Molecular Survey of Parasitic Contamination of Frozen Berries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Washing and DNA Extraction of Frozen Berries
2.3. Real-Time PCR for Giardia duodenalis
2.4. Real-Time PCR for Cryptosporidium parvum
2.5. Multiplex Real-Time PCR for Cyclospora cayetanensis, Toxoplasma gondii, and Echinococcus multilocularis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zorzi, M.; Gai, F.; Medana, C.; Aigotti, R.; Morello, S.; Peiretti, P.G. Bioactive Compounds and Antioxidant Capacity of Small Berries. Foods 2020, 9, 623. [Google Scholar] [CrossRef] [PubMed]
- Skrovankova, S.; Sumczynski, D.; Mlcek, J.; Jurikova, T.; Sochor, J. Bioactive compounds and antioxidant activity in different types of berries. Int. J. Mol. Sci. 2015, 16, 24673–24706. [Google Scholar] [CrossRef]
- Eurostat. Fruit and Vegetable Consumption Statistics. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Fruit_and_vegetable_consumption_statistics&oldid=412723 (accessed on 9 September 2024).
- Food and Agriculture Organization of the United Nations (FAO)/World Health Organization (WHO). Multicriteria-Based Ranking for Risk Management of Food-Borne Parasites. Available online: https://apps.who.int/iris/bitstream/handle/10665/112672/9789241564700_eng.pdf (accessed on 9 September 2024).
- Bouwknegt, M.; Devleesschauwer, B.; Graham, H.; Robertson, L.J.; van der Giessen, J.W. Prioritisation of food-borne parasites in Europe, 2016. Eurosurveillance 2018, 23, 9. [Google Scholar] [CrossRef] [PubMed]
- Barlaam, A.; Temesgen, T.T.; Tysnes, K.R.; Rinaldi, L.; Ferrari, N.; Sannella, A.R.; Normanno, G.; Cacciò, S.M.; Robertson, L.J.; Giangaspero, A. Contamination of fresh produce sold on the Italian market with Cyclospora cayetanensis and Echinococcus multilocularis. Food Microbiol. 2021, 98, 103792. [Google Scholar] [CrossRef]
- Temesgen, T.T.; Stigum, V.M.; Robertson, L.J. Surveillance of berries sold on the Norwegian market for parasite contamination using molecular methods. Food Microbiol. 2022, 104, 103980. [Google Scholar] [CrossRef] [PubMed]
- Tefera, T.; Tysnes, K.R.; Utaaker, K.S.; Robertson, L.J. Parasite contamination of berries: Risk, occurrence, and approaches for mitigation. Food Waterborne Parasitol. 2018, 10, 23–38. [Google Scholar] [CrossRef]
- Koutsoumanis, K.; Allende, A.; Alvarez-Ordóñez, A.; Bolton, D.; Bover-Cid, S.; Chemaly, M.; Davies, R.; De Cesare, A.; Herman, L.; Hilbert, F.; et al. Public health risks associated with food-borne parasites. EFSA J. 2018, 16, e05495. [Google Scholar] [CrossRef]
- Ryan, U.; Hijjawi, N.; Feng, Y.; Xiao, L. Giardia: An under-reported foodborne parasite. Int. J. Parasitol. 2019, 49, 1–11. [Google Scholar] [CrossRef]
- Zahedi, A.; Ryan, U. Cryptosporidium—An update with an emphasis on foodborne and waterborne transmission. Res. Vet. Sci. 2020, 132, 500–512. [Google Scholar] [CrossRef]
- Ortega, Y.R.; Sanchez, R. Update on Cyclospora cayetanensis, a Food-borne and Waterborne Parasite. Clin. Microbiol. Rev. 2010, 23, 218–234. [Google Scholar] [CrossRef]
- Hill, D.E.; Dubey, J.P. Toxoplasma gondii as a Parasite in Food: Analysis and Control. Microbiol. Spectr. 2016, 4, PFS-0011-2015. [Google Scholar] [CrossRef] [PubMed]
