Interleukin-1 Beta rs16944 and rs1143634 and Interleukin-6 Receptor rs12083537 Single Nucleotide Polymorphisms as Potential Predictors of COVID-19 Severity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Blood Sampling and Procedures
2.2. Genotyping of IL-1β (rs16944, rs1143634) and IL-6R rs12083537 SNPs
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dhama, K.; Khan, S.; Tiwari, R.; Sircar, S.; Bhat, S.; Malik, Y.S.; Singh, K.P.; Chaicumpa, W.; Bonilla-Aldana, D.K.; Rodriguez-Morales, A.J. Coronavirus Disease 2019-COVID-19. Clin. Microbiol. Rev. 2020, 33, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Ashour, H.M.; Elkhatib, W.F.; Rahman, M.M.; Elshabrawy, H.A. Insights into the recent 2019 novel coronavirus (SARS-CoV-2) in light of past human coronavirus outbreaks. Pathogens 2020, 9, 186. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.-J.; Dong, X.; Liu, G.-H.; Gao, Y.-D. Risk and protective factors for COVID-19 morbidity, severity, and mortality. Clin. Rev. Allergy Immunol. 2023, 64, 90–107. [Google Scholar] [CrossRef] [PubMed]
- Lek, M.; Karczewski, K.J.; Minikel, E.V.; Samocha, K.E.; Banks, E.; Fennell, T.; O’Donnell-Luria, A.H.; Ware, J.S.; Hill, A.J.; Cummings, B.B. Analysis of protein-coding genetic variation in 60,706 humans. Nature 2016, 536, 285–291. [Google Scholar] [CrossRef]
- Abdulla, Z.A.; Al-Bashir, S.M.; Alzoubi, H.; Al-Salih, N.S.; Aldamen, A.A.; Abdulazeez, A.Z. The Role of Immunity in the Pathogenesis of SARS-CoV-2 Infection and in the Protection Generated by COVID-19 Vaccines in Different Age Groups. Pathogens 2023, 12, 329. [Google Scholar] [CrossRef]
- Ovsyannikova, I.G.; Haralambieva, I.H.; Crooke, S.N.; Poland, G.A.; Kennedy, R.B. The role of host genetics in the immune response to SARS-CoV-2 and COVID-19 susceptibility and severity. Immunol. Rev. 2020, 296, 205–219. [Google Scholar] [CrossRef]
- Salvamani, S.; Tan, H.; Thang, W.; Ter, H.; Wan, M.; Gunasekaran, B.; Rhodes, A. Understanding the dynamics of COVID-19; implications for therapeutic intervention, vaccine development and movement control. Br. J. Biomed. Sci. 2020, 77, 168–184. [Google Scholar] [CrossRef]
- QinC, Z. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin. Infect. Dis. 2020, 71, 762–768. [Google Scholar]
- Dinarello, C.A. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol. Rev. 2018, 281, 8–27. [Google Scholar] [CrossRef]
- Yao, Z.-L.; Lin, Q.-R.; Hu, Y.-J.; Hou, Y.-L.; Ma, Y.-F.; Yu, B.; Jiang, N. Interleukin-1 beta gene polymorphism rs16944 may associate with increased susceptibility to extremity chronic osteomyelitis in Chinese han population. BioMed Res. Int. 2019, 2019, 7483537. [Google Scholar] [CrossRef]
- Jiménez-Sousa, M.Á.; Medrano, L.M.; Liu, P.; Almansa, R.; Fernández-Rodríguez, A.; Gómez-Sánchez, E.; Rico, L.; Heredia-Rodríguez, M.; Gómez-Pesquera, E.; Tamayo, E. IL-1B rs16944 polymorphism is related to septic shock and death. Eur. J. Clin. Investig. 2017, 47, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Kasztelewicz, B.; Czech-Kowalska, J.; Lipka, B.; Milewska-Bobula, B.; Borszewska-Kornacka, M.; Romańska, J.; Dzierżanowska-Fangrat, K. Cytokine gene polymorphism associations with congenital cytomegalovirus infection and sensorineural hearing loss. Eur. J. Clin. Microbiol. Infect. Dis. 2017, 36, 1811–1818. [Google Scholar] [CrossRef] [PubMed]
- Rogo, L.D.; Rezaei, F.; Marashi, S.M.; Yekaninejad, M.S.; Naseri, M.; Ghavami, N.; Mokhtari-Azad, T. Seasonal influenza A/H3N2 virus infection and IL-1Β, IL-10, IL-17, and IL-28 polymorphisms in Iranian population. J. Med. Virol. 2016, 88, 2078–2084. [Google Scholar] [CrossRef] [PubMed]
