CrossRef]
- Liu, X.; Chang, Y.; Xu, Q.; Zhang, W.; Huang, Z.; Zhang, L.; Weng, S.; Leptihn, S.; Jiang, Y.; Yu, Y.; et al. Mutation in the Two-Component Regulator BaeSR Mediates Cefiderocol Resistance and Enhances Virulence in Acinetobacter baumannii. mSystems 2023, 8, e01291-22. [Google Scholar] [CrossRef]
- Hu, W.S.; Chen, H.-W.; Zhang, R.-Y.; Huang, C.-Y.; Shen, C.-F. The Expression Levels of Outer Membrane Proteins STM1530 and OmpD, Which Are Influenced by the CpxAR and BaeSR Two-Component Systems, Play Important Roles in the Ceftriaxone Resistance of Salmonella enterica Serovar Typhimurium. Antimicrob. Agent Chemother. 2011, 55, 3829–3837. [Google Scholar] [CrossRef]
- Gutu, A.D.; Sgambati, N.; Strasbourger, P.; Brannon, M.K.; Jacobs, M.A.; Haugen, E.; Kaul, R.K.; Johansen, H.K.; Høiby, N.; Moskowitz, S.M. Polymyxin Resistance of Pseudomonas aeruginosa phoQ Mutants Is Dependent on Additional Two-Component Regulatory Systems. Antimicrob. Agent Chemother. 2013, 57, 2204–2215. [Google Scholar] [CrossRef]
- McPhee, J.B.; Lewenza, S.; Hancock, R.E.W. Cationic Antimicrobial Peptides Activate a Two-Component Regulatory System, PmrA-PmrB, That Regulates Resistance to Polymyxin B and Cationic Antimicrobial Peptides in Pseudomonas aeruginosa. Mol. Microbiol. 2003, 50, 205–217. [Google Scholar] [CrossRef]
- Fothergill, J.L.; Neill, D.R.; Loman, N.; Winstanley, C.; Kadioglu, A. Pseudomonas aeruginosa Adaptation in the Nasopharyngeal Reservoir Leads to Migration and Persistence in the Lungs. Nat. Commun. 2014, 5, 4780. [Google Scholar] [CrossRef] [PubMed]
- Carretero-Ledesma, M.; García-Quintanilla, M.; Martín-Peña, R.; Pulido, M.R.; Pachón, J.; McConnell, M.J. Phenotypic Changes Associated with Colistin Resistance Due to Lipopolysaccharide Loss in Acinetobacter baumannii. Virulence 2018, 9, 930–942. [Google Scholar] [CrossRef] [PubMed]
- Durante-Mangoni, E.; Del Franco, M.; Andini, R.; Bernardo, M.; Giannouli, M.; Zarrilli, R. Emergence of Colistin Resistance without Loss of Fitness and Virulence after Prolonged Colistin Administration in a Patient with Extensively Drug-Resistant Acinetobacter baumannii. Diagn. Microbiol. Infect. Dis. 2015, 82, 222–226. [Google Scholar] [CrossRef] [PubMed]
- Hurst, M.N.; Beebout, C.J.; Hollingsworth, A.; Guckes, K.R.; Purcell, A.; Bermudez, T.A.; Williams, D.; Reasoner, S.A.; Trent, M.S.; Hadjifrangiskou, M. The QseB Response Regulator Imparts Tolerance to Positively Charged Antibiotics by Controlling Metabolism and Minor Changes to LPS. mSphere 2023, 8, e00059-23. [Google Scholar] [CrossRef] [PubMed]
- Sperandio, V.; Torres, A.G.; Kaper, J.B. Quorum Sensing Escherichia coli Regulators B and C (QseBC): A Novel Two-Component Regulatory System Involved in the Regulation of Flagella and Motility by Quorum Sensing in E. coli. Mol. Microbiol. 2002, 43, 809–821. [Google Scholar] [CrossRef]
- Hurst, M.N.; Beebout, C.J.; Mersfelder, R.; Hollingsworth, A.; Guckes, K.R.; Bermudez, T.; Floyd, K.A.; Reasoner, S.A.; Williams, D.; Hadjifrangiskou, M. A Bacterial Signaling Network Controls Antibiotic Resistance by Regulating Anaplerosis of 2-Oxoglutarate. bioRxiv 2020. [Google Scholar] [CrossRef]