- Massolo, A.; Valli, D.; Wassermann, M.; Cavallero, S.; D’Amelio, S.; Meriggi, A.; Torretta, E.; Serafini, M.; Casulli, A.; Zambon, L.; et al. Unexpected Echinococcus multilocularis Infections in Shepherd Dogs and Wolves in South-western Italian Alps: A new endemic area? Int. J. Parasitol. Parasites Wildl. 2018, 7, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Tamarozzi, F.; Ronzoni, N.; Degani, M.; Oliboni, E.; Tappe, D.; Gruener, B.; Gobbi, F. Confirmed Autochthonous Case of Human Alveolar Echinococcosis, Italy, 2023. Emerg. Infect. Dis. 2024, 30, 350–353. [Google Scholar] [CrossRef] [PubMed]
- Alvi, M.A.; Alsayeqh, A.F. Food-borne Zoonotic Echinococcosis: A Review with Special Focus on Epidemiology. Front. Vet. Sci. 2022, 9, 1072730. [Google Scholar] [CrossRef]
- Li, J.; Wang, Z.; Karim, R.; Zhang, L. Detection of human intestinal protozoan parasites in vegetables and fruits: A review. Parasites Vectors 2020, 13, 380. [Google Scholar] [CrossRef]
- Eslahi, A.V.; Mamedova, S.; Nassiba, R.; Karanis, P. Unveiling risks in healthy food: Vegetables and fruits are linked to the distribution chain of protozoan parasites. Food Microbiol. 2024, 123, 104592. [Google Scholar]
- Lass, A.; Szostakowska, B.; Myjak, P.; Korzeniewski, K. The first detection of Echinococcus multilocularis DNA in environmental fruit, vegetable, and mushroom samples using nested PCR. Parasitol. Res. 2015, 114, 4023–4029. [Google Scholar] [CrossRef] [PubMed]
- Barlaam, A.; Sannella, A.R.; Ferrari, N.; Temesgen, T.T.; Rinaldi, L.; Normanno, G.; Cacciò, S.M.; Robertson, L.J.; Giangaspero, A. Ready-to-eat salads and berry fruits purchased in Italy contaminated by Cryptosporidium spp., Giardia duodenalis, and Entamoeba histolytica. Int. J. Food Microbiol. 2022, 370, 109634. [Google Scholar] [CrossRef] [PubMed]
- CBI. Market Entry for Frozen Berries. Available online: https://www.cbi.eu/market-information/processed-fruit-vegetables-edible-nuts/frozen-berries/market-entry (accessed on 9 September 2024).
- CBI. Market Potential for Frozen Berries. Available online: https://www.cbi.eu/market-information/processed-fruit-vegetables-edible-nuts/frozen-berries/market-potential (accessed on 9 September 2024).
- Gérard, C.; Franssen, F.; La Carbona, S.; Monteiro, S.; Cozma-Petruţ, A.; Utaaker, K.S.; Jambrak, A.R.; Rowan, N.; Rodríguez-Lazaro, D.; Nasser, A.; et al. Inactivation of parasite transmission stages: Efficacy of treatments on foods of non-animal origin. Trends Food Sci. Technol. 2019, 91, 12–23. [Google Scholar] [CrossRef]
- Murphy, H.R.; Da Silva, A.J.; Lee, S. Evaluation of an improved U.S. Food and Drug Administration method for the detection of Cyclospora cayetanensis in produce using real-time PCR. J. Food Prot. 2017, 80, 1133–1144. [Google Scholar] [CrossRef]
- Klotz, C.; Radam, E.; Rausch, S.; Gosten-Heinrich, P.; Aebischer, T. Real-Time PCR for molecular detection of zoonotic and non-zoonotic Giardia spp. in wild rodents. Microorganisms 2021, 9, 1610. [Google Scholar] [CrossRef] [PubMed]
- Temesgen, T.T.; Barlaam, A.; Tysnes, K.R.; Robertson, L.J. Comparative evaluation of UNEX-based DNA extraction for molecular detection of Cyclospora cayetanensis, Toxoplasma gondii, and Cryptosporidium parvum as contaminants of berries. Food Microbiol. 2020, 89, 103447. [Google Scholar] [CrossRef] [PubMed]
- Temesgen, T.T.; Robertson, L.J.; Tysnes, K.R. A novel multiplex real-time PCR for the detection of Echinococcus multilocularis, Toxoplasma gondii, and Cyclospora cayetanensis on berries. Food Res. Int. 2019, 125, 108636. [Google Scholar] [CrossRef]
- Opsteegh, M.; Langelaar, M.; Sprong, H.; Hartog, L.D.; De Craeye, S.; Bokken, G.; Ajzenberg, D.; Kijlstra, A.; van der Giessen, J. Direct detection and genotyping of Toxoplasma gondii in meat samples using magnetic capture and PCR. Int. J. Food Microbiol. 2010, 139, 193–201. [Google Scholar] [CrossRef]