- Janahiraman, S.; Too, C.L.; Lee, K.W.; Shahril, N.S.; Leong, C.O. Genetic biomarkers as predictors of response to tocilizumab in rheumatoid arthritis: A systematic review and meta-analysis. Genes 2022, 13, 1284. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Bai, Y.; Wang, Y.; Cui, H.; Tang, M.; Wang, L.; Wang, X.; Gu, D. Cumulative evidence for associations between genetic variants in interleukin 6 receptor gene and human diseases and phenotypes. Front. Immunol. 2022, 13, 860703. [Google Scholar] [CrossRef]
- Qi, L.; Rifai, N.; Hu, F.B. Interleukin-6 receptor gene, plasma C-reactive protein, and diabetes risk in women. Diabetes 2009, 58, 275–278. [Google Scholar] [CrossRef]
- Garbers, C.; Hermanns, H.M.; Schaper, F.; Müller-Newen, G.; Grötzinger, J.; Rose-John, S.; Scheller, J. Plasticity and cross-talk of interleukin 6-type cytokines. Cytokine Growth Factor Rev. 2012, 23, 85–97. [Google Scholar] [CrossRef]
- Mihara, M.; Hashizume, M.; Yoshida, H.; Suzuki, M.; Shiina, M. IL-6/IL-6 receptor system and its role in physiological and pathological conditions. Clin. Sci. 2012, 122, 143–159. [Google Scholar] [CrossRef]
- Rodríguez-Hernández, M.Á.; Carneros, D.; Núñez-Núñez, M.; Coca, R.; Baena, R.; López-Ruiz, G.M.; Cano-Serrano, M.E.; Martínez-Tellería, A.; Fuentes-López, A.; Praena-Fernandez, J.M. Identification of IL-6 signalling components as predictors of severity and outcome in COVID-19. Front. Immunol. 2022, 13, 891456. [Google Scholar] [CrossRef]
- Abdelsattar, S.; Kasemy, Z.; Ewida, S.; Abo-Elsoud, R.; Zytoon, A.; Abdelaal, G.; Abdelgawad, A.; Khalil, F.; Kamel, H. ACE2 and TMPRSS2 SNPs as Determinants of Susceptibility to, and Severity of, a COVID-19 Infection. Br. J. Biomed. Sci. 2022, 79, 10238. [Google Scholar] [CrossRef]
- Bai, H.X.; Hsieh, B.; Xiong, Z.; Halsey, K.; Choi, J.W.; Tran, T.M.L.; Pan, I.; Shi, L.-B.; Wang, D.-C.; Mei, J. Performance of radiologists in differentiating COVID-19 from non-COVID-19 viral pneumonia at chest CT. Radiology 2020, 296, E46–E54. [Google Scholar] [CrossRef] [PubMed]
- Zayed, N.E.; Abbas, A.; Lutfy, S.M. Criteria and potential predictors of severity in patients with COVID-19. Egypt J. Bronchol. 2022, 16, 11. [Google Scholar] [CrossRef]
- Song, F.; Shi, N.; Shan, F.; Zhang, Z.; Shen, J.; Lu, H.; Ling, Y.; Jiang, Y.; Shi, Y. Emerging 2019 novel coronavirus (2019-nCoV) pneumonia. Radiology 2020, 295, 210–217. [Google Scholar] [CrossRef] [PubMed]
- van der Made, C.I.; Netea, M.G.; van der Veerdonk, F.L.; Hoischen, A. Clinical implications of host genetic variation and susceptibility to severe or critical COVID-19. Genome Med. 2022, 14, 96. [Google Scholar] [CrossRef]
- Alaa, A.; Sarhan, N.; Lotfy El-Ansary, M.G.; Bazan, N.S.; Farouk, K.; Ismail, R.S.; Schalaan, M.F.; Abd-Allah, A.R. Association between genetic polymorphism, severity, and treatment response among COVID-19 infected Egyptian patients. Front. Pharmacol. 2023, 14, 1209286. [Google Scholar] [CrossRef]
- Elgedawy, G.A.; Elabd, N.S.; Salem, R.H.; Awad, S.M.; Amer, A.A.; Torayah, M.M.; El-Koa, A.A.; Abozeid, M.; Montaser, B.A.; Aboshabaan, H.S. FURIN, IFNL4, and TLR2 gene polymorphisms in relation to COVID-19 severity: A case–control study in Egyptian patients. Infection 2024, 1–17. [Google Scholar] [CrossRef]
- Elnagdy, M.H.; Magdy, A.; Eldars, W.; Elgamal, M.; El-Nagdy, A.H.; Salem, O.; Elmowafy, M.M.; Elborsh, O.A.; Elshafey, A.W.; Kesba, M.M. Genetic association of ACE2 and TMPRSS2 polymorphisms with COVID-19 severity; a single centre study from Egypt. Virol. J. 2024, 21, 27. [Google Scholar] [CrossRef]
- Jamilloux, Y.; Henry, T.; Belot, A.; Viel, S.; Fauter, M.; El Jammal, T.; Walzer, T.; François, B.; Sève, P. Should we stimulate or suppress immune responses in COVID-19? Cytokine and anti-cytokine interventions. Autoimmun. Rev. 2020, 19, 102567. [Google Scholar] [CrossRef]