- Santos-Beneit, F. The Pho Regulon: A Huge Regulatory Network in Bacteria. Front. Microbiol. 2015, 6, 402. [Google Scholar] [CrossRef]
- Hu, M.; Zhang, Y.; Huang, X.; He, M.; Zhu, J.; Zhang, Z.; Cui, Y.; He, S.; Shi, X. PhoPQ Regulates Quinolone and Cephalosporin Resistance Formation in Salmonella Enteritidis at the Transcriptional Level. mBio 2023, 14, e03395-22. [Google Scholar] [CrossRef]
- Choi, B.J.; Choi, U.; Ryu, D.-B.; Lee, C.-R. PhoPQ-Mediated Lipopolysaccharide Modification Regulates Intrinsic Resistance to Tetracycline and Glycylcycline Antibiotics in Escherichia coli. bioRxiv 2024. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, Y.; Shan, Z.; Wang, X.; Xia, X. Involvement of PhoP/PhoQ Two-Component System in Biofilm Formation in Cronobacter sakazakii. Food Control 2022, 133, 108621. [Google Scholar] [CrossRef]
- Lu, H.-F.; Wu, B.-K.; Huang, Y.-W.; Lee, M.-Z.; Li, M.-F.; Ho, H.-J.; Yang, H.-C.; Yang, T.-C. PhoPQ Two-Component Regulatory System Plays a Global Regulatory Role in Antibiotic Susceptibility, Physiology, Stress Adaptation, and Virulence in Stenotrophomonas maltophilia. BMC Microbiol. 2020, 20, 312. [Google Scholar] [CrossRef] [PubMed]
- Roychoudhury, S.; Zielinski, N.A.; Ninfa, A.J.; Allen, N.E.; Jungheim, L.N.; Nicas, T.I.; Chakrabarty, A.M. Inhibitors of Two-Component Signal Transduction Systems: Inhibition of Alginate Gene Activation in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 1993, 90, 965–969. [Google Scholar] [CrossRef] [PubMed]
- Macielag, M.J.; Goldschmidt, R. Inhibitors of Bacterial Two-Component Signalling Systems. Expert Opin. Investig. Drugs 2000, 9, 2351–2369. [Google Scholar] [CrossRef] [PubMed]
- Gotoh, Y.; Eguchi, Y.; Watanabe, T.; Okamoto, S.; Doi, A.; Utsumi, R. Two-Component Signal Transduction as Potential Drug Targets in Pathogenic Bacteria. Curr. Opin. Microbiol. 2010, 13, 232–239. [Google Scholar] [CrossRef]
- Barrett, J.F.; Hoch, J.A. Two-Component Signal Transduction as a Target for Microbial Anti-Infective Therapy. Antimicrob. Agent Chemother. 1998, 42, 1529. [Google Scholar] [CrossRef]
- Rosales-Hurtado, M.; Meffre, P.; Szurmant, H.; Benfodda, Z. Synthesis of Histidine Kinase Inhibitors and Their Biological Properties. Med. Res. Rev. 2020, 40, 1440–1495. [Google Scholar] [CrossRef]
- Dean, S.N.; van Hoek, M.L. Screen of FDA-Approved Drug Library Identifies Maprotiline, an Antibiofilm and Antivirulence Compound with QseC Sensor-Kinase Dependent Activity in Francisella novicida. Virulence 2015, 6, 487–503. [Google Scholar] [CrossRef]
- Curtis, M.M.; Russell, R.; Moreira, C.G.; Adebesin, A.M.; Wang, C.; Williams, N.S.; Taussig, R.; Stewart, D.; Zimmern, P.; Lu, B.; et al. QseC Inhibitors as an Antivirulence Approach for Gram-Negative Pathogens. mBio 2014, 5, e02165-14. [Google Scholar] [CrossRef]