- Isaksson, M.; Hagström, Å.; Armua-Fernandez, M.T.; Wahlström, H.; Ågren, E.O.; Miller, A.; Holmberg, A.; Lukacs, M.; Casulli, A.; Deplazes, P.; et al. A semi-automated magnetic capture probe based DNA extraction and real-time PCR method applied in the Swedish surveillance of Echinococcus multilocularis in red fox (Vulpes vulpes) faecal samples. Parasites Vectors 2014, 7, 583. [Google Scholar] [CrossRef] [PubMed]
- Veit, P.; Bilger, B.; Schad, V.; Schäfer, J.; Frank, W.; Lucius, R. Influence of environmental factors on the infectivity of Echinococcus multilocularis eggs. Parasitology 1995, 110, 79–86. [Google Scholar] [CrossRef]
- Frenkel, J.K.; Dubey, J.P. Effects of freezing on the viability of Toxoplasma oocysts. J. Parasitol. 1973, 59, 587–588. [Google Scholar] [CrossRef]
- Ho, A.Y.; Lopez, A.S.; Eberhart, M.G.; Levenson, R.; Finkel, B.S.; da Silva, A.J.; Roberts, J.M.; Orlandi, P.A.; Johnson, C.C.; Herwaldt, B.L. Outbreak of cyclosporiasis associated with imported raspberries, Philadelphia, Pennsylvania. Emerg. Infect. Dis. 2002, 8, 783. [Google Scholar] [CrossRef]
- Duhain, G.; Minnaar, A.; Buys, E. Effect of chlorine, blanching, freezing, and microwave heating on Cryptosporidium parvum viability inoculated on green peppers. J. Food Prot. 2012, 75, 936–941. [Google Scholar] [CrossRef]
- Jones, J.L.; Dubey, J.P. Foodborne toxoplasmosis. Clin. Infect. Dis. 2012, 55, 845–851. [Google Scholar] [CrossRef]
- Temesgen, T.T.; Tysnes, K.R.; Robertson, L.J. Use of Oxidative Stress Responses to Determine the Efficacy of Inactivation Treatments on Cryptosporidium Oocysts. Microorganisms 2021, 9, 1463. [Google Scholar] [CrossRef] [PubMed]
- Fayer, R.; Nerad, T. Effects of low temperatures on viability of Cryptosporidium parvum oocysts. Appl. Environ. Microbiol. 1996, 62, 1431–1433. [Google Scholar] [CrossRef] [PubMed]
- Lalonde, L.; Oakley, J.; Fries, P. Verification and Use of the US-FDA BAM 19b Method for Detection of Cyclospora cayetanensis in a Survey of Fresh Produce by CFIA Laboratory. Microorganisms 2022, 10, 559. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, R.L.; Dias, V.L.; Pereira, K.S.; Schmidt, F.L.; Franco, R.M.B.; Guaraldo, A.M.A.; Alves, D.P.; Passos, L.A.C. Survival In Vitro and Virulence of Trypanosoma cruzi in Açaí Pulp in Experimental Acute Chagas Disease. J. Food Prot. 2012, 1, 601–606. [Google Scholar] [CrossRef]
- Erickson, M.C.; Ortega, Y.R. Inactivation of Protozoan Parasites in Food, Water, and Environmental Systems. J. Food Prot. 2006, 69, 2786–2808. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barlaam, A.; Datteo, M.; Perdonò, S.; Puccini, A.; Giangaspero, A. Molecular Survey of Parasitic Contamination of Frozen Berries. Pathogens 2024, 13, 900. https://doi.org/10.3390/pathogens13100900
Barlaam A, Datteo M, Perdonò S, Puccini A, Giangaspero A. Molecular Survey of Parasitic Contamination of Frozen Berries. Pathogens. 2024; 13(10):900. https://doi.org/10.3390/pathogens13100900
Chicago/Turabian StyleBarlaam, Alessandra, Marialoreta Datteo, Stefania Perdonò, Antonella Puccini, and Annunziata Giangaspero. 2024. "Molecular Survey of Parasitic Contamination of Frozen Berries" Pathogens 13, no. 10: 900. https://doi.org/10.3390/pathogens13100900
APA StyleBarlaam, A., Datteo, M., Perdonò, S., Puccini, A., & Giangaspero, A. (2024). Molecular Survey of Parasitic Contamination of Frozen Berries. Pathogens, 13(10), 900. https://doi.org/10.3390/pathogens13100900