- Lavillegrand, J.-R.; Garnier, M.; Spaeth, A.; Mario, N.; Hariri, G.; Pilon, A.; Berti, E.; Fieux, F.; Thietart, S.; Urbina, T. Elevated plasma IL-6 and CRP levels are associated with adverse clinical outcomes and death in critically ill SARS-CoV-2 patients: Inflammatory response of SARS-CoV-2 patients. Ann. Intensive Care 2021, 11, 9. [Google Scholar] [CrossRef]
- Luan, Y.-Y.; Yin, C.-H.; Yao, Y.-M. Update advances on C-reactive protein in COVID-19 and other viral infections. Front. Immunol. 2021, 12, 720363. [Google Scholar] [CrossRef]
- Liao, M.; Liu, Y.; Yuan, J.; Wen, Y.; Xu, G.; Zhao, J.; Cheng, L.; Li, J.; Wang, X.; Wang, F. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat. Med. 2020, 26, 842–844. [Google Scholar] [CrossRef] [PubMed]
- Pearce, N.; Rhodes, S.; Stocking, K.; Pembrey, L.; van Veldhoven, K.; Brickley, E.B.; Robertson, S.; Davoren, D.; Nafilyan, V.; Windsor-Shellard, B. Occupational differences in COVID-19 incidence, severity, and mortality in the United Kingdom: Available data and framework for analyses. Wellcome Open Res. 2021, 6, 102. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, C.; Mao, Z.; Xiao, M.; Wang, L.; Qi, S.; Zhou, F. Predictive values of neutrophil-to-lymphocyte ratio on disease severity and mortality in COVID-19 patients: A systematic review and meta-analysis. Crit. Care 2020, 24, 647. [Google Scholar] [CrossRef] [PubMed]
- Yang, A.-P.; Liu, J.-P.; Tao, W.-Q.; Li, H.-M. The diagnostic and predictive role of NLR, d-NLR and PLR in COVID-19 patients. Int. Immunopharmacol. 2020, 84, 106504. [Google Scholar] [CrossRef]
- Toori, K.U.; Qureshi, M.A.; Chaudhry, A.; Safdar, M.F. Neutrophil to lymphocyte ratio (NLR) in COVID-19: A cheap prognostic marker in a resource constraint setting. Pak. J. Med. Sci. 2021, 37, 1435. [Google Scholar] [CrossRef]
- Trofin, F.; Nastase, E.V.; Roșu, M.F.; Bădescu, A.C.; Buzilă, E.R.; Miftode, E.G.; Manciuc, D.C.; Dorneanu, O.S. Inflammatory Response in COVID-19 Depending on the Severity of the Disease and the Vaccination Status. Int. J. Mol. Sci. 2023, 24, 8550. [Google Scholar] [CrossRef]
- Canevelli, M.; Palmieri, L.; Raparelli, V.; Punzo, O.; Donfrancesco, C.; Noce, C.L.; Vanacore, N.; Brusaferro, S.; Onder, G. COVID-19 mortality among migrants living in Italy. Ann. Dell’istituto Super. Di Sanità 2020, 56, 373–377. [Google Scholar]
- Rodrigues, F.B.B.; da Silva, R.; Santos, E.F.d.; de Brito, M.T.F.M.; da Silva, A.L.S.; de Meira Leite, M.; Póvoa da Costa, F.; de Nazaré do Socorro de Almeida Viana, M.; de Sarges, K.M.L.; Cantanhede, M.H.D. Association of polymorphisms of IL-6 pathway genes (IL6, IL6R and IL6ST) with COVID-19 severity in an Amazonian population. Viruses 2023, 15, 1197. [Google Scholar] [CrossRef]
- Revez, J.A.; Bain, L.; Chapman, B.; Powell, J.E.; Jansen, R.; Duffy, D.L.; Tung, J.Y.; Penninx, B.W.; Visscher, P.M.; De Geus, E.J. A new regulatory variant in the interleukin-6 receptor gene associates with asthma risk. Genes Immun. 2013, 14, 441–446. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, H.; Wu, J.; Zhao, X.; Zhen, Y.; Wang, S.; Li, W.; Liang, M.; Wu, B.; Ma, G. The IL6R gene polymorphisms are associated with sIL-6R, IgE and lung function in Chinese patients with asthma. Genes 2016, 585, 51–57. [Google Scholar] [CrossRef]
- Pairo-Castineira, E.; Clohisey, S.; Klaric, L.; Bretherick, A.D.; Rawlik, K.; Pasko, D.; Walker, S.; Parkinson, N.; Fourman, M.H.; Russell, C.D. Genetic mechanisms of critical illness in COVID-19. Nature 2021, 591, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Investigators, R.-C.; Gordon, A.C.; Mouncey, P.R.; Al-Beidh, F.; Rowan, K.M.; Nichol, A.D.; Arabi, Y.M.; Annane, D.; Beane, A.; van Bentum-Puijk, W. Interleukin-6 receptor antagonists in critically ill patients with COVID-19–preliminary report. MedRxiv 2021, 384, 11491–11502. [Google Scholar]