- Cai, X.; Zhang, J.; Chen, M.; Wu, Y.; Wang, X.; Chen, J.; Zhang, J.; Shen, X.; Qu, D.; Jiang, H. The Effect of the Potential PhoQ Histidine Kinase Inhibitors on Shigella flexneri Virulence. PLoS ONE 2011, 6, e23100. [Google Scholar] [CrossRef]
- Velikova, N.; Fulle, S.; Manso, A.S.; Mechkarska, M.; Finn, P.; Conlon, J.M.; Oggioni, M.R.; Wells, J.M.; Marina, A. Putative Histidine Kinase Inhibitors with Antibacterial Effect against Multi-Drug Resistant Clinical Isolates Identified by in Vitro and in Silico Screens. Sci. Rep. 2016, 6, 26085. [Google Scholar] [CrossRef]
- Tsai, K.-C.; Hung, P.-P.; Cheng, C.-F.; Chen, C.; Tseng, T.-S. Exploring the Mode of Action of Inhibitors Targeting the PhoP Response Regulator of Salmonella enterica through Comprehensive Pharmacophore Approaches. RSC Adv. 2019, 9, 9308–9312. [Google Scholar] [CrossRef] [PubMed]
- Guarnieri, M.T.; Zhang, L.; Shen, J.; Zhao, R. The Hsp90 Inhibitor Radicicol Interacts with the ATP-Binding Pocket of Bacterial Sensor Kinase PhoQ. J. Mol. Biol. 2008, 379, 82–93. [Google Scholar] [CrossRef] [PubMed]
- Thielen, M.K.; Vaneerd, C.K.; Goswami, M.; Carlson, E.E.; May, J.F. 2-Aminobenzothiazoles Inhibit Virulence Gene Expression and Block Polymyxin Resistance in Salmonella enterica. ChemBioChem 2020, 21, 3500–3503. [Google Scholar] [CrossRef] [PubMed]
- Pflock, M.; Finsterer, N.; Joseph, B.; Mollenkopf, H.; Meyer, T.F.; Beier, D. Characterization of the ArsRS Regulon of Helicobacter pylori, Involved in Acid Adaptation. J. Bacteriol. 2006, 188, 3449–3462. [Google Scholar] [CrossRef] [PubMed]
- Tillotson, G.S. Trojan Horse Antibiotics—A Novel Way to Circumvent Gram-Negative Bacterial Resistance? Infect. Dis. Res. Treat. 2016, 9, IDRT.S31567. [Google Scholar] [CrossRef]
- Gilmour, R.; Foster, J.E.; Sheng, Q.; McClain, J.R.; Riley, A.; Sun, P.-M.; Ng, W.-L.; Yan, D.; Nicas, T.I.; Henry, K.; et al. New Class of Competitive Inhibitor of Bacterial Histidine Kinases. J. Bacteriol. 2005, 187, 8196. [Google Scholar] [CrossRef]
OM Biogenesis Inhibitors in Gram-Negative Bacteria | |||||
---|---|---|---|---|---|
S.I. No. | Inhibitor Compound | Target | Bacterial Species | Mechanism of Action | Source |
1 | Fmoc-β-(2-quinolyl)-d-alanine | SurA | E. coli | Binding to SurA client site to inhibit chaperoning activity | [71] |
2 | MAB1 | BamA | E. coli | Directly binds to extracellular epitope and inhibits β-barrel folding activity | [66] |
3 | MRL-494 | BamA | E. coli | Inhibition of OMP biogenesis | [67] |
4 | Darobactin | BamA | Multiple GNB | Binds and selectively induces the closed-gate conformation of BamA-β | [68] |
5 | JB-95 | BamA, LptD | P. aeruginosa, A. baumannii, E. coli | Disruption of the OM through interaction with β-barrel proteins | [87] |
5 | Compound 2 (pyrazole) | LolCDE | E. coli | Inhibition of lipoprotein trafficking to the OM, toxic mislocalization of Lpp | [83] |
6 | Compound 1 | LolCDE | E. coli | Inhibition of lipoprotein trafficking to the OM, toxic mislocalization of Lpp | [82] |
7 | G0507 | LolCDE | E. coli | Inhibition of lipoprotein trafficking to the OM, toxic mislocalization of Lpp | [81] |