- Shaw, M.; Collins, B.F.; Ho, L.A.; Raghu, G. Rheumatoid arthritis-associated lung disease. Eur. Respir. Rev. 2015, 24, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Balzanelli, M.G.; Distratis, P.; Lazzaro, R.; Pham, V.H.; Tran, T.C.; Dipalma, G.; Bianco, A.; Serlenga, E.M.; Aityan, S.K.; Pierangeli, V. Analysis of gene single nucleotide polymorphisms in COVID-19 disease highlighting the susceptibility and the severity towards the infection. Diagnostics 2022, 12, 2824. [Google Scholar] [CrossRef] [PubMed]
- Abady, N.R.; Alkhafaji, Z.A.; Baay, A.S. Polymorphisms in the inter leukin-1 beta gene (rs16944 and rs1143627) as a risk factor for SARS-CoV2 infection. In Proceedings of the AIP Conference Proceedings, Banten, Indonesia, 30 September 2023. [Google Scholar]
- García-Ramírez, R.A.; Ramírez-Venegas, A.; Quintana-Carrillo, R.; Camarena, Á.E.; Falfán-Valencia, R.; Mejía-Aranguré, J.M. TNF, IL6, and IL1B polymorphisms are associated with severe influenza A (H1N1) virus infection in the Mexican population. PLoS ONE 2015, 10, e0144832. [Google Scholar] [CrossRef]
- Pokhylko, V.; Cherniavska, Y.; Fishchuk, L.; Rossokha, Z.; Popova, O.; Vershyhora, V.; Ievseienkova, O.; Soloviova, H.; Zhuk, L.; Gorovenko, N. Association of the C3953T (rs1143634) variant of the interleukin 1 beta gene with the features of a complicated course of COVID-19-associated pneumonia. Mol. Biol. Rep. 2024, 51, 630. [Google Scholar] [CrossRef]
- de Sá, N.B.R.; Neira-Goulart, M.; Ribeiro-Alves, M.; Perazzo, H.; Geraldo, K.M.; Ribeiro, M.P.D.; Cardoso, S.W.; Grinsztejn, B.; Veloso, V.G.; Capão, A. Inflammasome Genetic Variants Are Associated with Protection to Clinical Severity of COVID-19 among Patients from Rio de Janeiro, Brazil. BioMed Res. Int. 2022, 2022, 9082455. [Google Scholar] [CrossRef]
- Pulito-Cueto, V.; Sebastián Mora-Gil, M.; Ferrer-Pargada, D.; Remuzgo-Martínez, S.; Genre, F.; Lera-Gómez, L.; Alonso-Lecue, P.; Batista-Liz, J.C.; Tello-Mena, S.; Abascal-Bolado, B. Inflammasome-Related Genetic Polymorphisms as Severity Biomarkers of COVID-19. Int. J. Mol. Sci. 2024, 25, 3731. [Google Scholar] [CrossRef]
- Karcioglu Batur, L.; Hekim, N. Correlation between interleukin gene polymorphisms and current prevalence and mortality rates due to novel coronavirus disease 2019 (COVID-2019) in 23 countries. J. Med. Virol. 2021, 93, 5853–5863. [Google Scholar] [CrossRef]
- Ng, J.W.; Chong, E.T.; Lee, P.-C. An Updated Review on the Role of Single Nucleotide Polymorphisms in COVID-19 Disease Severity: A Global Aspect. Curr. Pharm. Biotechnol. 2022, 23, 1596–1611. [Google Scholar]
- Collins, A.; Lonjou, C.; Morton, N.E. Genetic epidemiology of single-nucleotide polymorphisms. Proc. Natl. Acad. Sci. USA 1999, 96, 15173–15177. [Google Scholar] [CrossRef] [PubMed]
- Abecasis, G.R.; Cookson, W.O. GOLD—graphical overview of linkage disequilibrium. Bioinformatics 2000, 16, 182–183. [Google Scholar] [CrossRef] [PubMed]
Demographic Data | COVID-19 N = 299 | Control N = 300 | p |
---|---|---|---|
Age | 0.978 | ||
Mean ± SD. | 48.4 ± 16.7 | 48.5 ± 15.91 | |
Median (Min.–Max.) | 47 (13–85) | 48 (20–85) | |
Sex | 0.838 | ||
Male N (%) | 152 (50.8%) | 150 (50.0%) | |
Female N (%) | 147 (49.2%) | 150 (50.0%) | |
Occupation | <0.001 * | ||
Not risky N (%) | 171 (57.2%) | 248 (82.7%) | |
Risky N (%) | 128 (42.8%) | 52 (17.3%) | |
Laboratory data | |||
Hb (g/dL) | 0.634 | ||
Mean ± SD. | 12.5 ± 1.84 | 12.7 ± 1.83 | |
Median (Min.–Max.) | 12.5 (7–16.6) | 12.2 (8.9–16.3) | |
RBCs (×106/mm3) | <0.001 * | ||
Mean ± SD. | 5.04 ± 1.78 | 4.98 ± 0.42 | |
Median (Min.–Max.) | 4.8 (2.5–14.8) | 5 (4.2–5.9) | |
HCT (%) | <0.001 * | ||
Mean ± SD. | 38 ± 7.42 | 42 ± 3.69 | |
Median (Min.–Max.) | 40 (4.5–48) | 41.5 (37–50) | |
Platelets (×103/mm3) | <0.001 * | ||
Mean ± SD. | 211 ± 83.5 | 312 ± 79.9 | |
Median (Min.–Max.) | 206 (22–569) | 322 (157–450) | |
WBCs (×103/mm3) | 0.328 | ||
Mean ± SD. | 6.64 ± 3.8 | 6.08 ± 1.29 | |
Median (Min.–Max.) | 5.7 (2.1–28.1) | 6.3 (4.1–9.5) | |
Lymphocytes (×103/mm3) | <0.001 * | ||
Mean ± SD. | 21.3 ± 11.3 | 31.1 ± 7.75 | |
Median (Min.–Max.) | 19 (4–65) | 30 (20–46) | |
Neutrophils (×103/mm3) | <0.001 * | ||
Mean ± SD. | 55.8 ± 19.2 | 61.9 ± 8.56 | |
Median (Min.–Max.) | 54 (19.3–91) | 65 (44–73) | |
NLR | <0.001 * | ||
Mean ± SD. | 3.83 ± 3.61 | 2.18 ± 0.77 | |
Median (Min.–Max.) | 2.67 (0.38–22.5) | 2.1 (0.96–3.65) | |
PLR | 0.818 | ||
Mean ± SD. | 12.8 ± 9.96 | 10.5 ± 3.46 | |
Median (Min.–Max.) | 10.1 (1.26–56.9) | 9.92 (3.93–20.9) | |
CRP (mg/L) | <0.001 * | ||
Mean ± SD. | 79.4 ± 91.2 | 2.53 ± 1.35 | |
Median (Min.–Max.) | 44.9 (0.45–528) | 2.39 (0.29–5.34) | |
Ferritin (ng/mL) | <0.001 * | ||
Mean ± SD. | 346 ± 310 | 18.1 ± 9.84 | |
Median (Min.–Max.) | 200 (9–1119) | 17 (2–45) | |
LDH (mg/L) | <0.001 * | ||
Mean ± SD. | 431 ± 237 | 295 ± 54.7 | |
Median (Min.–Max.) | 345 (53–1500) | 285 (216–425) | |
D. Dimer (ng/mL) | <0.001 * | ||
Mean ± SD. | 577 ± 633 | 142 ± 58.7 | |
Median (Min.–Max.) | 320 (50–3500) | 110 (50–300) | |
Absolute lymphocytic count (×103/mm3) | <0.001 * | ||
Mean ± SD. | 1347 ± 868 | 1892 ± 621 | |
Median (Min.–Max.) | 1142 (135–4840) | 1750 (820–3515) | |
Absolute neutrophil count (×103/mm3) | <0.001 * | ||
Mean ± SD. | 3948 ± 3358 | 3772 ± 991 | |
Median (Min.–Max.) | 2970 (568–24447) | 3569 (2156–5893) |
COVID-19 N = 299 | Control N = 300 | p | OR (95% CI) | |
---|---|---|---|---|
rs12083537 | ||||
Multiplicative model | ||||
AA® | 128 (42.8%) | 198 (66.0%) | Reference | |
AG | 141 (47.2%) | 88 (29.3%) | <0.001 * | 1.76 (1.42–2.19) |
GG | 30 (10.0%) | 14 (4.7%) | <0.001 * | 2.11 (1.40–3.17) |
HWE | 0.327 | 0.302 | ||
Dominant model | ||||
AA | 128 (42.8%) | 198 (66.0%) | Reference | |
AG + GG | 171 (57.2%) | 102 (34%) | <0.001 * | 1.81 (1.48–2.22) |
Recessive model | ||||
AA + AG | 269 (90%) | 286 (95.3%) | Reference | |
GG | 30 (10.0%) | 14 (4.7%) | 0.012 * | 1.67 (1.12–2.49) |
Alleles | ||||
A | 397 (66.4%) | 484 (80.7%) | Reference | |
G | 201 (33.6%) | 116 (19.3%) | <0.001 * | 1.59 (1.35–1.88) |
rs16944 | ||||
Multiplicative model | ||||
TT® | 83 (27.8%) | 103 (34.3%) | Reference | |
TC | 150 (50.1%) | 152 (50.7%) | 0.278 | 1.14 (0.90–1.43) |
CC | 66 (22.1%) | 45 (15.0%) | 0.013 * | 1.45 (1.08–1.96) |
HWE | 0.909 | 0.362 | ||
Dominant model | ||||
TT® | 83 (27.8%) | 103 (34.3%) | Reference | |
TC + CC | 216 (72.2%) | 197 (65.7%) | 0.082 | 1.21 (0.98–1.51) |
Recessive model | ||||
TC + TC | 233 (77.9%) | 255 (85%) | Reference | |
CC | 66 (22.1%) | 45 (15.0%) | 0.026 * | 1.34 (1.04–1.74) |
Alleles | ||||
T | 316 (52.8%) | 358 (59.7%) | Reference | |
C | 282 (47.2%) | 242 (40.3%) | 0.017 * | 1.19 (1.03–1.37) |
rs1143634 | ||||
Multiplicative model | ||||
CC® | 109 (36.5%) | 32 (10.7%) | Reference | |
CT | 135 (45.2%) | 123 (41.0%) | <0.001 * | 0.50 (0.38–0.66) |
TT | 55 (18.4%) | 145 (48.3%) | <0.001 * | 0.26 (0.19–0.35) |
HWE | 0.250 | 0.442 | ||
Dominant model | ||||
CC | 109 (36.5%) | 32 (10.7%) | Reference | |
CT + TT | 190 (63.5%) | 268 (89.3%) | <0.001 * | 0.38 (0.29–0.49) |
Recessive model | ||||
CC + CT | 244 (81.6%) | 155 (51.7%) | Reference | |
TT | 55 (18.4%) | 145 (48.3%) | <0.001 * | 0.41 (0.33–0.52) |
Alleles | ||||
C® | 353 (59%) | 187 (31.2%) | Reference | |
T | 245 (41%) | 413 (68.8%) | <0.001 * | 0.49 (0.42–0.56) |
rs16944–rs1143634 | COVID-19 | Control | p | OR (95% CI) |
---|---|---|---|---|
CC | 186.25 (31.1) | 25.91 (4.3) | <0.001 * | 10.022 (6.520–15.407) |
CT | 95.75 (16.0) | 216.09 (36.1) | <0.001 * | 0.339 (0.257–0.446) |
TC | 166.75 (27.9) | 161.09 (26.8) | 0.687 | 1.054 (0.817–1.358) |