8 | G907 | MsbA | E. coli | Traps MsbA conformation inward facing, blocking translocation of LPS | [73] |
9 | Compound 1 | MsbA | A. baumannii | Stimulates ATPase activity whilst decoupling it from LPS translocation | [78] |
10 | Thanatin | LptAC | E. coli | Blocks the interaction between LptA subunits and between LptA/C | [74,75] |
11 | Zosurabalpin | LptBFGC | A. baumannii | Binds LptF, LptG, and LPS within the substrate cavity, stalling the Lpt system | [76,77] |
12 | POL7001/POL7080 | LptD | P. aeruginosa | Disruption of LPS flow through LptD | [79] |
Known TCS Inhibitors in Gram-Negative Bacteria | |||||
---|---|---|---|---|---|
S.I. No. | Inhibitor Compound | Target | Bacterial Species | Mechanism of Action | Source |
1 | Maprotiline | QseC | Francisella novicida | Interacts with the periplasmic sensor domain of QseC, reducing biofilm formation | [169] |
2 | LED209 | QseC | S. typhimurium and F. tularensis | Inhibits QseC ligand binding and the resulting autophosphorylation without impacting bacterial viability but critically disabling several virulence mechanisms; demonstrated efficacy in a mouse infection model | [170] |
3 | Cai compounds (Cai-1, Cai-2, Cai-3, and Cai-4) | PhoQ | Shigella flexneri | Inhibits autophosphorylation activity of PhoQ | [171] |
4 | Velikova-13 * | PhoR | E. coli | Inhibits the autophosphorylation of HK in a concentration-dependent manner | [172] |
5 | NSC48630 | PhoP | Salmonella enterica | Inhibits the formation of the S. enterica PhoP–DNA complex | [173] |
6 | Radicicol (Eukaryotic Hsp90 inhibitor) | PhoQ | E. coli | Interacts with the ATP-binding pocket of bacterial sensor kinase PhoQ | [174] |
7 | 2-aminobenzothiazole compounds (21 and 33) | PhoQ | S. enterica | Inhibits PhoQ and affect bacterial growth and resistance to polymyxin B and E | [175] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bisht, R.; Charlesworth, P.D.; Sperandeo, P.; Polissi, A. Breaking Barriers: Exploiting Envelope Biogenesis and Stress Responses to Develop Novel Antimicrobial Strategies in Gram-Negative Bacteria. Pathogens 2024, 13, 889. https://doi.org/10.3390/pathogens13100889
Bisht R, Charlesworth PD, Sperandeo P, Polissi A. Breaking Barriers: Exploiting Envelope Biogenesis and Stress Responses to Develop Novel Antimicrobial Strategies in Gram-Negative Bacteria. Pathogens. 2024; 13(10):889. https://doi.org/10.3390/pathogens13100889
Chicago/Turabian StyleBisht, Renu, Pierre D. Charlesworth, Paola Sperandeo, and Alessandra Polissi. 2024. "Breaking Barriers: Exploiting Envelope Biogenesis and Stress Responses to Develop Novel Antimicrobial Strategies in Gram-Negative Bacteria" Pathogens 13, no. 10: 889. https://doi.org/10.3390/pathogens13100889
APA StyleBisht, R., Charlesworth, P. D., Sperandeo, P., & Polissi, A. (2024). Breaking Barriers: Exploiting Envelope Biogenesis and Stress Responses to Develop Novel Antimicrobial Strategies in Gram-Negative Bacteria. Pathogens, 13(10), 889. https://doi.org/10.3390/pathogens13100889