TT | 149.25 (25.0) | 196.91 (32.8) | 0.003 * | 0.681 (0.529–0.876) |
Severity of COVID-19 | p | OR (95% CI) | |||
---|---|---|---|---|---|
Mild N = 116 | Moderate N = 128 | Severe N = 55 | |||
rs12083537 | |||||
Multiplicative model | |||||
AA | 57 (49.1%) | 53 (41.4%) | 18 (32.7%) | Reference | |
AG | 53 (45.7%) | 65 (50.8%) | 23 (41.8%) | 0.284 | 1.16 (0.88–1.52) |
GG | 6 (5.2%) | 10 (7.8%) | 14 (25.5%) | <0.001 * | 2.43 (1.54–3.83) |
Dominant model | |||||
AA | 57 (49.1%) | 53 (41.4%) | 18 (32.7%) | Reference | |
AG + GG | 59(50.9%) | 75(58.6%) | 37(67.3%) | 0.038 * | 1.31 (1.01–1.70) |
Recessive model | |||||
AA + AG | 110(94.8%) | 118(92.2%) | 41(74.5%) | Reference | |
GG | 6 (5.2%) | 10 (7.8%) | 14 (25.5%) | <0.001 * | 2.25 (1.46–3.46) |
Alleles | |||||
A | 167(72.0%) | 171(66.8%) | 59(53.6%) | Reference | |
G | 65(28%) | 85(33.2%) | 51(46.4%) | 0.001 * | 1.36 (1.13–1.65) |
rs16944 | |||||
Multiplicative model | |||||
TT | 39 (33.6%) | 25 (19.5%) | 19 (34.5%) | Reference | |
TC | 64 (55.2%) | 79 (61.7%) | 7 (12.7%) | 0.178 | 0.81 (0.60–1.10) |
CC | 13 (11.2%) | 24 (18.8%) | 29 (52.7%) | <0.001 * | 2.16 (1.49–3.12) |
Dominant model | |||||
TT | 39 (33.6%) | 25 (19.5%) | 19 (34.5%) | Reference | |
TC + CC | 77(66.4%) | 103 (80.5%) | 36 (65.5%) | 0.540 | 1.09 (0.82–1.46) |
Recessive model | |||||
TT + TC | 103 (88.8%) | 104 (81.3%) | 26 (47.3%) | Reference | |
CC | 13 (11.2%) | 24 (18.8%) | 29 (52.7%) | <0.001 * | 2.46 (1.80–3.38) |
Alleles | |||||
T | 142 (61.2%) | 129 (50.4%) | 45 (40.9%) | Reference | |
C | 90 (38.8%) | 127 (49.6%) | 65 (59.1%) | <0.001 * | 1.40 (1.17–1.68) |
rs1143634 | |||||
Multiplicative model | |||||
CC | 24 (20.7%) | 58 (45.3%) | 27 (49.1%) | Reference | |
CT | 51 (44.0%) | 58 (45.3%) | 26 (47.3%) | 0.021 * | 0.72 (0.54–0.95) |
TT | 41 (35.3%) | 12 (9.4%) | 2 (3.6%) | <0.001 * | 0.27 (0.18–0.40) |
Dominant model | |||||
CC | 24 (20.7%) | 58 (45.3%) | 27 (49.1%) | Reference | |
CT + TT | 92 (79.3%) | 70 (54.7%) | 28 (50.9%) | <0.001 * | 0.57 (0.43–0.74) |
Recessive model | |||||
CC + CT | 75 (64.7%) | 116 (90.6%) | 53 (96.4%) | Reference | |
TT | 41 (35.3%) | 12 (9.4%) | 2 (3.6%) | <0.001 * | 0.32 (0.22–0.47) |
Alleles | |||||
C | 99 (42.7%) | 174 (68.0%) | 80 (72.7%) | Reference | |
T | 133 (57.3%) | 82 (32.0%) | 30 (27.3%) | <0.001 * | 0.55 (0.46–0.67) |
Severity of COVID-19 | p | OR (95% CI) | |||
---|---|---|---|---|---|
Mild (N = 116) N (%) | Moderate (N = 128) N (%) | Severe (N = 55) N (%) | |||
Age (years) Mean ± SD. Median (range.) | 41.96 ± 15.04 37.5 (19–83) | 50.17 ± 16.64 49 (13–85) | 58 ± 14.68 62 (28–78) | <0.001 * | 1.025 (1.017–1.033) |
Sex Male Female | 47 (40.5%) 69 (59.5%) | 74 (57.8%) 54 (42.2%) | 31(56.4%) 24 (43.6%) | 0.015 * | 0.729 (0.564–0.941) |
Occupation Not risky Risky | 74 (63.8%) 42 (36.2%) | 79 (61.7%) 49 (38.3%) | 18 (32.7%) 37 (67.3%) | 0.001 * | 1.557 (1.201–2.018) |
Fever | 73 (62.9%) | 116 (90.6%) | 51 (92.7%) | <0.001 * | 2.793 (1.948–4.003) |
Cough | 95 (81.9%) | 100 (78.1%) | 53 (96.4%) | 0.080 | 1.355 (0.964–1.905) |
Sore throat | 38 (32.8%) | 30 (23.4%) | 17 (30.9%) | 0.494 | 0.906 (0.682–1.203) |
Smell loss | 69 (59.5%) | 51 (39.8%) | 25 (45.5%) | 0.019 * | 0.736 (0.57–0.951) |
Taste loss | 47 (40.5%) | 40 (31.3%) | 9 (16.4%) | 0.002 * | 0.641 (0.485–0.846) |
Headache | 31 (26.7%) | 79 (61.7%) | 44 (80%) | <0.001 * | 2.688 (2.053–3.518) |
Muscle ache | 22 (19%) | 80 (62.5%) | 36 (65.5%) | <0.001 * | 2.537 (1.944–3.31) |
Dyspnea | 5 (4.3%) | 67 (52.3%) | 40 (72.7%) | <0.001 * | 4.215 (3.139–5.66) |
Diarrhea | 12 (10.3%) | 16 (12.5%) | 17 (30.9%) | 0.002 * | 1.763 (1.233–2.522) |
Hypertension | 9 (7.8%) | 43 (33.6%) | 28 (50.9%) | <0.001 * | 2.599 (1.934–3.494) |
Diabetes mellitus | 15 (12.9%) | 30 (23.4%) | 15 (27.3%) | 0.015 * | 1.477 (1.078–2.025) |
Heart disease | 6 (5.2%) | 21 (16.4%) | 11 (20%) | 0.003 * | 1.791 (1.226–2.616) |
Bronchial asthma | 4 (3.4%) | 7 (5.5%) | 10 (18.2%) | 0.002 * | 2.256 (1.357–3.749) |
Total Comorbidities | 29 (25%) | 81(63.3%) | 39 (70.9%) | <0.001 * | 2.428 (1.862–3.165) |
Death | 1 (0.9%) | 6 (4.7%) | 15 (27.3%) | <0.001 * | 4.585 (2.651–7.928) |
Hb (g/dL) Mean ± SD. Median (Min.–Max.) | 12.51 ± 1.52 12.2 (7–16.6) | 12.81 ± 2.02 12.85 (7–16) | 11.88 ± 1.87 11.6 (7–15.3) | 0.163 | 0.952 (0.889–1.02) |
RBCs (×106/mm3) Mean ± SD. Median (Min.–Max.) | 5.02 ± 1.57 4.79 (2.5–14.8) | 5.19 ± 1.94 4.8 (2.5–14.8) | 4.73 ± 1.76 4.48 (2.5–14) | 0.539 | 0.978 (0.911–1.05) |
HCT (%) Mean ± SD. Median (Min.–Max.) | 38.33 ± 6.03 39 (20.3–48) | 38.2 ± 8.13 41 (4.5–47) | 36.78 ± 8.29 40 (19.3–47) | 0.270 | 0.99 (0.974–1.007) |
Platelets (×103/mm3) Mean ± SD. Median (Min.–Max.) | 223.13 ± 76.04 209.5 (22–388) | 209.19 ± 86.11 215 (22–569) | 189.22 ± 88.99 188 (22–426) | 0.013 * | 0.998 (0.997–0.999) |
WBCs (×103/mm3) Mean ± SD. Median (Min.–Max.) | 6.57 ± 2.95 5.9 (2.7–19) | 6.48 ± 4.13 5.7 (2.1–28.1) | 7.16 ± 4.57 5.5 (2.2–19.7) | 0.454 | 1.013 (0.98–1.047) |
Lymphocytes (×103/mm3) Mean ± SD. Median (Min.–Max.) | 26.11 ± 11.92 23 (5.6–65) | 19.9 ± 10.26 17.65 (4–48) | 14.38 ± 6.71 15 (4–37) | <0.001 * | 0.956 (0.943–0.969) |
Neutrophils (×103/mm3) Mean ± SD. Median (Min.–Max.) | 62.53 ± 14.07 66 (20.3–88) | 45.09 ± 17.97 42 (19.3–90) | 66.43 ± 19.4 73.4 (29.2–91) | 0.316 | 0.997 (0.99–1.003) |
NLR Mean ± SD. Median (Min.–Max.) | 3.13 ± 2.09 2.68 (0.38–12.14) | 3.24 ± 3.17 2.32(0.45–22.5) | 6.68 ± 5.39 3.95(1.45–22.5) | <0.001 * | 1.105 (1.063–1.148) |
PLR Mean ± SD. Median (Min.–Max.) | 10.28 ± 5.93 9.47 (1.26–34.14) | 13.3 ± 10.43 10.72(2.32–56.9) | 16.94 ± 13.59 12.24 (2.37–52.32) | <0.001 * | 1.028 (1.014–1.041) |
CRP (mg/L) Mean ± SD. Median (Min.–Max.) | 22.72 ± 23.9 13.18 (0.45–100.9) | 107 ± 104.54 70 (3–528) | 134.55 ± 84.73 114(29–528) | <0.001 * | 1.007 (1.005–1.008) |
Ferritin (ng/mL) Mean ± SD. Median (Min.–Max.) | 175.61 ± 187.88 120 (9–1116) | 393.25 ± 314.18 257.5 (23–1116) | 592.89 ± 303.35 612 (100–1119) | <0.001 * | 1.002 (1.001–1.003) |
LDH (mg/L) Mean ± SD. Median (Min.–Max.) | 377.47 ± 176.08 336.5 (200–900) | 444.04 ± 256.53 344.5 (53–1500) | 511.42 ± 277.26 381 (215–1500) | <0.001 * | 1.001 (1.000–1.002) |
D. Dimer (ng/mL) Mean ± SD. Median (Min.–Max.) | 475.07 ± 551.03 245 (50–2940) | 579.1 ± 640.47 310 (50–3500) | 787.24 ± 728.07 430(80–3500) | 0.004 * | 1.002 (1.001–1.004) |
Absolute lymphocytes count (×103/mm3) Mean ± SD. Median (Min.–Max.) | 1616.67 ± 799.42 1457.5 (360–4500) | 1265.69 ± 921.3 1052 (177–4840) | 966.93 ± 694.87 779 (135–2820) | <0.001 * | 0.998 (0.997–0.999) |
Absolute neutrophil count (×103/mm3) Mean ± SD. Median (Min.–Max.) | 4259.69 ± 2573.64 3742 (729–16720) | 3163.11 ± 3446.48 2493(568.4–24447) | 5115.34 ± 4139.34 3075(1022–14972) | 0.571 | 1.002 (0.999–0.003) |
Univariate | Multivariate | |||
---|---|---|---|---|
p | OR (95% CI) | p | OR (95% CI) | |
Age (years) | <0.001 * | 1.025 (1.017–1.033) | 0.008 * | 1.013 (1.003–1.023) |
Male | 0.015 * | 0.729 (0.564–0.941) | 0.659 | 0.934 (0.688–1.267) |
Female | ||||
Risky Occupation | 0.001 * | 1.557 (1.201–2.018) | 0.282 | 1.215 (0.852–1.734) |
Comorbidities | <0.001 * | 2.428 (1.862–3.165) | 0.001 * | 1.772 (1.28–2.454) |
NLR | <0.001 * | 1.105 (1.063–1.148) | 0.389 | 1.026 (0.968–1.088) |
PLR | <0.001 * | 1.028 (1.014–1.041) | 0.855 | 1.002 (0.982–1.022) |
CRP (mg/L) | <0.001 * | 1.007 (1.005–1.008) | <0.001 * | 1.006 (1.004–1.007) |
Ferritin (ng/mL) | <0.001 * | 1.002 (1.001–1.003) | <0.001 * | 1.001 (1.001–1.002) |
LDH (mg/L) | <0.001 * | 1.001 (1.000–1.002) | 0.046 * | 1.002 (1.001–1.005) |
D. Dimer (ng/mL) | 0.004 * | 1.002 (1.001–1.004) | 0.677 | 1.002 (0.998–1.006) |
Absolute lymphocyte count (×103/mm3) | <0.001 * | 0.998 (0.997–0.999) | 0.026 * | 0.995 (0.984–0.999) |
rs12083537 | <0.001 * | 1.81 (1.48–2.22) | 0.018 * | 1.274 (1.155–1.449) |
rs16944 | 0.026 * | 1.34 (1.04–1.74) | 0.024 * | 1.413 (1.046–1.909) |
rs1143634 | <0.001 * | 0.38 (0.29–0.49) | 0.008 * | 0.653 (0.477–0.895) |
Alive N = 277 | Died N = 22 | p | OR (95% CI) | |
---|---|---|---|---|
rs12083537 | ||||
Multiplicative model | ||||
AA® | 119 (43.0%) | 9 (40.9%) | Reference | |
AG | 133 (48.0%) | 8 (36.4%) | 0.648 | 0.896 (0.561–1.433) |
GG | 25 (9.0%) | 5 (22.7%) | 0.114 | 1.659 (0.886–3.105) |
Dominant model | ||||
AA | 119 (43.0%) | 9 (40.9%) | Reference | |
AG + GG | 158 (57.0%) | 13 (59.1%) | 0.851 | 1.042 (0.678–1.602) |
Recessive model | ||||
AA + AG | 252 (91.0%) | 17 (77.3%) | Reference | |
GG | 25 (9.0%) | 5 (22.7%) | 0.059 | 1.753 (0.978–3.139) |
Alleles | ||||
A | 371 (67.0%) | 26 (59.1%) | Reference | |
G | 183 (33.0%) | 18 (40.9%) | 0.291 | 1.181 (0.867–1.610) |
rs16944 | ||||
Multiplicative model | ||||
TT® | 76 (27.4%) | 7 (31.8%) | Reference | |
TC | 144 (52.0%) | 6 (27.3%) | 0.167 | 0.688 (0.405–1.17) |
CC | 57 (20.6%) | 9 (40.9%) | 0.311 | 1.323 (0.77–2.272) |
Dominant model | ||||
TT® | 76 (27.4%) | 7 (31.8%) | Reference | |
TC + CC | 201 (72.6%) | 15 (68.2%) | 0.661 | 0.902 (0.568–1.432) |
Recessive model | ||||
TC + TC | 220 (79.4%) | 13 (59.1%) | Reference | |
CC | 57 (20.6%) | 9 (40.9%) | 0.035 * | 1.639 (1.034–2.598) |
Alleles | ||||
T | 296 (53.4%) | 20 (45.5%) | Reference | |
C | 258 (46.6%) | 24 (54.5%) | 0.390 | 1.169 (0.865–1.579) |
rs1143634 | ||||
Multiplicative model | ||||
CC® | 96 (34.7%) | 13 (59.1%) | Reference | |
CT | 127 (45.8%) | 8 (36.4%) | 0.100 | 0.682 (0.433–1.076) |
TT | 54 (19.5%) | 1 (4.5%) | 0.035 * | 0.401 (0.172–0.936) |
Dominant model | ||||
CC | 96 (34.7%) | 13 (59.1%) | Reference | |
CT + TT | 181 (65.3%) | 9 (40.9%) | 0.026 * | 0.611 (0.397–0.942) |
Recessive model | ||||
CC + CT | 223 (80.5%) | 21 (95.5%) | Reference | |
TT | 54 (19.5%) | 1 (4.5%) | 0.083 | 0.483 (0.212–1.099) |
Alleles | ||||
C® | 319 (57.6%) | 34 (77.3%) | Reference | |
T | 235 (42.4%) | 10 (22.7%) | 0.010 * | 0.645 (0.461–0.902) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, I.A.; Kharboush, T.G.; Al-Amodi, H.S.; Kamel, H.F.M.; Darwish, E.; Mosbeh, A.; Galbt, H.A.; Abdel-Kareim, A.M.; Abdelsattar, S. Interleukin-1 Beta rs16944 and rs1143634 and Interleukin-6 Receptor rs12083537 Single Nucleotide Polymorphisms as Potential Predictors of COVID-19 Severity. Pathogens 2024, 13, 915. https://doi.org/10.3390/pathogens13100915
Ahmed IA, Kharboush TG, Al-Amodi HS, Kamel HFM, Darwish E, Mosbeh A, Galbt HA, Abdel-Kareim AM, Abdelsattar S. Interleukin-1 Beta rs16944 and rs1143634 and Interleukin-6 Receptor rs12083537 Single Nucleotide Polymorphisms as Potential Predictors of COVID-19 Severity. Pathogens. 2024; 13(10):915. https://doi.org/10.3390/pathogens13100915
Chicago/Turabian StyleAhmed, Inas A., Taghrid G. Kharboush, Hiba S. Al-Amodi, Hala F. M. Kamel, Ehab Darwish, Asmaa Mosbeh, Hossam A. Galbt, Amal M. Abdel-Kareim, and Shimaa Abdelsattar. 2024. "Interleukin-1 Beta rs16944 and rs1143634 and Interleukin-6 Receptor rs12083537 Single Nucleotide Polymorphisms as Potential Predictors of COVID-19 Severity" Pathogens 13, no. 10: 915. https://doi.org/10.3390/pathogens13100915
APA StyleAhmed, I. A., Kharboush, T. G., Al-Amodi, H. S., Kamel, H. F. M., Darwish, E., Mosbeh, A., Galbt, H. A., Abdel-Kareim, A. M., & Abdelsattar, S. (2024). Interleukin-1 Beta rs16944 and rs1143634 and Interleukin-6 Receptor rs12083537 Single Nucleotide Polymorphisms as Potential Predictors of COVID-19 Severity. Pathogens, 13(10), 915. https://doi.org/10.3390/pathogens13100915